1
|
Sugiyama Y, Okada S, Daigaku Y, Kusumoto E, Ito T. Strategic targeting of Cas9 nickase induces large segmental duplications. CELL GENOMICS 2024; 4:100610. [PMID: 39053455 PMCID: PMC11406185 DOI: 10.1016/j.xgen.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Gene/segmental duplications play crucial roles in genome evolution and variation. Here, we introduce paired nicking-induced amplification (PNAmp) for their experimental induction. PNAmp strategically places two Cas9 nickases upstream and downstream of a replication origin on opposite strands. This configuration directs the sister replication forks initiated from the origin to break at the nicks, generating a pair of one-ended double-strand breaks. If homologous sequences flank the two break sites, then end resection converts them to single-stranded DNAs that readily anneal to drive duplication of the region bounded by the homologous sequences. PNAmp induces duplication of segments as large as ∼1 Mb with efficiencies exceeding 10% in the budding yeast Saccharomyces cerevisiae. Furthermore, appropriate splint DNAs allow PNAmp to duplicate/multiplicate even segments not bounded by homologous sequences. We also provide evidence for PNAmp in mammalian cells. Therefore, PNAmp provides a prototype method to induce structural variations by manipulating replication fork progression.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Emiko Kusumoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Chen R, Zhao MJ, Li YM, Liu AH, Wang RX, Mei YC, Chen X, Du HN. Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1089-1105. [PMID: 38842635 DOI: 10.1007/s11427-024-2543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
Collapse
Affiliation(s)
- Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ao-Hui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Bai W, Huang M, Li C, Li J. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing. Synth Syst Biotechnol 2023; 8:584-596. [PMID: 37711546 PMCID: PMC10497738 DOI: 10.1016/j.synbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.
Collapse
Affiliation(s)
- Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Northern Ireland, BT9 5AG, Belfast, United Kingdom
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| |
Collapse
|
4
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the petroleum-based chemical synthesis of industrial products causes serious environmental and societal issues, biotechnological production using microorganisms is an alternative approach to achieve a more sustainable economy. In particular, the yeast Saccharomyces cerevisiae is widely used as a microbial cell factory to produce biofuels and valuable biomaterials. However, product profiles are often restricted due to the Crabtree-positive nature of S. cerevisiae, and ethanol production from lignocellulose is possibly enhanced by developing alternative stress-resistant microbial platforms. With desirable metabolic pathways and regulation in addition to strong resistance to diverse stress factors, nonconventional yeasts (NCY) may be considered an alternative microbial platform for industrial uses. Irrespective of their high industrial value, the lack of genetic information and useful gene editing tools makes it challenging to develop metabolic engineering-guided scaled-up applications using yeasts. The recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system is a powerful gene editing tool for NCYs. This review describes the current status of and recent advances in promising NCYs in terms of industrial and biotechnological applications, highlighting CRISPR-Cas9 system-based metabolic engineering strategies. This will serve as a basis for the development of novel yeast applications.
Collapse
|
6
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
7
|
Mojumdar A, Adam N, Cobb JA. Nej1 interacts with Sae2 at DNA double-stranded breaks to inhibit DNA resection. J Biol Chem 2022; 298:101937. [PMID: 35429499 PMCID: PMC9117546 DOI: 10.1016/j.jbc.2022.101937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The two major pathways of DNA double-strand break repair, nonhomologous end-joining and homologous recombination, are highly conserved from yeast to mammals. The regulation of 5′-DNA resection controls repair pathway choice and influences repair outcomes. Nej1 was first identified as a canonical NHEJ factor involved in stimulating the ligation of broken DNA ends, and more recently, it was shown to participate in DNA end-bridging and in the inhibition of 5′-resection mediated by the nuclease/helicase complex Dna2–Sgs1. Here, we show that Nej1 interacts with Sae2 to impact DSB repair in three ways. First, we show that Nej1 inhibits interaction of Sae2 with the Mre11–Rad50–Xrs2 complex and Sae2 localization to DSBs. Second, we found that Nej1 inhibits Sae2-dependent recruitment of Dna2 independently of Sgs1. Third, we determined that NEJ1 and SAE2 showed an epistatic relationship for end-bridging, an event that restrains broken DNA ends and reduces the frequency of genomic deletions from developing at the break site. Finally, we demonstrate that deletion of NEJ1 suppressed the synthetic lethality of sae2Δ sgs1Δ mutants, and that triple mutant viability was dependent on Dna2 nuclease activity. Taken together, these findings provide mechanistic insight to how Nej1 functionality inhibits the initiation of DNA resection, a role that is distinct from its involvement in end-joining repair at DSBs.
Collapse
Affiliation(s)
- Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Nancy Adam
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
8
|
Holland CL, Sanderson BA, Titus JK, Weis MF, Riojas AM, Malczewskyj E, Wasko BM, Lewis LK. Suppression of telomere capping defects of Saccharomyces cerevisiae yku70 and yku80 mutants by telomerase. G3-GENES GENOMES GENETICS 2021; 11:6395363. [PMID: 34718547 PMCID: PMC8664480 DOI: 10.1093/g3journal/jkab359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
The Ku complex performs multiple functions inside eukaryotic cells, including protection of chromosomal DNA ends from degradation and fusion events, recruitment of telomerase, and repair of double-strand breaks (DSBs). Inactivation of Ku complex genes YKU70 or YKU80 in cells of the yeast Saccharomyces cerevisiae gives rise to mutants that exhibit shortened telomeres and temperature-sensitive growth. In this study, we have investigated the mechanism by which overexpression of telomerase suppresses the temperature sensitivity of yku mutants. Viability of yku cells was restored by overexpression of the Est2 reverse transcriptase and TLC1 RNA template subunits of telomerase, but not the Est1 or Est3 proteins. Overexpression of other telomerase- and telomere-associated proteins (Cdc13, Stn1, Ten1, Rif1, Rif2, Sir3, and Sir4) did not suppress the growth defects of yku70 cells. Mechanistic features of suppression were assessed using several TLC1 RNA deletion derivatives and Est2 enzyme mutants. Supraphysiological levels of three catalytically inactive reverse transcriptase mutants (Est2-D530A, Est2-D670A, and Est2-D671A) suppressed the loss of viability as efficiently as the wild-type Est2 protein, without inducing cell senescence. Roles of proteins regulating telomere length were also determined. The results support a model in which chromosomes in yku mutants are stabilized via a replication-independent mechanism involving structural reinforcement of protective telomere cap structures.
Collapse
Affiliation(s)
- Cory L Holland
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian A Sanderson
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - James K Titus
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Monica F Weis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Angelica M Riojas
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Eric Malczewskyj
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian M Wasko
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
9
|
Ahmad S, Côté V, Cheng X, Bourriquen G, Sapountzi V, Altaf M, Côté J. Antagonistic relationship of NuA4 with the non-homologous end-joining machinery at DNA damage sites. PLoS Genet 2021; 17:e1009816. [PMID: 34543274 PMCID: PMC8483352 DOI: 10.1371/journal.pgen.1009816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/30/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
The NuA4 histone acetyltransferase complex, apart from its known role in gene regulation, has also been directly implicated in the repair of DNA double-strand breaks (DSBs), favoring homologous recombination (HR) in S/G2 during the cell cycle. Here, we investigate the antagonistic relationship of NuA4 with non-homologous end joining (NHEJ) factors. We show that budding yeast Rad9, the 53BP1 ortholog, can inhibit NuA4 acetyltransferase activity when bound to chromatin in vitro. While we previously reported that NuA4 is recruited at DSBs during the S/G2 phase, we can also detect its recruitment in G1 when genes for Rad9 and NHEJ factors Yku80 and Nej1 are mutated. This is accompanied with the binding of single-strand DNA binding protein RPA and Rad52, indicating DNA end resection in G1 as well as recruitment of the HR machinery. This NuA4 recruitment to DSBs in G1 depends on Mre11-Rad50-Xrs2 (MRX) and Lcd1/Ddc2 and is linked to the hyper-resection phenotype of NHEJ mutants. It also implicates NuA4 in the resection-based single-strand annealing (SSA) repair pathway along Rad52. Interestingly, we identified two novel non-histone acetylation targets of NuA4, Nej1 and Yku80. Acetyl-mimicking mutant of Nej1 inhibits repair of DNA breaks by NHEJ, decreases its interaction with other core NHEJ factors such as Yku80 and Lif1 and favors end resection. Altogether, these results establish a strong reciprocal antagonistic regulatory function of NuA4 and NHEJ factors in repair pathway choice and suggests a role of NuA4 in alternative repair mechanisms in situations where some DNA-end resection can occur in G1. DNA double-strand breaks (DSBs) are one of the most harmful form of DNA damage. Cells employ two major repair pathways to resolve DSBs: Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ). Here we wanted to dissect further the role played by the NuA4 (Nucleosome acetyltransferase of histone H4) complex in the repair of DSBs. Budding yeast NuA4 complex, like its mammalian homolog TIP60 complex, has been shown to favor repair by HR. Here, we show that indeed budding yeast NuA4 and components of the NHEJ repair pathway share an antagonistic relationship. Deletion of NHEJ components enables increased recruitment of NuA4 in the vicinity of DSBs, possible through two independent mechanisms, where NuA4 favors the end resection process which implicates it in repair by single-strand annealing (SSA), an alternate homology-based repair pathway. Additionally, we also present two NHEJ core components as new targets of NuA4 acetyltransferase activity and suggest that these acetylation events can disassemble the NHEJ repair complex from DSBs, favoring repair by HR. Our study demonstrates the importance of NuA4 in the modulation of DSB repair pathway choice.
Collapse
Affiliation(s)
- Salar Ahmad
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Gaëlle Bourriquen
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Vasileia Sapountzi
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Mohammed Altaf
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
- * E-mail:
| |
Collapse
|
10
|
Paull TT. Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions. Curr Opin Genet Dev 2021; 71:55-62. [PMID: 34293662 DOI: 10.1016/j.gde.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
DNA double-strand breaks can be repaired through ligation-based pathways (non-homologous end-joining) or replication-based pathways (homologous recombination) in eukaryotic cells. The decisions that govern these outcomes are widely viewed as a competition between factors that recognize DNA ends and physically promote association of factors specific to each pathway, commonly known as 'pathway choice'. Here I review recent results in the literature and propose that this decision is better described as a sequential set of binding and end processing events, with non-homologous end joining as the first decision point. Physical association and co-localization of end resection factors with non-homologous end-joining factors suggests that ends are transferred between these complexes, thus the ultimate outcome is not the result of a competition but is more akin to a relay race that is determined by the efficiency of the initial end-joining event and the availability of activated DNA end-processing enzymes.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712, United States.
| |
Collapse
|
11
|
Bazzano D, Lomonaco S, Wilson TE. Mapping yeast mitotic 5' resection at base resolution reveals the sequence and positional dependence of nucleases in vivo. Nucleic Acids Res 2021; 49:12607-12621. [PMID: 34263309 PMCID: PMC8682756 DOI: 10.1093/nar/gkab597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Resection of the 5′-terminated strand at DNA double-strand breaks (DSBs) is the critical regulated step in the transition to homologous recombination. Recent studies have described a multi-step model of DSB resection where endonucleolytic cleavage mediated by Mre11 and Sae2 leads to further degradation mediated by redundant pathways catalyzed by Exo1 and Sgs1/Dna2. These models have not been well tested at mitotic DSBs in vivo because most methods used to monitor resection cannot precisely map early cleavage events. Here we report resection monitoring with high-throughput sequencing using molecular identifiers, allowing exact counting of cleaved 5′ ends at base resolution. Mutant strains, including exo1Δ, mre11-H125N and exo1Δ sgs1Δ, revealed a major Mre11-dependent cleavage position 60–70 bp from the DSB end whose exact position depended on local sequence. They further revealed an Exo1-dependent pause point approximately 200 bp from the DSB. Suppressing resection extension in exo1Δ sgs1Δ yeast exposed a footprint of regions where cleavage was restricted within 119 bp of the DSB. These results provide detailed in vivo views of prevailing models of DSB resection and extend them to show the combined influence of sequence specificity and access restrictions on Mre11 and Exo1 nucleases.
Collapse
Affiliation(s)
- Dominic Bazzano
- Department of Pathology, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Thomas E Wilson
- To whom correspondence should be addressed. Tel: +1 734 764 2212;
| |
Collapse
|
12
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
13
|
Cook D, Long S, Stanton J, Cusick P, Lawrimore C, Yeh E, Grant S, Bloom K. Behavior of dicentric chromosomes in budding yeast. PLoS Genet 2021; 17:e1009442. [PMID: 33735169 PMCID: PMC8009378 DOI: 10.1371/journal.pgen.1009442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/30/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks arise in vivo when a dicentric chromosome (two centromeres on one chromosome) goes through mitosis with the two centromeres attached to opposite spindle pole bodies. Repair of the DSBs generates phenotypic diversity due to the range of monocentric derivative chromosomes that arise. To explore whether DSBs may be differentially repaired as a function of their spatial position in the chromosome, we have examined the structure of monocentric derivative chromosomes from cells containing a suite of dicentric chromosomes in which the distance between the two centromeres ranges from 6.5 kb to 57.7 kb. Two major classes of repair products, homology-based (homologous recombination (HR) and single-strand annealing (SSA)) and end-joining (non-homologous (NHEJ) and micro-homology mediated (MMEJ)) were identified. The distribution of repair products varies as a function of distance between the two centromeres. Genetic dependencies on double strand break repair (Rad52), DNA ligase (Lif1), and S phase checkpoint (Mrc1) are indicative of distinct repair pathway choices for DNA breaks in the pericentromeric chromatin versus the arms. A challenge in chromosome biology is to integrate the linear code with spatial organization and chromosome dynamics within the nucleus. The major sub-division of function in the nucleus is the nucleolus, the site of ribosomal RNA synthesis. We report that the pericentromere DNA surrounding the centromere is another region of confined biochemistry. We have found that chromosome breaks between two centromeres that both lie within the pericentromeric region of the chromosomes are repaired via pathways that do not rely on sequence homology (MMEJ or NHEJ). Chromosome breaks in dicentric chromosomes whose centromeres are separated by > 20 kb are repaired via pathways that rely mainly on sequence homology (HR, SSA). The repair of breaks in the pericentromere versus breaks in the arms are differentially dependent on Rad52, Lif1, and Mrc1, further indicative of spatial control over DNA repair pathways.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Long
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Stanton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick Cusick
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Colleen Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine Yeh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah Grant
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Carballar R, Martínez-Láinez JM, Samper B, Bru S, Bállega E, Mirallas O, Ricco N, Clotet J, Jiménez J. CDK-mediated Yku80 Phosphorylation Regulates the Balance Between Non-homologous End Joining (NHEJ) and Homologous Directed Recombination (HDR). J Mol Biol 2020; 432:166715. [PMID: 33217428 DOI: 10.1016/j.jmb.2020.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
There are two major pathways for repairing DNA double-strand breaks (DSBs): homologous directed recombination (HDR) and non-homologous end-joining (NHEJ). While NHEJ functions throughout the cell cycle, HDR is only possible during S/G2 phases, suggesting that there are cell cycle-specific mechanisms regulating the balance between the two repair systems. The regulation exerted by CDKs on HDR has been extensively demonstrated, and here we present evidence that the CDK Pho85, in association with the G1 cyclin Pcl1, phosphorylates Yku80 on Ser 623 to regulate NHEJ activity. Cells bearing a non-phosphorylatable version of Yku80 show increased NHEJ and reduced HDR activity. Accordingly, yku80S623A cells present diminished viability upon treatment with the DSB-producer bleomycin, specifically in the G2 phase of the cell cycle. Interestingly, the mutation of the equivalent residue in human Ku80 increases sensitivity to bleomycin in several cancer cell lines, suggesting that this mechanism is conserved in humans. Altogether, our results reveal a new mechanism whereby G1-CDKs mediate the choice between HDR and NHEJ repair pathways, putting the error prone NHEJ on a leash and enabling error free HDR in G2 when homologous sequences are available.
Collapse
Affiliation(s)
- Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Joan M Martínez-Láinez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Oriol Mirallas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
15
|
Nej1 Interacts with Mre11 to Regulate Tethering and Dna2 Binding at DNA Double-Strand Breaks. Cell Rep 2020; 28:1564-1573.e3. [PMID: 31390569 PMCID: PMC6746346 DOI: 10.1016/j.celrep.2019.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/19/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Non-homologous end joining (NHEJ) and homologous recombination (HR) are the two major pathways of DNA double-strand break (DSB) repair and both are highly conserved from yeast to mammals. Nej1 has a role in DNA end-tethering at a DSB, and the Mre11/Rad50/Xrs2 (MRX) complex is important for its recruitment to the break. Nej1 and Dna2-Sgs1 interact with the C-terminal end of Mre11, which also includes the region where Rad50 binds. By characterizing the functionality of Nej1 in two rad50 mutants, which alter the structural features of MRX, we demonstrate that Nej1 inhibits the binding of Dna2 to Mre11 and Sgs1. Nej1 interactions with Mre11 promote tethering and inhibit hyper-resection, and when these events are compromised, large deletions develop at a DSB. The work indicates that Nej1 provides a layer of regulation to repair pathway choice and is consistent with its role in NHEJ. Mojumdar et al. characterize the role of Nej1 during double-strand break repair. They show Nej1 promotes non-homologous end joining (NHEJ) by tethering the broken DNA ends and by inhibiting hyper-resection mediated by Dna2-Sgs1.
Collapse
|
16
|
Hu C, Bugbee T, Gamez M, Wallace NA. Beta Human Papillomavirus 8E6 Attenuates Non-Homologous End Joining by Hindering DNA-PKcs Activity. Cancers (Basel) 2020; 12:cancers12092356. [PMID: 32825402 PMCID: PMC7564021 DOI: 10.3390/cancers12092356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cutaneous viral infections occur in a background of near continual exposure to environmental genotoxins, like UV radiation in sunlight. Failure to repair damaged DNA is an established driver of tumorigenesis and substantial cellular resources are devoted to repairing DNA lesions. Beta-human papillomaviruses (β-HPVs) attenuate DNA repair signaling. However, their role in human disease is unclear. Some have proposed that β-HPV promotes tumorigenesis, while others suggest that β-HPV protects against skin cancer. Most of the molecular evidence that β-HPV impairs DNA repair has been gained via characterization of the E6 protein from β-HPV 8 (β-HPV 8E6). Moreover, β-HPV 8E6 hinders DNA repair by binding and destabilizing p300, a transcription factor for multiple DNA repair genes. By reducing p300 availability, β-HPV 8E6 attenuates a major double strand DNA break (DSB) repair pathway, homologous recombination. Here, β-HPV 8E6 impairs another DSB repair pathway, non-homologous end joining (NHEJ). Specifically, β-HPV 8E6 acts by attenuating DNA-dependent protein kinase (DNA-PK) activity, a critical NHEJ kinase. This includes DNA-PK activation and the downstream of steps in the pathway associated with DNA-PK activity. Notably, β-HPV 8E6 inhibits NHEJ through p300 dependent and independent means. Together, these data expand the known genome destabilizing capabilities of β-HPV 8E6.
Collapse
Affiliation(s)
- Changkun Hu
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
| | - Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
| | - Monica Gamez
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK;
| | - Nicholas A. Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (T.B.)
- Correspondence:
| |
Collapse
|
17
|
Oster S, Aqeilan RI. Programmed DNA Damage and Physiological DSBs: Mapping, Biological Significance and Perturbations in Disease States. Cells 2020; 9:cells9081870. [PMID: 32785139 PMCID: PMC7463922 DOI: 10.3390/cells9081870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are known to be the most toxic and threatening of the various types of breaks that may occur to the DNA. However, growing evidence continuously sheds light on the regulatory roles of programmed DSBs. Emerging studies demonstrate the roles of DSBs in processes such as T and B cell development, meiosis, transcription and replication. A significant recent progress in the last few years has contributed to our advanced knowledge regarding the functions of DSBs is the development of many next generation sequencing (NGS) methods, which have considerably advanced our capabilities. Other studies have focused on the implications of programmed DSBs on chromosomal aberrations and tumorigenesis. This review aims to summarize what is known about DNA damage in its physiological context. In addition, we will examine the advancements of the past several years, which have made an impact on the study of genome landscape and its organization.
Collapse
Affiliation(s)
- Sara Oster
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel;
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
18
|
Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane. Nat Commun 2019; 10:2535. [PMID: 31182712 PMCID: PMC6557901 DOI: 10.1038/s41467-019-10349-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane.
Collapse
|
19
|
Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A 2018; 115:10028-10033. [PMID: 30224481 DOI: 10.1073/pnas.1806513115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The KAT5 (Tip60/Esa1) histone acetyltransferase is part of NuA4, a large multifunctional complex highly conserved from yeast to mammals that targets lysines on H4 and H2A (X/Z) tails for acetylation. It is essential for cell viability, being a key regulator of gene expression, cell proliferation, and stem cell renewal and an important factor for genome stability. The NuA4 complex is directly recruited near DNA double-strand breaks (DSBs) to facilitate repair, in part through local chromatin modification and interplay with 53BP1 during the DNA damage response. While NuA4 is detected early after appearance of the lesion, its precise mechanism of recruitment remains to be defined. Here, we report a stepwise recruitment of yeast NuA4 to DSBs first by a DNA damage-induced phosphorylation-dependent interaction with the Xrs2 subunit of the Mre11-Rad50-Xrs2 (MRX) complex bound to DNA ends. This is followed by a DNA resection-dependent spreading of NuA4 on each side of the break along with the ssDNA-binding replication protein A (RPA). Finally, we show that NuA4 can acetylate RPA and regulate the dynamics of its binding to DNA, hence targeting locally both histone and nonhistone proteins for lysine acetylation to coordinate repair.
Collapse
|
20
|
Bonetti D, Colombo CV, Clerici M, Longhese MP. Processing of DNA Ends in the Maintenance of Genome Stability. Front Genet 2018; 9:390. [PMID: 30258457 PMCID: PMC6143663 DOI: 10.3389/fgene.2018.00390] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are particularly hazardous lesions as their inappropriate repair can result in chromosome rearrangements, an important driving force of tumorigenesis. DSBs can be repaired by end joining mechanisms or by homologous recombination (HR). HR requires the action of several nucleases that preferentially remove the 5′-terminated strands at both DSB ends in a process called DNA end resection. The same nucleases are also involved in the processing of replication fork structures. Much of our understanding of these pathways has come from studies in the model organism Saccharomyces cerevisiae. Here, we review the current knowledge of the mechanism of resection at DNA DSBs and replication forks.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F, Casari E, Sung P, Tisi R, Zampella G, Longhese MP. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 2018; 37:embj.201798588. [PMID: 29925516 DOI: 10.15252/embj.201798588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Fabiana Mambretti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
22
|
Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks. MICROBIAL CELL 2018; 5:327-343. [PMID: 29992129 PMCID: PMC6035837 DOI: 10.15698/mic2018.07.639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
23
|
Luteijn RD, Drexler I, Smith GL, Lebbink RJ, Wiertz EJHJ. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol. J Gen Virol 2018; 99:790-804. [PMID: 29676720 PMCID: PMC7614823 DOI: 10.1099/jgv.0.001034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.
Collapse
Affiliation(s)
- Rutger David Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Present address: Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Ingo Drexler
- Institute for Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in Saccharomyces cerevisiae. Genetics 2018; 209:115-128. [PMID: 29500182 DOI: 10.1534/genetics.117.300672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
The Ku heterodimer acts centrally in nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB). Saccharomyces cerevisiae Ku, like mammalian Ku, binds and recruits NHEJ factors to DSB ends. Consequently, NHEJ is virtually absent in yeast Ku null (yku70∆ or yku80∆) strains. Previously, we unexpectedly observed imprecise NHEJ proficiency in a yeast Ku mutant with impaired DNA end-binding (DEB). However, how DEB impairment supported imprecise NHEJ was unknown. Here, we found imprecise NHEJ proficiency to be a feature of a panel of DEB-impaired Ku mutants and that DEB impairment resulted in a deficiency in precise NHEJ. These results suggest that DEB-impaired Ku specifically promotes error-prone NHEJ. Epistasis analysis showed that classical NHEJ factors, as well as novel and previously characterized NHEJ-specific residues of Ku, are required for the distinct error-prone repair in a Ku DEB mutant. However, sequencing of repair junctions revealed that imprecise repair in Ku DEB mutants was almost exclusively characterized by small deletions, in contrast to the majority of insertions that define imprecise repair in wild-type strains. Notably, while sequencing indicated a lack of Pol4-dependent insertions at the site of repair, Pol2 exonuclease activity, which mediates small deletions in NHEJ, contributed to imprecise NHEJ in a Ku DEB mutant. The deletions were smaller than in Ku-independent microhomology-mediated end-joining (MMEJ) and were neither promoted by Mre11 nuclease activity nor Sae2 Thus, the quality of Ku's engagement at the DNA end influences end-processing during NHEJ and DEB impairment unmasks a Ku-dependent error-prone pathway of end-joining distinct from MMEJ.
Collapse
|
25
|
Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update 2018; 24:119-134. [PMID: 29377997 DOI: 10.1093/humupd/dmy002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are considered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during reproductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. OUTCOMES Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal ageing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity.
Collapse
Affiliation(s)
- Amy L Winship
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica M Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
26
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Saccharomyces cerevisiae Mhr1 can bind Xho I-induced mitochondrial DNA double-strand breaks in vivo. Mitochondrion 2017; 42:23-32. [PMID: 29032234 DOI: 10.1016/j.mito.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA (mtDNA) double-strand break (DSB) repair is essential for maintaining mtDNA integrity, but little is known about the proteins involved in mtDNA DSB repair. Here, we utilize Saccharomyces cerevisiae as a eukaryotic model to identify proteins involved in mtDNA DSB repair. We show that Mhr1, a protein known to possess homologous DNA pairing activity in vitro, binds to mtDNA DSBs in vivo, indicating its involvement in mtDNA DSB repair. Our data also indicate that Yku80, a protein previously implicated in mtDNA DSB repair, does not compete with Mhr1 for binding to mtDNA DSBs. In fact, C-terminally tagged Yku80 could not be detected in yeast mitochondrial extracts. Therefore, we conclude that Mhr1, but not Yku80, is a potential mtDNA DSB repair factor in yeast.
Collapse
|
28
|
Wiest NE, Houghtaling S, Sanchez JC, Tomkinson AE, Osley MA. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast. Nucleic Acids Res 2017; 45:5887-5900. [PMID: 28398510 PMCID: PMC5449591 DOI: 10.1093/nar/gkx221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Pathway choice is determined by the generation of 3΄ single-strand DNA overhangs at the break that are initiated by the action of the Mre11-Rad50-Xrs2 (MRX) complex to direct repair toward HR. DSB repair occurs in the context of chromatin, and multiple chromatin regulators have been shown to play important roles in the repair process. We have investigated the role of the SWI/SNF ATP-dependent nucleosome-remodeling complex in the repair of a defined DNA DSB. SWI/SNF was previously shown to regulate presynaptic events in HR, but its function in these events is unknown. We find that in the absence of functional SWI/SNF, the initiation of DNA end resection is significantly delayed. The delay in resection initiation is accompanied by impaired recruitment of MRX to the DSB, and other functions of MRX in HR including the recruitment of long-range resection factors and activation of the DNA damage response are also diminished. These phenotypes are correlated with a delay in the eviction of nucleosomes surrounding the DSB. We propose that SWI/SNF orchestrates the recruitment of a pool of MRX that is specifically dedicated to HR.
Collapse
Affiliation(s)
- Nathaniel E Wiest
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Scott Houghtaling
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Joseph C Sanchez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan E Tomkinson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Manjón E, Edreira T, Muñoz S, Sánchez Y. Rgf1p (Rho1p GEF) is required for double-strand break repair in fission yeast. Nucleic Acids Res 2017; 45:5269-5284. [PMID: 28334931 PMCID: PMC5435928 DOI: 10.1093/nar/gkx176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/07/2017] [Indexed: 12/04/2022] Open
Abstract
Rho GTPases are conserved molecules that control cytoskeletal dynamics. These functions are expedited by Rho GEFs that stimulate the release of GDP to enable GTP binding, thereby allowing Rho proteins to initiate intracellular signaling. How Rho GEFs and Rho GTPases protect cells from DNA damage is unknown. Here, we explore the extreme sensitivity of a deletion mutation in the Rho1p exchange factor Rgf1p to the DNA break/inducing antibiotic phleomycin (Phl). The Rgf1p mutant cells are defective in reentry into the cell cycle following the induction of severe DNA damage. This phenotype correlates with the inability of rgf1Δ cells to efficiently repair fragmented chromosomes after Phl treatment. Consistent with this observation Rad11p (ssDNA binding protein, RPA), Rad52p, Rad54p and Rad51p, which facilitate strand invasion in the process of homology-directed repair (HDR), are permanently stacked in Phl-induced foci in rgf1Δ cells. These phenotypes are phenocopied by genetic inhibition of Rho1p. Our data provide evidence that Rgf1p/Rho1p activity positively controls a repair function that confers resistance against the anti-cancer drug Phl.
Collapse
Affiliation(s)
- Elvira Manjón
- Instituto de Biología Funcional y Genómica, CSIC. Departamento de Microbiología y Genética, Universidad de Salamanca. C/Zacarías González, s/n. Salamanca, Spain
| | - Tomás Edreira
- Instituto de Biología Funcional y Genómica, CSIC. Departamento de Microbiología y Genética, Universidad de Salamanca. C/Zacarías González, s/n. Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Funcional y Genómica, CSIC. Departamento de Microbiología y Genética, Universidad de Salamanca. C/Zacarías González, s/n. Salamanca, Spain
| | - Yolanda Sánchez
- Instituto de Biología Funcional y Genómica, CSIC. Departamento de Microbiología y Genética, Universidad de Salamanca. C/Zacarías González, s/n. Salamanca, Spain
| |
Collapse
|
30
|
Transient Silencing of DNA Repair Genes Improves Targeted Gene Integration in the Filamentous Fungus Trichoderma reesei. Appl Environ Microbiol 2017; 83:AEM.00535-17. [PMID: 28550064 DOI: 10.1128/aem.00535-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022] Open
Abstract
Trichoderma reesei is a filamentous fungus that is used worldwide to produce industrial enzymes. Industrial strains have traditionally been created though systematic strain improvement using mutagenesis and screening approaches. It is also desirable to specifically manipulate the genes of the organism to further improve and to modify the strain. Targeted integration in filamentous fungi is typically hampered by very low frequencies of homologous recombination. To address this limitation, we have developed a simple transient method for silencing genes in T. reesei Using gene-specific small interfering RNAs (siRNAs) targeted to mus53, we could achieve up to 90% knockdown of mus53 mRNA. As a practical example, we demonstrated that transient silencing of DNA repair genes significantly improved homologous integration of DNA at a specific locus in a standard protoplast transformation. The best transient silencing of mus53 with siRNAs in protoplasts could achieve up to 59% marker gene integration.IMPORTANCE The previous solution for improving targeted integration efficiency has been deleting nonhomologous end joining (NHEJ) DNA repair genes. However, deleting these important repair genes may lead to unintended consequences for genomic stability and could lead to the accumulation of spontaneous mutations. Our method of transiently silencing NHEJ repair pathway genes allows recovery of their important repair functions. Here we report a silencing approach for improving targeted DNA integration in filamentous fungi. Furthermore, our transient silencing method is a truly flexible approach that is capable of knocking down the expression of a target gene in growing mycelial cultures, which could facilitate the broad study of gene functions in T. reesei.
Collapse
|
31
|
Sorenson KS, Mahaney BL, Lees-Miller SP, Cobb JA. The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks. J Biol Chem 2017; 292:14576-14586. [PMID: 28679532 DOI: 10.1074/jbc.m117.796011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Double strand breaks (DSBs) represent highly deleterious DNA damage and need to be accurately repaired. Homology-directed repair and non-homologous end joining (NHEJ) are the two major DSB repair pathways that are highly conserved from yeast to mammals. The choice between these pathways is largely based on 5' to 3' DNA resection, and NHEJ proceeds only if resection has not been initiated. In yeast, yKu70/80 rapidly localizes to the break, protecting DNA ends from nuclease accessibility, and recruits additional NHEJ factors, including Nej1 and Lif1. Cells harboring the nej1-V338A mutant exhibit NHEJ-mediated repair deficiencies and hyper-resection 0.15 kb from the DSB that was dependent on the nuclease activity of Dna2-Sgs1. The integrity of Nej1 is also important for inhibiting long-range resection, 4.8 kb from the break, and for preventing the formation of large genomic deletions at sizes >700 bp around the break. Nej1V338A localized to a DSB similarly to WT Nej1, indicating that the Nej1-Lif1 interaction becomes critical for blocking hyper-resection mainly after their recruitment to the DSB. This work highlights that Nej1 inhibits 5' DNA hyper-resection mediated by Dna2-Sgs1, a function distinct from its previously reported role in supporting Dnl4 ligase activity, and has implications for repair pathway choice and resection regulation upon DSB formation.
Collapse
Affiliation(s)
- Kyle S Sorenson
- From the Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada
| | - Brandi L Mahaney
- From the Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada
| | - Susan P Lees-Miller
- From the Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
32
|
Mattarocci S, Reinert JK, Bunker RD, Fontana GA, Shi T, Klein D, Cavadini S, Faty M, Shyian M, Hafner L, Shore D, Thomä NH, Rass U. Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends. Nat Struct Mol Biol 2017; 24:588-595. [PMID: 28604726 DOI: 10.1038/nsmb.3420] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
Abstract
In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∼125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.
Collapse
Affiliation(s)
- Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tianlai Shi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mahamadou Faty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Maksym Shyian
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Lukas Hafner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Deshpande RA, Lee JH, Paull TT. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res 2017; 45:5255-5268. [PMID: 28369545 PMCID: PMC5435944 DOI: 10.1093/nar/gkx173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
35
|
Pandey M, Kumar S, Goldsmith G, Srivastava M, Elango S, Shameem M, Bannerjee D, Choudhary B, Karki SS, Raghavan SC. Identification and characterization of novel ligase I inhibitors. Mol Carcinog 2016; 56:550-566. [PMID: 27312791 DOI: 10.1002/mc.22516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Abstract
The terminal step of ligation of single and/or double-strand breaks during physiological processes such as DNA replication, repair and recombination requires participation of DNA ligases in all mammals. DNA Ligase I has been well characterised to play vital roles during these processes. Considering the indispensable role of DNA Ligase I, a therapeutic strategy to impede proliferation of cancer cells is by using specific small molecule inhibitors against it. In the present study, we have designed and chemically synthesised putative DNA Ligase I inhibitors. Based on various biochemical and biophysical screening approaches, we identify two prospective DNA Ligase I inhibitors, SCR17 and SCR21. Both the inhibitors blocked ligation of nicks on DNA in a concentration-dependent manner, when catalysed by cell-free extracts or purified Ligase I. Docking studies in conjunction with biolayer interferometry and gel shift assays revealed that both SCR17 and SCR21 can bind to Ligase I, particularly to the DNA Binding Domain of Ligase I with KD values in nanomolar range. The inhibitors did not show significant affinity towards DNA Ligase III and DNA Ligase IV. Further, addition of Ligase I could restore the joining, when the inhibitors were treated with testicular cell-free extracts. Ex vivo studies using multiple assays showed that even though cell death was limited in the presence of inhibitors in cancer cells, their proliferation was compromised. Hence, we identify two promising DNA Ligase I inhibitors, which can be used in biochemical and cellular assays, and could be further modified and optimised to target cancer cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore, India
| | - Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Mrinal Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santhini Elango
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Subhas S Karki
- Department of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
36
|
Emerson CH, Bertuch AA. Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem Cell Biol 2016; 94:396-406. [PMID: 27240172 DOI: 10.1139/bcb-2016-0001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.
Collapse
Affiliation(s)
- Charlene H Emerson
- a Graduate Program in Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison A Bertuch
- b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
37
|
Liang Z, Sunder S, Nallasivam S, Wilson TE. Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining. Nucleic Acids Res 2016; 44:2769-81. [PMID: 26773053 PMCID: PMC4824102 DOI: 10.1093/nar/gkw013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Non-homologous end joining (NHEJ) is the main repair pathway for DNA double-strand breaks (DSBs) in cells with limited 5′ resection. To better understand how overhang polarity of chromosomal DSBs affects NHEJ, we made site-specific 5′-overhanging DSBs (5′ DSBs) in yeast using an optimized zinc finger nuclease at an efficiency that approached HO-induced 3′ DSB formation. When controlled for the extent of DSB formation, repair monitoring suggested that chromosomal 5′ DSBs were rejoined more efficiently than 3′ DSBs, consistent with a robust recruitment of NHEJ proteins to 5′ DSBs. Ligation-mediated qPCR revealed that Mre11-Rad50-Xrs2 rapidly modified 5′ DSBs and facilitated protection of 3′ DSBs, likely through recognition of overhang polarity by the Mre11 nuclease. Next-generation sequencing revealed that NHEJ at 5′ DSBs had a higher mutation frequency, and validated the differential requirement of Pol4 polymerase at 3′ and 5′ DSBs. The end processing enzyme Tdp1 did not impact joining fidelity at chromosomal 5′ DSBs as in previous plasmid studies, although Tdp1 was recruited to only 5′ DSBs in a Ku-independent manner. These results suggest distinct DSB handling based on overhang polarity that impacts NHEJ kinetics and fidelity through differential recruitment and action of DSB modifying enzymes.
Collapse
Affiliation(s)
- Zhuobin Liang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sham Sunder
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Thomas E Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
39
|
Krasner DS, Daley JM, Sung P, Niu H. Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection. J Biol Chem 2015; 290:18806-16. [PMID: 26067273 DOI: 10.1074/jbc.m115.660191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 11/06/2022] Open
Abstract
DNA double-strand breaks can be eliminated via non-homologous end joining or homologous recombination. Non-homologous end joining is initiated by the association of Ku with DNA ends. In contrast, homologous recombination entails nucleolytic resection of the 5'-strands, forming 3'-ssDNA tails that become coated with replication protein A (RPA). Ku restricts end access by the resection nuclease Exo1. It is unclear how partial resection might affect Ku engagement and Exo1 restriction. Here, we addressed these questions in a reconstituted system with yeast proteins. With blunt-ended DNA, Ku protected against Exo1 in a manner that required its DNA end-binding activity. Despite binding poorly to ssDNA, Ku could nonetheless engage a 5'-recessed DNA end with a 40-nucleotide (nt) ssDNA overhang, where it localized to the ssDNA-dsDNA junction and efficiently blocked resection by Exo1. Interestingly, RPA could exclude Ku from a partially resected structure with a 22-nt ssDNA tail and thus restored processing by Exo1. However, at a 40-nt tail, Ku remained stably associated at the ssDNA-dsDNA junction, and RPA simultaneously engaged the ssDNA region. We discuss a model in which the dynamic equilibrium between Ku and RPA binding to a partially resected DNA end influences the timing and efficiency of the resection process.
Collapse
Affiliation(s)
- Danielle S Krasner
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - James M Daley
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Patrick Sung
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Hengyao Niu
- the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
40
|
Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining. DNA Repair (Amst) 2015; 31:1-10. [PMID: 25942368 DOI: 10.1016/j.dnarep.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022]
Abstract
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.
Collapse
|
41
|
Sung S, Li F, Park YB, Kim JS, Kim AK, Song OK, Kim J, Che J, Lee SE, Cho Y. DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA. EMBO J 2014; 33:2422-35. [PMID: 25107472 DOI: 10.15252/embj.201488299] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double-strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 (MjMre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B-form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid-body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non-homologous end joining, and tolerance to DNA-damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair.
Collapse
Affiliation(s)
- Sihyun Sung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Fuyang Li
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Young Bong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jin Seok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | - Jiae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jun Che
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
42
|
Pears CJ, Lakin ND. Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining. DNA Repair (Amst) 2014; 17:121-31. [DOI: 10.1016/j.dnarep.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 02/03/2023]
|
43
|
Mathiasen DP, Lisby M. Cell cycle regulation of homologous recombination inSaccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:172-84. [DOI: 10.1111/1574-6976.12066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
|
44
|
Hang LE, Lopez CR, Liu X, Williams JM, Chung I, Wei L, Bertuch AA, Zhao X. Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem 2014; 289:10308-10317. [PMID: 24567323 DOI: 10.1074/jbc.m113.526178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ku70-Ku80 ring complex encloses DNA ends to facilitate telomere maintenance and DNA break repair. Many studies focus on the ring-forming regions of subunits Ku70 and Ku80. Less is known about the Ku70 C-terminal tail, which lies outside the ring. Our results suggest that this region is responsible for dynamic sumoylation of Yku70 upon DNA association in budding yeast. Mutating a cluster of five lysines in this region largely eliminates Yku70 sumoylation. Chromatin immunoprecipitation analyses show that yku70 mutants with these lysines replaced by arginines exhibit reduced Ku-DNA association at both telomeres and internal DNA breaks. Consistent with this physical evidence, Yku70 sumoylation deficiency is associated with impaired ability to block DNA end resection and suppression of multiple defects caused by inefficient resection. Correlating with these, yku70 mutants with reduced sumoylation levels exhibit shorter telomeres, increased G overhang levels, and altered levels of non-homologous end joining. We also show that diminution of sumoylation does not affect Yku70 protein levels or its interactions with protein and RNA partners. These results suggest a model whereby Yku70 sumoylation upon DNA association strengthens Ku-DNA interaction to promote multiple functions of Ku.
Collapse
Affiliation(s)
- Lisa E Hang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065
| | | | - Xianpeng Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Jaime M Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Inn Chung
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065.
| |
Collapse
|
45
|
Simoneau A, Robellet X, Ladouceur AM, D'Amours D. Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression. Cell Cycle 2014; 13:1078-90. [PMID: 24553123 DOI: 10.4161/cc.27946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response is still unclear. Here we show that a major DSB sensor, the Mre11-Rad50-Xrs2 (MRX) complex, is regulated by cell cycle-dependent phosphorylation specifically in mitosis. This modification depends on the cyclin-dependent kinase Cdc28/Cdk1, and abrogation of Xrs2 and Mre11 phosphorylation results in a marked preference for DSB repair through NHEJ. Importantly, we show that phosphorylation of the MRX complex after DNA damage and during mitosis are regulated independently of each other by Tel1/ATM and Cdc28/Cdk1 kinases. Collectively, our results unravel an intricate network of phosphoregulatory mechanisms that act through the MRX complex to modulate DSB repair efficiency during mitosis.
Collapse
Affiliation(s)
- Antoine Simoneau
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire; Université de Montréal; Montréal, Québec, Canada
| | - Xavier Robellet
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire; Université de Montréal; Montréal, Québec, Canada
| | - Anne-Marie Ladouceur
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire; Université de Montréal; Montréal, Québec, Canada
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
46
|
Zhou Y, Caron P, Legube G, Paull TT. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res 2013; 42:e19. [PMID: 24362840 PMCID: PMC3919611 DOI: 10.1093/nar/gkt1309] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
5′ strand resection at DNA double strand breaks (DSBs) is critical for homologous recombination (HR) and genomic stability. Here we develop a novel method to quantitatively measure single-stranded DNA intermediates in human cells and find that the 5′ strand at endonuclease-generated break sites is resected up to 3.5 kb in a cell cycle–dependent manner. Depletion of CtIP, Mre11, Exo1 or SOSS1 blocks resection, while depletion of 53BP1, Ku or DNA-dependent protein kinase catalytic subunit leads to increased resection as measured by this method. While 53BP1 negatively regulates DNA end processing, depletion of Brca1 does not, suggesting that the role of Brca1 in HR is primarily to promote Rad51 filament formation, not to regulate end resection.
Collapse
Affiliation(s)
- Yi Zhou
- The Department of Molecular Biosciences, The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA, Université de Toulouse, UPS, LBCMCP, 31062 Toulouse, France and CNRS, LBCMCP, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
47
|
Munari FM, Revers LF, Cardone JM, Immich BF, Moura DJ, Guecheva TN, Bonatto D, Laurino JP, Saffi J, Brendel M, Henriques JAP. Sak1 kinase interacts with Pso2 nuclease in response to DNA damage induced by interstrand crosslink-inducing agents in Saccharomyces cerevisiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:241-53. [PMID: 24362320 DOI: 10.1016/j.jphotobiol.2013.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
By isolating putative binding partners through the two-hybrid system (THS) we further extended the characterization of the specific interstrand cross-link (ICL) repair gene PSO2 of Saccharomyces cerevisiae. Nine fusion protein products were isolated for Pso2p using THS, among them the Sak1 kinase, which interacted with the C-terminal β-CASP domain of Pso2p. Comparison of mutagen-sensitivity phenotypes of pso2Δ, sak1Δ and pso2Δsak1Δ disruptants revealed that SAK1 is necessary for complete WT-like repair. The epistatic interaction of both mutant alleles suggests that Sak1p and Pso2p act in the same pathway of controlling sensitivity to DNA-damaging agents. We also observed that Pso2p is phosphorylated by Sak1 kinase in vitro and co-immunoprecipitates with Sak1p after 8-MOP+UVA treatment. Survival data after treatment of pso2Δ, yku70Δ and yku70Δpso2Δ with nitrogen mustard, PSO2 and SAK1 with YKU70 or DNL4 single-, double- and triple mutants with 8-MOP+UVA indicated that ICL repair is independent of YKu70p and DNL4p in S. cerevisiae. Furthermore, a non-epistatic interaction was observed between MRE11, PSO2 and SAK1 genes after ICL induction, indicating that their encoded proteins act on the same substrate, but in distinct repair pathways. In contrast, an epistatic interaction was observed for PSO2 and RAD52, PSO2 and RAD50, PSO2 and XRS2 genes in 8-MOP+UVA treated exponentially growing cells.
Collapse
Affiliation(s)
- Fernanda M Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Luis F Revers
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jacqueline M Cardone
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Bruna F Immich
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Temenouga N Guecheva
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jomar P Laurino
- Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil
| | - Jenifer Saffi
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Department of Biological Sciences, State University of Santa Cruz (UESC), 45662-900 Ilhéus, BA, Brazil
| | - João A P Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
48
|
Cannon B, Kuhnlein J, Yang SH, Cheng A, Schindler D, Stark JM, Russell R, Paull TT. Visualization of local DNA unwinding by Mre11/Rad50/Nbs1 using single-molecule FRET. Proc Natl Acad Sci U S A 2013; 110:18868-73. [PMID: 24191051 PMCID: PMC3839711 DOI: 10.1073/pnas.1309816110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mre11/Rad50/Nbs1 (MRN) complex initiates and coordinates DNA repair and signaling events at double-strand breaks. The interaction between MRN and DNA ends is critical for the recruitment of DNA-processing enzymes, end tethering, and activation of the ATM protein kinase. Here we visualized MRN binding to duplex DNA molecules using single-molecule FRET, and found that MRN unwinds 15-20 base pairs at the end of the duplex, holding the branched structure open for minutes at a time in an ATP-dependent reaction. A Rad50 catalytic domain mutant that is specifically deficient in this ATP-dependent opening is impaired in DNA end resection in vitro and in resection-dependent repair of breaks in human cells, demonstrating the importance of MRN-generated single strands in the repair of DNA breaks.
Collapse
Affiliation(s)
| | - Jeffrey Kuhnlein
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, and
- Howard Hughes Medical Institute, University of Texas, Austin, TX 78712
| | - Soo-Hyun Yang
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, and
- Howard Hughes Medical Institute, University of Texas, Austin, TX 78712
| | - Anita Cheng
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Jeremy M. Stark
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | | | - Tanya T. Paull
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, and
- Howard Hughes Medical Institute, University of Texas, Austin, TX 78712
| |
Collapse
|
49
|
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center New York, New York 10065
| | | |
Collapse
|
50
|
Gomez-Cabello D, Jimeno S, Fernández-Ávila MJ, Huertas P. New tools to study DNA double-strand break repair pathway choice. PLoS One 2013; 8:e77206. [PMID: 24155929 PMCID: PMC3796453 DOI: 10.1371/journal.pone.0077206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/06/2013] [Indexed: 01/13/2023] Open
Abstract
A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB) repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.
Collapse
Affiliation(s)
- Daniel Gomez-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|