1
|
Shi Y, Zhang L, Bao Y, Wu P, Zhang X. Association of TNIP1 polymorphisms with hepatocellular carcinoma in a Northwest Chinese Han population. Medicine (Baltimore) 2021; 100:e24843. [PMID: 33761643 PMCID: PMC10545217 DOI: 10.1097/md.0000000000024843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Study has demonstrated that TNIP1 polymorphisms are associated with an increased risk of HBV-induced hepatocellular carcinoma (HCC). The purpose of this study was to investigate the correlation between polymorphisms in TNIP1 and HCC risk in a Northwest Chinese Han population.A case-control study was conducted including 473 Hepatocellular carcinoma patients and 564 healthy controls. Three SNPs (rs3792792, rs7708392, and rs10036748) were genotyped with Sequenom MassARRAY technology and their associations with HCC risk were analyzed. These data were evaluated using the Chi-square test/Fisher's exact test, genetic model analysis, and haplotype analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association.Patients with the "G" allele of TNIP1 rs7708392 showed a significantly increased risk of HCC (OR = 1.24, 95%CI: 1.01-1.52, P = .042). Significant association was also shown between TNIP1 rs7708392 and HCC susceptibility in Additive model (OR = 1.25; 95% CI = 1.01-1.54; P = .040). Besides, we also found that the "GC" haplotype of rs7708392 and rs10036748 was significantly associated with higher occurrence of HCC (OR = 1.25, 95% CI: 1.01-1.54, P = .039).These results demonstrate that TNIP1 polymorphisms are associated with increased HCC risk in a Northwest Chinese Han population for the first time, which warrants further investigation in the future.
Collapse
Affiliation(s)
- Yuting Shi
- Cadre Health Care Center, Inner Mongolia Autonomous Region People's Hospital, Saihan District, Hohhot
| | | | - Yang Bao
- Cadre Health Care Center, Inner Mongolia Autonomous Region People's Hospital, Saihan District, Hohhot
| | - Pengfei Wu
- Department of General Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot
| | - Xiaoli Zhang
- Department of Oncology Medicine, Inner Mongolia Autonomous Region People's Hospital, Saihan District, Hohhot, China
| |
Collapse
|
2
|
Shao Z, Tu Z, Shi Y, Li S, Wu A, Wu Y, Tian N, Sun L, Pan Z, Chen L, Gao W, Zhou Y, Wang X, Zhang X. RNA-Binding Protein HuR Suppresses Inflammation and Promotes Extracellular Matrix Homeostasis via NKRF in Intervertebral Disc Degeneration. Front Cell Dev Biol 2020; 8:611234. [PMID: 33330514 PMCID: PMC7732619 DOI: 10.3389/fcell.2020.611234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be a major cause of low back pain. Studies have demonstrated that IVDD may be dysregulated at the transcriptional level; however, whether post-transcriptional regulation is involved is still unknown. The current study aimed to illustrate the role of Human antigen R (HuR), an RNA binding protein involved in post-transcriptional regulation, in IVDD. The results showed that the expression of HuR was decreased in degenerative nucleus pulposus (NP) tissues as well as in TNF-α-treated NP cells. Downregulation of HuR may lead to increased inflammation and extracellular matrix (ECM) degradation in TNF-α-treated NP cells; however, these effects were not reversed in HuR overexpressed NP cells. Inhibition of the NF-κB signaling pathway attenuates inflammation and ECM degradation in HuR-deficient NP cells. A mechanism study showed that HuR prompted NKRF mRNA stability via binding to its AU-rich elements, and upregulation of NKRF suppressed inflammation and ECM degradation in HuR-deficient NP cells. Furthermore, we found that NKRF, but not HuR, overexpression ameliorated the process of IVDD in rats in vivo. In conclusion, HuR suppressed inflammation and ECM degradation in NP cells via stabilizing NKRF and inhibiting the NF-κB signaling pathway; NKRF, but not HuR, may serve as a potential therapeutic target for IVDD.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhuolong Tu
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zongyou Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linwei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
3
|
Peng K, Li Y, Lu C, Hu S. ABIN-1 protects chondrocytes from lipopolysaccharide-induced inflammatory injury through the inactivation of NF-κB signalling. Clin Exp Pharmacol Physiol 2020; 47:1212-1220. [PMID: 32100889 DOI: 10.1111/1440-1681.13291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023]
Abstract
The A20-binding inhibitor of nuclear factor (NF)-κB-1 (ABIN-1) protein has recently been implicated as a key regulator of inflammation with involvement in multiple inflammatory diseases. However, the function of ABIN-1 in osteoarthritis (OA) remains unclear. In the current study, we explored the role of ABIN-1 in the regulation of lipopolysaccharide (LPS)-induced inflammatory injury of chondrocytes, which served as an in vitro model of OA. Results revealed that ABIN-1 expression was induced by chondrocyte exposure to LPS. ABN-1 silencing exacerbated LPS-induced apoptosis and the inflammatory response, while ABIN-1 overexpression alleviated the inflammatory response and LPS-induced apoptosis in chondrocytes. Moreover, ABIN-1 overexpression resulted in significantly decreased LPS-induced NF-κB activation. Notably, activation of NF-κB signalling significantly reversed ABIN-1-mediated inhibitory effects on LPS-induced inflammatory injury in chondrocytes. Taken together, these results demonstrate that ABIN-1 protects chondrocytes against LPS-induced inflammatory injury through the suppression of NF-κB signalling. Our study suggests a potential role for ABIN-1 in OA. Further, we show that ABIN-1 may serve as a potential target for controlling joint inflammation.
Collapse
Affiliation(s)
- Kan Peng
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanqi Li
- Department of Respiratory, Xi'an Children's Hospital, Xi'an, China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shouye Hu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
4
|
Dai T, Zhao X, Li Y, Yu L, Li Y, Zhou X, Gong Q. miR-423 Promotes Breast Cancer Invasion by Activating NF-κB Signaling. Onco Targets Ther 2020; 13:5467-5478. [PMID: 32606763 PMCID: PMC7297514 DOI: 10.2147/ott.s236514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Breast cancer has become the most common malignancy among women worldwide; therefore, novel diagnostic and prognostic markers and therapeutic targets are urgently required. NF-κB signaling plays a pivotal role in enhancing breast cancer malignant phenotypes, especially cancer invasion and metastasis, which is the main cause of death in cancer patients. TNIP2, an important inhibitor of the NF-κB pathway, is known to involve a negative feedback loop of the NF-κB signaling cascade and to regulate tumor aggressiveness in various cancer types. However, the mRNA level of TNIP2 is barely altered in breast cancer; thus, the mechanism that regulates TNIP2 in breast cancer still needs to be elucidated. Methods We analyzed the expression and prognosis of miR-423 in a TCGA BRCA miRNA cohort and in clinical specimens. We detected the invasive capacity through a Matrigel-coated Transwell penetration assay, a three-dimensional (3D) spheroid invasion assay and a wound healing assay. Then, we applied luciferase assays, real-time PCR assays and Western blotting to further study the mechanism. Results In this study, analysis of the TCGA BRCA miRNA cohort and clinical specimens demonstrated that miR-423 was upregulated in human breast cancers and was positively correlated with clinical stage, poor overall survival and metastasis classification. Moreover, the invasiveness of breast cancer cells was enhanced by ectopic expression of miR-423 and inhibited by miR-423 downregulation. Mechanistically, upregulation of miR-423 led to activation of the NF-κB signaling pathway and elevated expression of snail and twist, while repression of miR-423 inhibited this pathway. Furthermore, the results indicated that TNIP2 is a target gene of miR-423, and suppression of TNIP2 resulted in increased invasiveness in miR-423-silenced cells. Conclusion Our results suggest that miR-423 is a crucial factor that enhances breast cancer cell invasion through the NF-κB signaling pathway and shed light on miR-423 as a promising prognostic and therapeutic marker for metastatic breast cancer.
Collapse
Affiliation(s)
- Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yun Li
- Department of Immunobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yanan Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
5
|
Lou Y, Huang Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp Ther Med 2020; 19:3060-3068. [PMID: 32256793 PMCID: PMC7086208 DOI: 10.3892/etm.2020.8547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
The mortality rate for patients experiencing sepsis is decreasing; however, an effective therapeutic strategy requires further investigation. Increasing evidence has supported the idea that dysregulated microRNAs (miR) participate in the development of sepsis. Meanwhile, macrophages are crucial players in various inflammatory responses and diseases. The objective of the current study was to investigate the associated molecular mechanisms of action of miR-15a-5p on inflammatory responses in lipopolysaccharide (LPS)-stimulated mouse macrophages and the macrophage cell line RAW264.7. RAW264.7 macrophages were stimulated with LPS for 4 h, and ELISAs were subsequently used to measure the expression levels of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, in RAW264.7 macrophages. The expression levels of miR-15a-5p in RAW264.7 macrophages were detected after the stimulation of LPS using reverse transcription quantitative-PCR. The results indicated that the IL-1β, IL-6, TNF-α and miR-15a-5p levels were significantly increased compared with the control group. The Target gene prediction database (TargetScan) and dual-luciferase reporter assays were subsequently employed, and TNF-α induced protein 3-interacting protein 2 (TNIP2) was confirmed as a direct target for miR-15a-5p. Additionally, it was found that the TNIP2 expression levels were decreased in RAW264.7 macrophages following LPS treatment compared with controls. The present study also examined the effects of miR-15a-5p inhibitor on inflammatory cytokine expression levels and the activation of the NF-κ signaling pathway. These results demonstrated that miR-15a-5p inhibitor reduced the secretion of inflammatory cytokines and inhibited NF-κ pathway activation by targeting TNIP2. This may be associated with the progression of sepsis. Meanwhile, a LPS-induced mouse model of sepsis was established to examine the regulation of TNIP2 and miR-15a-5p during inflammation. In the animal model, miR-15a-5p inhibitor significantly suppressed the secretion of inflammatory factors. The levels of creatin, blood urea nitrogen, aspartate aminotransferase and alanine aminotransferase in the serum of LPS-treated mice were also found to be decreased in the miR-15a-5p inhibitor treatment group, while the protective effects of miR-15a-5p inhibitor on sepsis were eliminated by TNIP2-small interfering RNA combination therapy. In conclusion, the present findings indicated that miR-15a-5p may be involved in the inflammatory process during sepsis by activating the NF-κ pathway and targeting TNIP2. This suggests that miR-15a-5p inhibitor may be a novel anti-inflammatory agent and therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Yufeng Lou
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Zhenrong Huang
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
6
|
Shamilov R, Aneskievich BJ. TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling. J Immunol Res 2018; 2018:3491269. [PMID: 30402506 PMCID: PMC6192141 DOI: 10.1155/2018/3491269] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023] Open
Abstract
TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Rambon Shamilov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
7
|
Zhang Y, Lei X, Li W, Ding X, Bai J, Wang J, Wu G. TNIP1 alleviates hepatic ischemia/reperfusion injury via the TLR2-Myd88 pathway. Biochem Biophys Res Commun 2018; 501:186-192. [DOI: 10.1016/j.bbrc.2018.04.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
|
8
|
Zhang H, Shi JH, Jiang H, Wang K, Lu JY, Jiang X, Ma X, Chen YX, Ren AJ, Zheng J, Xie Z, Guo S, Xu X, Zhang WJ. ZBTB20 regulates EGFR expression and hepatocyte proliferation in mouse liver regeneration. Cell Death Dis 2018; 9:462. [PMID: 29700307 PMCID: PMC5920068 DOI: 10.1038/s41419-018-0514-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Liver has a unique regenerative capacity, however, its regulatory mechanism is not fully defined. We have established the zinc-finger protein ZBTB20 as a key transcriptional repressor for alpha-fetoprotein (AFP) gene in liver. As a marker of hepatic differentiation, AFP expression is closely associated with hepatocyte proliferation. Unexpectedly, here we showed that ZBTB20 acts as a positive regulator of hepatic replication and is required for efficient liver regeneration. The mice specifically lacking ZBTB20 in hepatocytes exhibited a remarkable defect in liver regeneration after partial hepatectomy, which was characterized by impaired hepatocyte proliferation along with delayed cyclin D1 induction and diminished AKT activation. Furthermore, we found that epithelial growth factor receptor (EGFR) expression was dramatically reduced in the liver in the absence of ZBTB20, thereby substantially attenuating the activation of EGFR signaling pathway in regenerating liver. Adenovirus-mediated EGFR overexpression in ZBTB20-deficient hepatocytes could largely restore AKT activation in response to EGFR ligands in vitro, as well as hepatocyte replication in liver regeneration. Furthermore, ZBTB20 overexpression could significantly restore hepatic EGFR expression and cell proliferation after hepatectomy in ZBTB20-deficient liver. Taken together, our data point to ZBTB20 as a critical regulator of EGFR expression and hepatocyte proliferation in mouse liver regeneration, and may serve as a potential therapeutic target in clinical settings of liver regeneration.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jian-Hui Shi
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Kejia Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jun-Yu Lu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xuchao Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - An-Jing Ren
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Shanghai, 200433, China
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Shaodong Guo
- Department of Nutrition and Metabolism, Texas University of Agriculture and Mechanics, College Station, TX, 77843, USA
| | - Xiongfei Xu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Liu Z, Shi Y, Na Y, Zhang Q, Cao S, Duan X, Zhang X, Yang H, Jin T, Li Y. Genetic polymorphisms in TNIP1 increase the risk of gastric carcinoma. Oncotarget 2018; 7:40500-40507. [PMID: 27250029 PMCID: PMC5130023 DOI: 10.18632/oncotarget.9637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
The distribution and levels of TNIP1 in malignant and normal gastric mucosa are different, but it is not known whether TNIP1 polymorphisms are related to gastric carcinogenesis. To assess the association between four TNIP1 SNPs (rs3792792, rs4958881, rs7708392, rs10036748) and carcinogenesis, we used Sequenom Mass-ARRAY technology to determine the genotypes of 302 gastric carcinoma patients and 300 healthy controls in a Northwest Chinese Han population. These data were then compared using the Chi-square test/Fisher's exact test, genetic model analysis, and haplotype analysis. Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the correlation. We observed that patients with the "G" allele of rs7708392 and the "C" allele of rs10036748 showed an increased risk of gastric carcinoma (OR= 1.335, 95%CI: 1.021-1.745, P= 0.035; OR= 1.358, 95%CI: 1.039-1.774, P= 0.025, respectively). Conversely, the haplotype "CT" of TNIP1 (rs7708392-rs10036748) may act as a genetic protective factor for gastric carcinoma (adjusted OR= 0.731, 95%CI: 0.552-0.970, P= 0.030). Our results are the first to suggest that genetic variation in TNIP1 gene is associated with gastric carcinoma, though, this finding must be confirmed in other populations with larger sample size.
Collapse
Affiliation(s)
- Zhao Liu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Surgery, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Yuting Shi
- Department of Medical Oncology, Graduate School of Inner Mongolia Medical University, Hohhot 010000, China
| | - Yuyan Na
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China
| | - Qi Zhang
- Department of Medical, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Sizhe Cao
- Department of Medical, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Province People's Hospital, Xi'an 710001, China
| | - Xiyang Zhang
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hua Yang
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tianbo Jin
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
10
|
Song Y, Yan M, Li J, Li J, Jin T, Chen C. Association between TNIP1, MPHOSPH6 and ZNF208 genetic polymorphisms and the coronary artery disease risk in Chinese Han population. Oncotarget 2017; 8:77233-77240. [PMID: 29100383 PMCID: PMC5652776 DOI: 10.18632/oncotarget.20432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/24/2017] [Indexed: 11/27/2022] Open
Abstract
Introduction Coronary artery disease (CAD) is a common disease and among the leading cause of death in the general population. Inherited factors are involved in the pathogenesis of CAD. Aims Our study examined whether SNPs in TNIP1, MPHOSPH6, ZNF208 to be associated with CAD risk in a Chinese Han population. We recruited 596 CAD patients, 603 controls and genotyping fifteen SNPs using Sequenom MassARRAY. For association analysis between TNIP1, MPHOSPH6 and ZNF208 and CAD was determined by Odds ratios (ORs) with 95% confidence intervals (CIs) using Logistic Regression. Results The results indicated in allel model, the rs960709 in TNIP1 was associated with CAD risk (OR = 0.78, 95%CI = 0.65-0.94, P=0.010). The genetic model results showed that the rs960709 (A/G) polymorphism was associated with the risk of developing CAD in codominant, Dominant and Log-additive. The rs1056654 A/A allele and CAD patients compared to the healthy controls in recessive model (OR = 0.55, 95%CI = 0.34-0.90; P = 0.018). We also found that three SNPS in ZNF208 associated with CAD, respectively, rs2188971, rs8103163 and rs7248488. Linkage disequilibrium (LD) and haplotype analyses of the SNPs found that the CTA haplotype (rs1056675, rs1056654, rs11859599) and rs2188972A/rs2188971T/rs8103163A/rs7248488A (ATAA) were associated with CAD. Conclusion In conclusion, the present study provided evidence that SNPs in the TNIP1, ZNF208 and MPHOSPH6 were associated with CAD in Chinese Han population. It is possible that these SNPs are CAD risk factors and these data can provide.
Collapse
Affiliation(s)
- Yanbin Song
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Department of Cardiovascular, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chao Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
11
|
Wang Y, Song Z, Bi J, Liu J, Tong L, Song Y, Bai C, Zhu X. A20 protein regulates lipopolysaccharide-induced acute lung injury by downregulation of NF-κB and macrophage polarization in rats. Mol Med Rep 2017; 16:4964-4972. [DOI: 10.3892/mmr.2017.7184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
|
12
|
Liu C, Wang L, Chen W, Zhao S, Yin C, Lin Y, Jiang A, Zhang P. USP35 activated by miR let-7a inhibits cell proliferation and NF-κB activation through stabilization of ABIN-2. Oncotarget 2015; 6:27891-906. [PMID: 26348204 PMCID: PMC4695033 DOI: 10.18632/oncotarget.4451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin specific protease 35 (USP35) is a member of deubiquitylases (DUBs). It remains largely unknown about the biological role and the regulation mechanism of USP35. Here, we first identified miR let-7a as a positive regulator of USP35 expression and showed that USP35 expression positively correlates with miR let-7a expression in different cancer cell lines and tissues. Then, we showed that USP35 expression was decreased dramatically in the tumor tissues compared with the adjacent non-cancerous tissues. USP35 overexpression inhibited cell proliferation in vitro and inhibited xenograft tumor growth in vivo. Furthermore, we revealed that USP35 acts as a functional DUB and stabilizes TNFAIP3 interacting protein 2 (ABIN-2) by promoting its deubiquitination. Functionally, both ABIN-2 and USP35 could inhibit TNFα-induced NF-κB activation and overexpression of ABIN-2 alleviated USP35-loss induced activation of NF-κB. Collectively, our data indicated that miR let-7a-regulated USP35 can inhibit NF-κB activation by deubiquitination and stabilization of ABIN-2 protein and eventually inhibit cell proliferation. Overall, our study provides a novel rationale of targeting miR let-7a-USP35-ABIN-2 pathway for the therapy of cancer patients.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Lina Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Shihu Zhao
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Chunli Yin
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Yani Lin
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Anli Jiang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
13
|
Zheng T, Chou J, Zhang F, Liu Y, Ni H, Li X, Zheng L, Tang T, Jin L, Xi T. CXCR4 3'UTR functions as a ceRNA in promoting metastasis, proliferation and survival of MCF-7 cells by regulating miR-146a activity. Eur J Cell Biol 2015; 94:458-69. [PMID: 26095299 DOI: 10.1016/j.ejcb.2015.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
CXCR4 is the most common chemokine receptor expressed on tumor cells, and it is closely correlated with cancer cell stemness. This study was carried out to explore whether CXCR4 could function as a competitive endogenous RNA to promote metastasis, proliferation and survival in MCF-7 breast cancer cells. We validated that CXCR4, together with TRAF6 and EGFR, was directly targeted by miR-146a in MCF-7 cells. Overexpression of CXCR4 3'UTR inhibited the activity of miR-146a, thus elevating the expression of CXCR4, TRAF6 and EGFR. These oncoproteins further activated NF-κB pathway and promoted the proliferation, migration, invasion and anti-apoptotic activity of MCF-7 cells. Collectively, our study provided new insights into the function of CXCR4 in breast cancer: it promotes tumor progression as both a protein-coding gene and a non-coding RNA, complicating the mechanism by which oncogenes promote tumor progression.
Collapse
Affiliation(s)
- Tianjing Zheng
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Jinjiang Chou
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Zhang
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Yu Liu
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Haiwei Ni
- Medical college of Yangzhou University, #11, Huaihailu Road, Yangzhou, China
| | - Xiaoman Li
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Tingting Tang
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
14
|
Downregulation of TNIP1 Expression Leads to Increased Proliferation of Human Keratinocytes and Severer Psoriasis-Like Conditions in an Imiquimod-Induced Mouse Model of Dermatitis. PLoS One 2015; 10:e0127957. [PMID: 26046540 PMCID: PMC4457880 DOI: 10.1371/journal.pone.0127957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/22/2015] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease involving both environmental and genetic factors. According to genome-wide association studies (GWAS), the TNIP1 gene, which encodes the TNF-α–induced protein 3-interacting protein 1 (TNIP1), is strongly linked to the susceptibility of psoriasis. TNIP1 is a widely expressed ubiquitin sensor that binds to the ubiquitin-editing protein A20 and restricts TNF- and TLR-induced signals. In our study, TNIP1 expression decreased in specimens of epidermis affected by psoriasis. Based on previous studies suggesting a role for TNIP1 in modulating cancer cell growth, we investigated its role in keratinocyte proliferation, which is clearly abnormal in psoriasis. To mimic the downregulation or upregulation of TNIP1 in HaCaT cells and primary human keratinocytes (PHKs), we used a TNIP1 specific small interfering hairpin RNA (TNIP1 shRNA) lentiviral vector or a recombinant TNIP1 (rTNIP1) lentiviral vector, respectively. Blocking TNIP1 expression increased keratinocyte proliferation, while overexpression of TNIP1 decreased keratinocyte proliferation. Furthermore, we showed that TNIP1 signaling might involve extracellular signal-regulated kinase1/2 (Erk1/2) and CCAAT/enhancer-binding protein β (C/EBPβ) activity. Intradermal injection of TNIP1 shRNA in BALB/c mice led to exaggerated psoriatic conditions in imiquimod (IMQ)-induced psoriasis-like dermatitis. These findings indicate that TNIP1 has a protective role in psoriasis and therefore could be a promising therapeutic target.
Collapse
|
15
|
Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells. Cancer Res 2014; 70:5703. [PMID: 25242818 DOI: 10.1158/1538-7445.am10-5703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with "natural agents" [3,3'-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy G VandenBoom
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhiwei Wang
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip A Philip
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
16
|
Verstrepen L, Carpentier I, Beyaert R. The biology of A20-binding inhibitors of NF-kappaB activation (ABINs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:13-31. [PMID: 25302363 DOI: 10.1007/978-1-4939-0398-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The family of A20-Binding Inhibitors of NF-kappaB (ABINs) consists of three proteins, ABIN-1, ABIN-2 and ABIN-3, which were originally identified as A20-binding proteins and inhibitors of cytokines and Lipopolysaccharide (LPS) induced NF-kappaB activation. ABIN family members have limited sequence homology in a number of short regions that mediate A20-binding, ubiquitin-binding, and NF-kappaB inhibition. The functional role of A20 binding to ABINs remains unclear, although an adaptor function has been suggested. ABIN-1 and ABIN-3 expression is upregulated when cells are triggered by NF-kappaB-activating stimuli, suggesting a role for these ABINs in a negative feedback regulation of NF-kappaB signaling. Additional ABIN functions have been reported such as inhibition of TNF-induced hepatocyte apoptosis, regulation of HIV-1 replication for ABIN-1, and Tumor Progression Locus 2 (TPL-2)-mediated Extracellular signal-Regulated Kinase (ERK) activation for ABIN-2. In mice, ABIN-1 overexpression reduces allergic airway inflammation and TNF-mediated liver injury, ABIN-2 overexpression delays liver regeneration, and ABIN-3 overexpression partially protects against LPS-induced acute liver failure. Analysis of mice deficient in ABIN-1 or ABIN-2 demonstrates the important immune regulatory function of ABINs. Future studies should clarify the functional implication of the A20-ABIN interaction in supporting ABINs' mechanisms of action.
Collapse
|
17
|
Song C, Chen GK, Millikan RC, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming SL, Rodriguez-Gil JL, Chanock SJ, Wan P, Sheng X, Pooler LC, Van Den Berg DJ, Le Marchand L, Kolonel LN, Henderson BE, Haiman CA, Stram DO. A genome-wide scan for breast cancer risk haplotypes among African American women. PLoS One 2013; 8:e57298. [PMID: 23468962 PMCID: PMC3585353 DOI: 10.1371/journal.pone.0057298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/23/2013] [Indexed: 12/03/2022] Open
Abstract
Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density.
Collapse
Affiliation(s)
- Chi Song
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Gary K. Chen
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Robert C. Millikan
- Department of Epidemiology, Gillings School of Global Public Health, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, California, United States of America
- Stanford University School of Medicine and Stanford Cancer Institute, Stanford, California, United States of America
| | - Leslie Bernstein
- Division of Cancer Etiology, Department of Population Science, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer J. Hu
- Sylvester Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Regina G. Ziegler
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarah Nyante
- Department of Epidemiology, Gillings School of Global Public Health, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Elisa V. Bandera
- The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Michael F. Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Sandra L. Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jorge L. Rodriguez-Gil
- Sylvester Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephen J. Chanock
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peggy Wan
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Xin Sheng
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Loreall C. Pooler
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - David J. Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Epigenome Center, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Laurence N. Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Chris A. Haiman
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
18
|
Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, Wu J, Hu B, Cheng SY, Li M, Li J. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 2012; 122:3563-78. [PMID: 23006329 DOI: 10.1172/jci62339] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
The strength and duration of NF-κB signaling are tightly controlled by multiple negative feedback mechanisms. However, in cancer cells, these feedback loops are overridden through unclear mechanisms to sustain oncogenic activation of NF-κB signaling. Previously, we demonstrated that overexpression of miR-30e* directly represses IκBα expression and leads to hyperactivation of NF-κB. Here, we report that miR-182 was overexpressed in a different set of gliomas with relatively lower miR-30e* expression and that miR-182 directly suppressed cylindromatosis (CYLD), an NF-κB negative regulator. This suppression of CYLD promoted ubiquitin conjugation of NF-κB signaling pathway components and induction of an aggressive phenotype of glioma cells both in vitro and in vivo. Furthermore, we found that TGF-β induced miR-182 expression, leading to prolonged NF-κB activation. Importantly, the results of these experiments were consistent with an identified significant correlation between miR-182 levels with TGF-β hyperactivation and activated NF-κB in a cohort of human glioma specimens. These findings uncover a plausible mechanism for sustained NF-κB activation in malignant gliomas and may suggest a new target for clinical intervention in human cancer.
Collapse
Affiliation(s)
- Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev 2012; 23:109-18. [PMID: 22542476 DOI: 10.1016/j.cytogfr.2012.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/29/2012] [Accepted: 04/06/2012] [Indexed: 02/08/2023]
Abstract
A vast number of cellular processes and signaling pathways are regulated by various receptors, ranging from transmembrane to nuclear receptors. These receptor-mediated processes are modulated by a diverse set of regulatory proteins. TNFα-induced protein 3-interacting protein 1 is such a protein that inhibits both transduction by transmembrane receptors, such as TNFα-receptor, EGF-R, and TLR, and nuclear receptors' PPAR and RAR activity. These receptors play key roles in regulating inflammation and inflammatory diseases. A growing number of references have implicated TNIP1 through GWAS and expression studies in chronic inflammatory diseases such as psoriasis and rheumatoid arthritis, although TNIP1s exact role has yet been determined. In this review, we aim to integrate the current knowledge of TNIP1s functions with the diseases in which it has been associated to potentially elucidate the role this regulator has in promoting or alleviating these inflammatory diseases.
Collapse
|
20
|
Igarashi H, Yahagi A, Saika T, Hashimoto J, Tomita T, Yoshikawa H, Ishihara K. A pro-inflammatory role for A20 and ABIN family proteins in human fibroblast-like synoviocytes in rheumatoid arthritis. Immunol Lett 2011; 141:246-53. [PMID: 22093807 DOI: 10.1016/j.imlet.2011.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022]
Abstract
Circuit of chronic inflammation in the joints of rheumatoid arthritis (RA) starts from the production of inflammatory cytokines by fibroblast-like synoviocytes (FLS) stimulated by TNFα produced by inflammatory cells mainly composed of macrophages. In this context, TNFα/NF-κB pathway plays an essential role for the transcription of pro-inflammatory cytokines. Here we show that the kinetics of pro-inflammatory cytokine genes induced by TNFα in FLS from RA was synchronized with that of A20, ABIN1, and ABIN3 that have been thought as negative regulators for NF-κB activation. Furthermore, based on this finding, we could tentatively categorize the RA-FLS into two groups; TNFα low-responder and high-responder FLS. The high responders that have abundant mRNA levels of NF-κB inhibitory molecules were also accompanied with the marked induction of the pro-inflammatory cytokines by the stimulation with TNFα. The low responders RA-FLS did not show this property, nor did FLS from osteoarthritis. Phosphorylation dependent degradation of IκBα as well as NF-κB activation upon stimulation with TNFα was significantly enhanced in the high-responder FLS lines. Surprisingly, single transfection of each NF-κB inhibitor was enough to facilitate the transcription of pro-inflammatory cytokines, suggesting that there is an unknown pro-inflammatory function for A20 and ABIN family proteins in RA-FLS.
Collapse
Affiliation(s)
- Hideya Igarashi
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Self-renewing breast cancer stem cells are key actors in perpetuating tumour existence and in treatment resistance and relapse. The molecular pathways required for their maintenance are starting to be elucidated. Among them is the transcription factor NF-κB, which is known to play critical roles in cell survival, inflammation and immunity. Recent studies indicate that mammary epithelial NF-κB regulates the self-renewal of breast cancer stem cells in a model of Her2-dependent tumourigenesis. We will describe here the NF-κB-activating pathways that are involved in this process and in which progenitor cells this transcription factor is actually activated.
Collapse
Affiliation(s)
- Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research), Unit of Medical Chemistry and GIGA-Signal Transduction, University of Liege, CHU, Sart-Tilman, 4000 Liège, Belgium
| | | |
Collapse
|
22
|
Leotoing L, Chereau F, Baron S, Hube F, Valencia HJ, Bordereaux D, Demmers JA, Strouboulis J, Baud V. A20-binding inhibitor of nuclear factor-kappaB (NF-kappaB)-2 (ABIN-2) is an activator of inhibitor of NF-kappaB (IkappaB) kinase alpha (IKKalpha)-mediated NF-kappaB transcriptional activity. J Biol Chem 2011; 286:32277-88. [PMID: 21784860 DOI: 10.1074/jbc.m111.236448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKβ share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKβ both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKβ-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.
Collapse
|
23
|
Cleveland-Donovan K, Maile LA, Tsiaras WG, Tchkonia T, Kirkland JL, Boney CM. IGF-I activation of the AKT pathway is impaired in visceral but not subcutaneous preadipocytes from obese subjects. Endocrinology 2010; 151:3752-63. [PMID: 20555032 PMCID: PMC2940538 DOI: 10.1210/en.2010-0043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity morbidity is associated with excess visceral adiposity, whereas sc adipose tissue is much less metabolically hazardous. Human abdominal sc preadipocytes have greater capacity for proliferation, differentiation, and survival than omental preadipocytes. IGF-I is a critical mediator of preadipocyte proliferation, differentiation, and survival through multiple signaling pathways. We investigated IGF-I action in primary cultures of human preadipocytes isolated from sc and omental adipose tissue of obese subjects. IGF-I-stimulated DNA synthesis was significantly lower in omental compared with sc preadipocytes. IGF-I phosphorylation of the IGF-I receptor and the ERK pathway was comparable in sc and omental cells. However, omental preadipocytes had decreased insulin receptor substrate (IRS)-1 protein associated with increased IRS-1-serine(636/639) phosphorylation and degradation. IGF-I-stimulated phosphorylation of AKT on serine(473) but not threonine(308) was decreased in omental cells, and activation of downstream targets, including S6Kinase, glycogen synthase kinase-3, and Forkhead box O1 was also impaired. CyclinD1 abundance was decreased in omental cells due to increased degradation. Over-expression of IRS-1 by lentivirus in omental preadipocytes increased IGF-I-stimulated AKT-serine(473) phosphorylation. The mammalian target of rapamycin (mTOR)-Rictor complex regulates phosphorylation of AKT-serine(473) in 3T3-L1 adipocytes, but knockdown of Rictor by lentivirus-delivered short hairpin RNA in sc preadipocytes did not affect AKT-serine(473) phosphorylation by IGF-I. These data reveal an intrinsic defect in IGF-I activation of the AKT pathway in omental preadipocytes from obese subjects that involves IRS-1 but probably not mTOR-Rictor complex. We conclude that impaired cell cycle regulation by AKT contributes to the distinct growth phenotype of preadipocytes in visceral fat of obese subjects.
Collapse
Affiliation(s)
- Kelly Cleveland-Donovan
- Department of Pediatrics, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
24
|
Li Y, Vandenboom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010; 70:1486-95. [PMID: 20124483 DOI: 10.1158/0008-5472.can-09-2792] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aggressive course of pancreatic cancer is believed to reflect its unusually invasive and metastatic nature, which is associated with epidermal growth factor receptor (EGFR) overexpression and NF-kappaB activation. MicroRNAs (miRNA) have been implicated in the regulation of various pathobiological processes in cancer, including metastasis in pancreatic cancer and in other human malignancies. In this study, we report lower expression of miR-146a in pancreatic cancer cells compared with normal human pancreatic duct epithelial cells. Reexpression of miR-146a inhibited the invasive capacity of pancreatic cancer cells with concomitant downregulation of EGFR and the NF-kappaB regulatory kinase interleukin 1 receptor-associated kinase 1 (IRAK-1). Cellular mechanism studies revealed crosstalk between EGFR, IRAK-1, IkappaBalpha, NF-kappaB, and MTA-2, a transcription factor that regulates metastasis. Treatment of pancreatic cancer cells with the natural products 3,3'-diinodolylmethane (DIM) or isoflavone, which increased miR-146a expression, caused a downregulation of EGFR, MTA-2, IRAK-1, and NF-kappaB, resulting in an inhibition of pancreatic cancer cell invasion. Our findings reveal DIM and isoflavone as nontoxic activators of a miRNA that can block pancreatic cancer cell invasion and metastasis, offering starting points to design novel anticancer agents.
Collapse
Affiliation(s)
- Yiwei Li
- Departments of Pathology and Internal Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Grubisha O, Kaminska M, Duquerroy S, Fontan E, Cordier F, Haouz A, Raynal B, Chiaravalli J, Delepierre M, Israël A, Véron M, Agou F. DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J Mol Biol 2009; 395:89-104. [PMID: 19854204 DOI: 10.1016/j.jmb.2009.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/29/2022]
Abstract
NEMO is an integral part of the IkappaB kinase complex and serves as a molecular switch by which the NF-kappaB signaling pathway can be regulated. Oligomerization and polyubiquitin (poly-Ub) binding, mediated through the regulatory CC2-LZ domain, were shown to be key features governing NEMO function, but the relationship between these two activities remains unclear. In this study, we solved the structure of this domain in complex with a designed ankyrin repeat protein, which helps its crystallization. We generated several NEMO mutants in this domain, including those associated with human diseases incontinentia pigmenti and immunodeficiency with or without anhidrotic ectodermal dysplasia. Analytical ultracentrifugation and thermal denaturation experiments were used to evaluate the dimerization properties of these mutants. A fluorescence-based assay was developed, as well, to quantify the interaction to monoubiquitin and poly-Ub chains. Moreover, the effect of these mutations was investigated for the full-length protein. We show that a proper folding of the ubiquitin-binding domain, termed NOA/UBAN/NUB, into a stable coiled-coil dimer is required but not sufficient for efficient interaction with poly-Ub. In addition, we show that binding to poly-Ub and, to a lesser extent, to monoubiquitin increases the stability of the NOA coiled-coil dimer. Collectively, these data provide structural insights into how several pathological mutations within and outside of the CC2-LZ's NOA ubiquitin binding site affect IkappaB kinase activation in the NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Olivera Grubisha
- Unité de Biochimie Structurale et Cellulaire, Institut Pasteur, CNRS, URA 2185, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Morais C, Gobe G, Johnson DW, Healy H. Anti-angiogenic actions of pyrrolidine dithiocarbamate, a nuclear factor kappa B inhibitor. Angiogenesis 2009; 12:365-79. [PMID: 19882112 DOI: 10.1007/s10456-009-9158-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/15/2009] [Indexed: 01/15/2023]
Affiliation(s)
- Christudas Morais
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | | | | | | |
Collapse
|
27
|
Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009; 78:105-14. [PMID: 19464428 DOI: 10.1016/j.bcp.2009.02.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/09/2023]
Abstract
ABINs have been described as three different proteins (ABIN-1, ABIN-2, ABIN-3) that bind the ubiquitin-editing nuclear factor-kappaB (NF-kappaB) inhibitor protein A20 and which show limited sequence homology. Overexpression of ABINs inhibits NF-kappaB activation by tumor necrosis factor (TNF) and several other stimuli. Similar to A20, ABIN-1 and ABIN-3 expression is NF-kappaB dependent, implicating a potential role for the A20/ABIN complex in the negative feedback regulation of NF-kappaB activation. Adenoviral gene transfer of ABIN-1 has been shown to reduce NF-kappaB activation in mouse liver and lungs. However, ABIN-1 as well as ABIN-2 deficient mice exhibit only slightly increased or normal NF-kappaB activation, respectively, possibly reflecting redundant NF-kappaB inhibitory activities of multiple ABINs. Other functions of ABINs might be non-redundant. For example, ABIN-1 shares with A20 the ability to inhibit TNF-induced apoptosis and as a result ABIN-1 deficient mice die during embryogenesis due to TNF-dependent fetal liver apoptosis. On the other hand, ABIN-2 is required for optimal TPL-2 dependent extracellularly regulated kinase activation in macrophages treated with TNF or Toll-like receptor ligands. ABINs have recently been shown to contain an ubiquitin-binding domain that is essential for their NF-kappaB inhibitory and anti-apoptotic activities. In this context, ABINs were proposed to function as adaptors between ubiquitinated proteins and other regulatory proteins. Alternatively, ABINs might disrupt signaling complexes by competing with other ubiquitin-binding proteins for the binding to specific ubiquitinated targets. Altogether, these findings implicate an important role for ABINs in the regulation of immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Lynn Verstrepen
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Belgium
| | | | | | | |
Collapse
|