1
|
Zhigulev A, Norberg Z, Cordier J, Spalinskas R, Bassereh H, Björn N, Pradhananga S, Gréen H, Sahlén P. Enhancer mutations modulate the severity of chemotherapy-induced myelosuppression. Life Sci Alliance 2024; 7:e202302244. [PMID: 38228368 PMCID: PMC10796589 DOI: 10.26508/lsa.202302244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Non-small cell lung cancer is often diagnosed at advanced stages, and many patients are still treated with classical chemotherapy. The unselective nature of chemotherapy often results in severe myelosuppression. Previous studies showed that protein-coding mutations could not fully explain the predisposition to myelosuppression. Here, we investigate the possible role of enhancer mutations in myelosuppression susceptibility. We produced transcriptome and promoter-interaction maps (using HiCap) of three blood stem-like cell lines treated with carboplatin or gemcitabine. Taking advantage of publicly available enhancer datasets, we validated HiCap results in silico and in living cells using epigenetic CRISPR technology. We also developed a network approach for interactome analysis and detection of differentially interacting genes. Differential interaction analysis provided additional information on relevant genes and pathways for myelosuppression compared with differential gene expression analysis at the bulk level. Moreover, we showed that enhancers of differentially interacting genes are highly enriched for variants associated with differing levels of myelosuppression. Altogether, our work represents a prominent example of integrative transcriptome and gene regulatory datasets analysis for the functional annotation of noncoding mutations.
Collapse
Affiliation(s)
- Artemy Zhigulev
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Zandra Norberg
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Julie Cordier
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Rapolas Spalinskas
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hassan Bassereh
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Niclas Björn
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Sailendra Pradhananga
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Henrik Gréen
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Pelin Sahlén
- https://ror.org/026vcq606 Royal Institute of Technology - KTH, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
2
|
Su J, Li R, Chen Z, Liu S, Zhao H, Deng S, Zeng L, Xu Z, Zhao S, Zhou Y, Li M, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Zhang S, Chen R, Huang X, Lin D, Zheng J, Zhang J. N 6-methyladenosine Modification of FZR1 mRNA Promotes Gemcitabine Resistance in Pancreatic Cancer. Cancer Res 2023; 83:3059-3076. [PMID: 37326469 DOI: 10.1158/0008-5472.can-22-3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.
Collapse
Affiliation(s)
- Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
3
|
Tulin F. Keeping quiet: cell cycle regulator PIKMIN1 helps maintain the quiescent center. PLANT PHYSIOLOGY 2023; 191:1468-1469. [PMID: 36560888 PMCID: PMC10022629 DOI: 10.1093/plphys/kiac597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Frej Tulin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| |
Collapse
|
4
|
Greil C, Engelhardt M, Wäsch R. The Role of the APC/C and Its Coactivators Cdh1 and Cdc20 in Cancer Development and Therapy. Front Genet 2022; 13:941565. [PMID: 35832196 PMCID: PMC9273091 DOI: 10.3389/fgene.2022.941565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
To sustain genomic stability by correct DNA replication and mitosis, cell cycle progression is tightly controlled by the cyclic activity of cyclin-dependent kinases, their binding to cyclins in the respective phase and the regulation of cyclin levels by ubiquitin-dependent proteolysis. The spindle assembly checkpoint plays an important role at the metaphase-anaphase transition to ensure a correct separation of sister chromatids before cytokinesis and to initiate mitotic exit, as an incorrect chromosome distribution may lead to genetically unstable cells and tumorigenesis. The ubiquitin ligase anaphase-promoting complex or cyclosome (APC/C) is essential for these processes by mediating the proteasomal destruction of cyclins and other important cell cycle regulators. To this end, it interacts with the two regulatory subunits Cdh1 and Cdc20. Both play a role in tumorigenesis with Cdh1 being a tumor suppressor and Cdc20 an oncogene. In this review, we summarize the current knowledge about the APC/C-regulators Cdh1 and Cdc20 in tumorigenesis and potential targeted therapeutic approaches.
Collapse
|
5
|
Efficient terminal erythroid differentiation requires the APC/C cofactor Cdh1 to limit replicative stress in erythroblasts. Sci Rep 2022; 12:10489. [PMID: 35729193 PMCID: PMC9213546 DOI: 10.1038/s41598-022-14331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
The APC/C-Cdh1 ubiquitin ligase complex drives proteosomal degradation of cell cycle regulators and other cellular proteins during the G1 phase of the cycle. The complex serves as an important modulator of the G1/S transition and prevents premature entry into S phase, genomic instability, and tumor development. Additionally, mounting evidence supports a role for this complex in cell differentiation, but its relevance in erythropoiesis has not been addressed so far. Here we show, using mouse models of Cdh1 deletion, that APC/C-Cdh1 activity is required for efficient terminal erythroid differentiation during fetal development as well as postnatally. Consistently, Cdh1 ablation leads to mild but persistent anemia from birth to adulthood. Interestingly, loss of Cdh1 seems to affect both, steady-state and stress erythropoiesis. Detailed analysis of Cdh1-deficient erythroid populations revealed accumulation of DNA damage in maturing erythroblasts and signs of delayed G2/M transition. Moreover, through direct assessment of replication dynamics in fetal liver cells, we uncovered slow fork movement and increased origin usage in the absence of Cdh1, strongly suggesting replicative stress to be the underlying cause of DNA lesions and cell cycle delays in erythroblasts devoid of Cdh1. In turn, these alterations would restrain full maturation of erythroblasts into reticulocytes and reduce the output of functional erythrocytes, leading to anemia. Our results further highlight the relevance of APC/C-Cdh1 activity for terminal differentiation and underscore the need for precise control of replication dynamics for efficient supply of red blood cells.
Collapse
|
6
|
Lee SB, Garofano L, Ko A, D'Angelo F, Frangaj B, Sommer D, Gan Q, Kim K, Cardozo T, Iavarone A, Lasorella A. Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription. Nat Commun 2022; 13:2089. [PMID: 35440621 PMCID: PMC9018835 DOI: 10.1038/s41467-022-29502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022] Open
Abstract
Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.
Collapse
Affiliation(s)
- Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - Qiwen Gan
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Department of Neurology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, 10032, USA.
| |
Collapse
|
7
|
Yamada C, Morooka A, Miyazaki S, Nagai M, Mase S, Iemura K, Tasnin MN, Takuma T, Nakamura S, Morshed S, Koike N, Mostofa MG, Rahman MA, Sharmin T, Katsuta H, Ohara K, Tanaka K, Ushimaru T. TORC1 inactivation promotes APC/C-dependent mitotic slippage in yeast and human cells. iScience 2022; 25:103675. [PMID: 35141499 PMCID: PMC8814761 DOI: 10.1016/j.isci.2021.103675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs. Yeast TORC1 inhibition promotes Net1 degradation and Cdc14 release Yeast TORC1 inhibition invokes mitotic slippage in an APC/C-Cdh1-dependent manner Human mTORC1 inhibition also elicits mitotic slippage
Collapse
Affiliation(s)
- Chihiro Yamada
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Aya Morooka
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Seira Miyazaki
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masayoshi Nagai
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Mase
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tsuneyuki Takuma
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shotaro Nakamura
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Shamsul Morshed
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Md Golam Mostofa
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Muhammad Arifur Rahman
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Tasnuva Sharmin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Haruko Katsuta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan
| | - Kotaro Ohara
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Ushimaru
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8021, Japan.,Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| |
Collapse
|
8
|
Du Y, Zhang M, Liu X, Li Z, Hu M, Tian Y, Lv L, Zhang X, Liu Y, Zhang P, Zhou Y. CDC20 promotes bone formation via APC/C dependent ubiquitination and degradation of p65. EMBO Rep 2021; 22:e52576. [PMID: 34382737 PMCID: PMC8419691 DOI: 10.15252/embr.202152576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The E3 ubiquitin ligase complex CDC20‐activated anaphase‐promoting complex/Cyclosome (APC/CCDC20) plays a critical role in governing mitotic progression by targeting key cell cycle regulators for degradation. Cell division cycle protein 20 homolog (CDC20), the co‐activator of APC/C, is required for full ubiquitin ligase activity. In addition to its well‐known cell cycle‐related functions, we demonstrate that CDC20 plays an essential role in osteogenic commitment of bone marrow mesenchymal stromal/stem cells (BMSCs). Cdc20 conditional knockout mice exhibit decreased bone formation and impaired bone regeneration after injury. Mechanistically, we discovered a functional interaction between the WD40 domain of CDC20 and the DNA‐binding domain of p65. Moreover, CDC20 promotes the ubiquitination and degradation of p65 in an APC11‐dependent manner. More importantly, knockdown of p65 rescues the bone loss in Cdc20 conditional knockout mice. Our current work reveals a cell cycle‐independent function of CDC20, establishes APC11CDC20 as a pivotal regulator for bone formation by governing the ubiquitination and degradation of p65, and may pave the way for treatment of bone‐related diseases.
Collapse
Affiliation(s)
- Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuejiao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
9
|
Ramanujan A, Bansal S, Guha M, Pande NT, Tiwari S. LxCxD motif of the APC/C coactivator subunit FZR1 is critical for interaction with the retinoblastoma protein. Exp Cell Res 2021; 404:112632. [PMID: 33971196 DOI: 10.1016/j.yexcr.2021.112632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.
Collapse
Affiliation(s)
- Ajeena Ramanujan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manalee Guha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Nupur T Pande
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Zhang Y, Chen C, Yu T, Chen T. Proteomic Analysis of Protein Ubiquitination Events in Human Primary and Metastatic Colon Adenocarcinoma Tissues. Front Oncol 2020; 10:1684. [PMID: 33014840 PMCID: PMC7511592 DOI: 10.3389/fonc.2020.01684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination is essential for multiple physiological processes through regulating the stability or function of target proteins and has been found to play critical roles in human cancers. However, the protein ubiquitination profile of human metastatic colon adenocarcinoma tissue has not been elucidated yet. In this study, a proprietary ubiquitin branch (K-ε-GG) antibody-based label-free quantitative proteomics and bioinformatics were performed to identify the global protein ubiquitination profile between human primary (Colon) and metastatic colon adenocarcinoma (Meta) tissues. A total of 375 ubiquitination sites from 341 proteins were identified as differentially modificated (| Fold change| > 1.5, p < 0.05) in Meta group compared with the Colon group. Among them, 132 ubiquitination sites from 127 proteins were upregulated and 243 ubiquitination sites from 214 proteins were downregulated in Meta group. Fifteen ubiquitination motifs were found. Furthermore, GO and KEGG pathway analysis indicated that proteins with altered ubiquitination in Meta group were enriched in pathways highly related to cancer metastasis, such as RNA transport and cell cycle. We speculate that the altered ubiquitination of CDK1 may be a pro-metastatic factor in colon adenocarcinoma. This study provides novel scientific evidences to elucidate the biological functions of protein ubiquitination in human colon adenocarcinoma and insights into its potential mechanisms of colon cancer metastasis, which would be helpful to discover novel biomarkers and therapeutic targets for effective treatment of colon cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cong Chen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
13
|
Phosphorylation of the Anaphase Promoting Complex activator FZR1/CDH1 is required for Meiosis II entry in mouse male germ cell. Sci Rep 2020; 10:10094. [PMID: 32572094 PMCID: PMC7308413 DOI: 10.1038/s41598-020-67116-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
FZR1/CDH1 is an activator of Anaphase promoting complex/Cyclosome (APC/C), best known for its role as E3 ubiquitin ligase that drives the cell cycle. APC/C activity is regulated by CDK-mediated phosphorylation of FZR1 during mitotic cell cycle. Although the critical role of FZR1 phosphorylation has been shown mainly in yeast and in vitro cell culture studies, its biological significance in mammalian tissues in vivo remained elusive. Here, we examined the in vivo role of FZR1 phosphorylation using a mouse model, in which non-phosphorylatable substitutions were introduced in the putative CDK-phosphorylation sites of FZR1. Although ablation of FZR1 phosphorylation did not show substantial consequences in mouse somatic tissues, it led to severe testicular defects resulting in male infertility. In the absence of FZR1 phosphorylation, male juvenile germ cells entered meiosis normally but failed to enter meiosis II or form differentiated spermatids. In aged testis, male mutant germ cells were overall abolished, showing Sertoli cell-only phenotype. In contrast, female mutants showed apparently normal progression of meiosis. The present study demonstrated that phosphorylation of FZR1 is required for temporal regulation of APC/C activity at meiosis II entry, and for maintenance of spermatogonia, which raised an insight into the sexual dimorphism of FZR1-regulation in germ cells.
Collapse
|
14
|
Lin Q, Zhang Z, Wu F, Feng M, Sun Y, Chen W, Cheng Z, Zhang X, Ren Y, Lei C, Zhu S, Wang J, Zhao Z, Guo X, Wang H, Wan J. The APC/C TE E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. THE PLANT CELL 2020; 32:1973-1987. [PMID: 32265265 PMCID: PMC7268805 DOI: 10.1105/tpc.20.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
The antagonistic regulation of seed germination by the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been well-established. However, how these phytohormones antagonistically regulate root growth and branching (tillering in rice, Oryza sativa) remains obscure. Rice TILLER ENHANCER (TE) encodes an activator of the APC/CTE E3 ubiquitin ligase complex that represses tillering but promotes seed germination. In this study, we identified a dual role of GA and APC/CTE in regulating root growth. High GA levels can activate APC/CTE to promote the degradation of rice SHORT-ROOT1 (OsSHR1, a key factor promoting root growth) in the root meristem (RM) or MONOCULM1 (MOC1, a key factor promoting tillering) in the axillary meristem (AM), leading to restricted root growth and tillering, while low GA levels can activate the role of APC/CTE in stimulating RM cell division to promote root growth. In addition, moderate enhancement of ABA signaling helps maintain the RM and AM size, sustaining root growth and tillering by antagonizing the GA-promoted degradation of OsSHR1 and MOC1 through the SnRK2-APC/CTE regulatory module. We conclude that APC/CTE plays a key role in regulating plant architecture by mediating the crosstalk between ABA and GA signaling pathways.
Collapse
Affiliation(s)
- Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Pal D, Torres AE, Stromberg BR, Messina AL, Dickson AS, De K, Willard B, Venere M, Summers MK. Chk1-mediated phosphorylation of Cdh1 promotes the SCF βTRCP-dependent degradation of Cdh1 during S-phase and efficient cell-cycle progression. Cell Death Dis 2020; 11:298. [PMID: 32345958 PMCID: PMC7188793 DOI: 10.1038/s41419-020-2493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/04/2022]
Abstract
APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFβTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.
Collapse
Affiliation(s)
- Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Abbey L Messina
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kuntal De
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Monica Venere
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
17
|
Park KM, Lee HJ, Koo KT, Ben Amara H, Leesungbok R, Noh K, Lee SC, Lee SW. Oral Soft Tissue Regeneration Using Nano Controlled System Inducing Sequential Release of Trichloroacetic Acid and Epidermal Growth Factor. Tissue Eng Regen Med 2020; 17:91-103. [PMID: 31970697 DOI: 10.1007/s13770-019-00232-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined. METHODS Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles' palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured. RESULTS TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON. CONCLUSION HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.
Collapse
Affiliation(s)
- Kwang Man Park
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Heithem Ben Amara
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Kwantae Noh
- Department of Prosthodontics, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Suk Won Lee
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea.
| |
Collapse
|
18
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
19
|
De K, Grubb TM, Zalenski AA, Pfaff KE, Pal D, Majumder S, Summers MK, Venere M. Hyperphosphorylation of CDH1 in Glioblastoma Cancer Stem Cells Attenuates APC/C CDH1 Activity and Pharmacologic Inhibition of APC/C CDH1/CDC20 Compromises Viability. Mol Cancer Res 2019; 17:1519-1530. [PMID: 31036696 DOI: 10.1158/1541-7786.mcr-18-1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/07/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor and remains incurable. This is in part due to the cellular heterogeneity within these tumors, which includes a subpopulation of treatment-resistant cells called cancer stem-like cells (CSC). We previously identified that the anaphase-promoting complex/cylosome (APC/C), a key cell-cycle regulator and tumor suppressor, had attenuated ligase activity in CSCs. Here, we assessed the mechanism of reduced activity, as well as the efficacy of pharmacologically targeting the APC/C in CSCs. We identified hyperphosphorylation of CDH1, but not pseudosubstrate inhibition by early mitotic inhibitor 1 (EMI1), as a major mechanism driving attenuated APC/CCDH1 activity in the G1-phase of the cell cycle in CSCs. Small-molecule inhibition of the APC/C reduced viability of both CSCs and nonstem tumor cells (NSTCs), with the combination of proTAME and apcin having the biggest impact. Combinatorial drug treatment also led to the greatest mitotic arrest and chromosomal abnormalities. IMPLICATIONS: Our findings demonstrate how the activity of the APC/CCDH1 tumor suppressor is reduced in CSCs and also validates small-molecule inhibition of the APC/C as a promising therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Treg M Grubb
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Abigail A Zalenski
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio
| | - Kayla E Pfaff
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Debjani Pal
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shubhra Majumder
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Matthew K Summers
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
20
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
21
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
22
|
Ewerth D, Kreutmair S, Schmidts A, Ihorst G, Follo M, Wider D, Felthaus J, Schüler J, Duyster J, Illert AL, Engelhardt M, Wäsch R. APC/C Cdh1 regulates the balance between maintenance and differentiation of hematopoietic stem and progenitor cells. Cell Mol Life Sci 2019; 76:369-380. [PMID: 30357422 PMCID: PMC11105657 DOI: 10.1007/s00018-018-2952-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) represent the lifelong source of all blood cells and continuously regenerate the hematopoietic system through differentiation and self-renewal. The process of differentiation is initiated in the G1 phase of the cell cycle, when stem cells leave their quiescent state. During G1, the anaphase-promoting complex or cyclosome associated with the coactivator Cdh1 is highly active and marks proteins for proteasomal degradation to regulate cell proliferation. Following Cdh1 knockdown in HSPCs, we analyzed human and mouse hematopoiesis in vitro and in vivo in competitive transplantation assays. We found that Cdh1 is highly expressed in human CD34+ HSPCs and downregulated in differentiated subsets; whereas, loss of Cdh1 restricts myeloid differentiation, supports B cell development and preserves immature short-term HSPCs without affecting proliferation or viability. Our data highlight a role of Cdh1 as a regulator of balancing the maintenance of HSPCs and differentiation into mature blood cells.
Collapse
Affiliation(s)
- Daniel Ewerth
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Stefanie Kreutmair
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Andrea Schmidts
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Dagmar Wider
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Julia Felthaus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Lena Illert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, University of Freiburg, Faculty of Medicine, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
23
|
Nagai M, Shibata A, Ushimaru T. Cdh1 degradation is mediated by APC/C-Cdh1 and SCF-Cdc4 in budding yeast. Biochem Biophys Res Commun 2018; 506:932-938. [PMID: 30396569 DOI: 10.1016/j.bbrc.2018.10.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Cdh1, a substrate-recognition subunit of anaphase-promoting complex/cyclosome (APC/C), is a tumor suppressor, and it is downregulated in various tumor cells in humans. APC/C-Cdh1 is activated from late M phase to G1 phase by antagonizing Cdk1-mediated inhibitory phosphorylation. However, how Cdh1 protein levels are properly regulated is ill-defined. Here we show that Cdh1 is degraded via APC/C-Cdh1 and Skp1-Cullin1-F-box (SCF)-Cdc4 in the budding yeast Saccharomyces cerevisiae. Cdh1 degradation was promoted by forced localization of Cdh1 into the nucleus, where APC/C and SCF are present. Cdk1 promoted APC/C-Cdh1-mediated Cdh1 degradation, whereas polo kinase Cdc5 elicited SCF-Cdc4-mediated degradation. Thus, Cdh1 degradation is controlled via multiple pathways.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Biological Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Atsuko Shibata
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takashi Ushimaru
- Department of Biological Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan; Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
24
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
25
|
Suppression of APC/CCdh1 has subtype specific biological effects in acute myeloid leukemia. Oncotarget 2018; 7:48220-48230. [PMID: 27374082 PMCID: PMC5217013 DOI: 10.18632/oncotarget.10196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
The E3 ubiquitin ligase and tumor suppressor APC/CCdh1 is crucial for cell cycle progression, development and differentiation in many cell types. However, little is known about the role of Cdh1 in hematopoiesis. Here we analyzed Cdh1 expression and function in malignant hematopoiesis. We found a significant decrease of Cdh1 in primary acute myeloid leukemia (AML) blasts compared to normal CD34+ cells. Thus, according to its important role in connecting cell cycle exit and differentiation, decreased expression of Cdh1 may be a mechanism contributing to the differentiation block in leukemogenesis. Indeed, knockdown (kd) of Cdh1 in HL-60 cell line (AML with maturation, FAB M2) led to less differentiated cells and a delay in PMA-induced differentiation. Acute promyelocytic leukemia (APL, FAB M3) is an AML subtype which is highly vulnerable to differentiation therapy with all-trans retinoic acid (ATRA). Accordingly, we found that APL is resistant to a Cdh1-kd mediated differentiation block. However, further depletion of Cdh1 in APL significantly reduced viability of leukemia cells upon ATRA-induced differentiation. Thus, low Cdh1 expression may be important in AML biology by contributing to the differentiation block and response to therapy depending on differences in the microenvironment and the additional genetic background.
Collapse
|
26
|
Canovas Nunes S, Manzoni M, Pizzi M, Mandato E, Carrino M, Quotti Tubi L, Zambello R, Adami F, Visentin A, Barilà G, Trentin L, Manni S, Neri A, Semenzato G, Piazza F. The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer J 2018; 8:20. [PMID: 29440639 PMCID: PMC5811530 DOI: 10.1038/s41408-018-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.
Collapse
Affiliation(s)
- Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marilena Carrino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy. .,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
27
|
de Leon MP, Pedroni M, Roncucci L, Domati F, Rossi G, Magnani G, Pezzi A, Fante R, Bonetti LR. Attenuated polyposis of the large bowel: a morphologic and molecular approach. Fam Cancer 2017; 16:211-220. [PMID: 27783336 DOI: 10.1007/s10689-016-9938-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attenuated polyposis could be defined as a variant of familial adenomatous polyposis (FAP) in which synchronous polyps of the large bowel range between 10 and 99. We analysed all cases of attenuated polyposis observed over the last 30 years with the objectives: (A) to classify the disease according to different type and proportion of polyps; (B) To ascertain the contribution of APC and MutYH genes; (C) to discover features which could arise the suspicion of mutations; (D) To obtain indications for management and follow-up. 84 individuals in 82 families were studied. Polyps were classified into four groups as adenoma, hyperplastic, other serrated lesions or others; APC and MutYH mutations were assessed. Mean age at diagnosis was 54 ± 14 years in men and 48 ± 13 in women (P = 0.005). Polyps were more numerous in women (37 ± 26 vs 29 ± 22). Sixty % of patients underwent bowel resection, mainly for cancer; the remaining were managed through endoscopy. A total of 2586 polyps were detected at diagnostic endoscopy: 2026 (80 %) were removed and analysed. Adenomas were diagnosed in 1445 (70 %), hyperplastic polyps in 541 (26 %), other serrated lesions in 61 (2.9 %). Adenomas and hyperplastic lesions were detected in the majority of patients. In 68 patients (81 %) in whom studies were executed, APC mutations were found in 8 and MutYH mutations in 10. Genetic variants were more frequent in women (12 vs 6, P = 0.039). Taking into consideration the prevalent (>50 %) histology and presence of mutations, patients could be subdivided into four groups: (1) APC mutated polyposis (AFAP), when adenomas were >50 % and APC mutations detected (no. 8, 10 %); (2) MutYH mutated polyposis (MAP), adenomas >50 % and biallelic MutYH mutations (no. 10, 12 %); (1) attenuated polyposis without detectable mutations, prevalence of adenomas, 48 cases (57 %); (1) hyperplastic-serrated polyposis, with prevalence (>50 %) of hyperplastic/other serrated lesions and no constitutional mutation (no. 18, 21 %). Aggregation of tumors, cancer in probands, distribution of polyps and other clinical characteristics showed no difference among the four groups. In conclusions, AFAP and MAP, the polyposis labeled by constitutional mutations, represented about 25 % of all attenuated polyposis. Mutation-associated cases showed an earlier age of onset of polyps and were more frequent in the female sex.
Collapse
Affiliation(s)
- Maurizio Ponz de Leon
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy.
| | - Monica Pedroni
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Luca Roncucci
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Federica Domati
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Giuseppina Rossi
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Giulia Magnani
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Annalisa Pezzi
- Medicina 1, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| | - Rossella Fante
- Anatomia Patologica, Dipartimento di Medicina di Laboratorio, Ospedale Carlo Poma ASST, Mantua, Italy
| | - Luca Reggiani Bonetti
- Anatomia Patologica, Dipartimento di Medicina Diagnostica, Clinica e Sanità Pubblica, Università di Modena e Reggio Emilia. Policlinico, Via del Pozzo 71, 41100, Modena, Italy
| |
Collapse
|
28
|
Yang L, He K, Yan S, Yang Y, Gao X, Zhang M, Xia Z, Huang Z, Huang S, Zhang N. Metadherin/Astrocyte elevated gene-1 positively regulates the stability and function of forkhead box M1 during tumorigenesis. Neuro Oncol 2017; 19:352-363. [PMID: 27923917 PMCID: PMC5464332 DOI: 10.1093/neuonc/now229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Forkhead box M1 (FOXM1) is overexpressed and activates numerous oncoproteins in tumors. However, the mechanism by which the FOXM1 protein aberrantly accumulates in human cancer remains uncertain. This study was designed to clarify the upstream signaling pathway(s) that regulate FOXM1 protein stability and transcriptional activity. Methods Mass spectrometry and immunoprecipitation were performed to identify the FOXM-metadherin (MTDH) interaction. In vivo and in vitro ubiquitination assays were conducted to test the effect of MTDH on FOXM1 stability. Chromatin immunoprecipitation assays were used to determine the involvement of MTDH in FOXM1 transcriptional activity. Cell invasion assays, tube formation assays, and in vivo tumor formation assays were performed to evaluate the cooperative activities of FOXM1 and MTDH during tumorigenesis. Results MTDH directly interacts with FOXM1 via the N-terminal inhibitory domain of MTDH, and this interaction disrupted the binding of cadherin-1 to FOXM1, thus protecting FOXM1 from subsequent proteasomal degradation. Deleting the MTDH-binding sites of FOXM1 abolished the MTDH overexpression-mediated stabilization of FOXM1. MTDH also bound to FOXM1 target gene promoters and enhanced FOXM1 transcriptional activity. MTDH knockdown destabilized FOXM1 and attenuated its transcriptional activity, consequently inhibiting cell cycle progression, angiogenesis, and cancer cell invasion in vitro and in vivo; these effects were abolished via forced overexpression of a stabilized mutant form of FOXM1. Thus, MTDH stabilized FOXM1 and supported the sustained activation of FOXM1 target genes. Conclusion These findings highlight a novel MTDH-regulated mechanism of FOXM1 stabilization and provide profound insight into the tumorigenic events simultaneously mediated by FOXM1 and MTDH.
Collapse
Affiliation(s)
- Lixuan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kejun He
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sheng Yan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yibing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinya Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhibo Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhengsong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene 2017; 36:5808-5818. [PMID: 28604743 DOI: 10.1038/onc.2017.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for proteosomal degradation and helps prevent tumor development and accumulation of chromosomal aberrations. Replication stress has been proposed to be the main driver of genomic instability in the absence of Cdh1, but the real contribution of APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 slowed down replication fork movement and increased origin activity. Partial inhibition of origin firing does not accelerate replication forks, suggesting that fork progression is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic instability is the result of aberrant replication. These observations highlight the relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs to the replisome, prevent replication stress and the resulting chromosomal breaks and, ultimately, suppress tumorigenesis.
Collapse
|
30
|
Cheng R, Liang X, Zhao Q, Lian Z, Tang L, Qiu C, Chen H, Zhang P. APC Cdh1 controls cell cycle entry during liver regeneration. Exp Cell Res 2017; 354:78-84. [PMID: 28322826 DOI: 10.1016/j.yexcr.2017.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/17/2022]
Abstract
Cdh1 is one of the two adaptor proteins of anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase controlling mitosis and DNA replication. To date, the in vivo functions of Cdh1 have not been fully explored. In order to characterize Cdh1 in liver regeneration, we generated a conditional knock-out mouse model. Our data showed that loss of Cdh1 leads to increased and extended S phase progression possibly due to the upregulation of cyclin D1. Moreover, the increased DNA replication resulted in activated DNA damage response. Interestingly, the final liver weight after partial hepatectomy in the Cdh1 depleted mice did not differ from that of the controls, implying that Cdh1 is not required for the competence of hepatocytes to regenerate itself.
Collapse
Affiliation(s)
- Ranran Cheng
- Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Xin Liang
- Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Quancheng Zhao
- Anhui Medical University, Hefei 230032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Zhusheng Lian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Lichun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Chen Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Huan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China; National Center for Protein Sciences (Beijing), Beijing 102206, China.
| | - Pumin Zhang
- Anhui Medical University, Hefei 230032, China; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Pavlides SC, Lecanda J, Daubriac J, Pandya UM, Gama P, Blank S, Mittal K, Shukla P, Gold LI. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth. Cell Cycle 2017; 15:931-47. [PMID: 26963853 DOI: 10.1080/15384101.2016.1150393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling.
Collapse
Affiliation(s)
- Savvas C Pavlides
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Jon Lecanda
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Julien Daubriac
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Unnati M Pandya
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Patricia Gama
- c Department of Cell and Developmental Biology , Institute of Biomedical Sciences, University of Sao Paolo , Brazil
| | - Stephanie Blank
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Khushbakhat Mittal
- d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Pratibha Shukla
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,d Gynecologic Oncology, New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA
| | - Leslie I Gold
- a Department of Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,b Divisions of Translational Medicine , New York University School of Medicine Langone Medical Center , New York , NY , USA.,e Perlmutter Cancer Center at NYU, New York University School of Medicine Langone Medical Center , New York , NY , USA.,f Department of Pathology , New York University School of Medicine Langone Medical Center , New York , NY , USA
| |
Collapse
|
32
|
Feringa FM, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, Medema RH. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 2016; 7:12618. [PMID: 27561326 PMCID: PMC5007458 DOI: 10.1038/ncomms12618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.
Collapse
Affiliation(s)
- Femke M Feringa
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht 3584CT, The Netherlands
| | - André Koch
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - René H Medema
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
33
|
Qin L, Guimarães DSPSF, Melesse M, Hall MC. Substrate Recognition by the Cdh1 Destruction Box Receptor Is a General Requirement for APC/CCdh1-mediated Proteolysis. J Biol Chem 2016; 291:15564-74. [PMID: 27226622 DOI: 10.1074/jbc.m116.731190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex, or cyclosome (APC/C), is a ubiquitin ligase that selectively targets proteins for degradation in mitosis and the G1 phase and is an important component of the eukaryotic cell cycle control system. How the APC/C specifically recognizes its substrates is not fully understood. Although well characterized degron motifs such as the destruction box (D-box) and KEN-box are commonly found in APC/C substrates, many substrates apparently lack these motifs. A variety of alternative APC/C degrons have been reported, suggesting either that multiple modes of substrate recognition are possible or that our definitions of degron structure are incomplete. We used an in vivo yeast assay to compare the G1 degradation rate of 15 known substrates of the APC/C co-activator Cdh1 under normal conditions and conditions that impair binding of D-box, KEN-box, and the recently identified ABBA motif degrons to Cdh1. The D-box receptor was required for efficient proteolysis of all Cdh1 substrates, despite the absence of canonical D-boxes in many. In contrast, the KEN-box receptor was only required for normal proteolysis of a subset of substrates and the ABBA motif receptor for a single substrate in our system. Our results suggest that binding to the D-box receptor may be a shared requirement for recognition and processing of all Cdh1 substrates.
Collapse
Affiliation(s)
- Liang Qin
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | | | - Michael Melesse
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
34
|
Liu J, Wan L, Liu J, Yuan Z, Zhang J, Guo J, Malumbres M, Liu J, Zou W, Wei W. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov 2016; 2:15044. [PMID: 27462441 PMCID: PMC4860961 DOI: 10.1038/celldisc.2015.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
Anaphase-promoting complex/cyclosome/Cdh1 is a multi-subunit ubiquitin E3 ligase that drives M to G1 cell cycle progression through primarily earmarking various substrates for ubiquitination and subsequent degradation by the 26S proteasome. Notably, emerging evidence suggested that Cdh1 could also function in various cellular processes independent of anaphase-promoting complex/cyclosome. To this end, we recently identified an anaphase-promoting complex/cyclosome-independent function of Cdh1 in modulating osteoblast differentiation through activating Smurf1, one of the NEDD4 family of HECT domain-containing E3 ligases. However, it remains largely unknown whether Cdh1 could exert its tumor suppressor role through similarly modulating the E3 ligase activities of other NEDD4 family members, most of which have characterized important roles in tumorigenesis. Here we report that in various tumor cells, Cdh1, conversely, suppresses the E3 ligase activity of WWP2, another NEDD4 family protein, in an anaphase-promoting complex/cyclosome-independent manner. As such, loss of Cdh1 activates WWP2, leading to reduced abundance of WWP2 substrates including PTEN, which subsequently activates PI3K/Akt oncogenic signaling to facilitate tumorigenesis. This study expands the non-anaphase-promoting complex/cyclosome function of Cdh1 in regulating the NEDD4 family E3 ligases, and further suggested that enhancing Cdh1 to inhibit the E3 ligase activity of WWP2 could be a promising strategy for treating human cancers.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China; Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhu Yuan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Jianfeng Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO) , Madrid, Spain
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University , Xi'an, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
35
|
Qiu L, Wu J, Pan C, Tan X, Lin J, Liu R, Chen S, Geng R, Huang W. Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation of p21Cip1/Waf1. Cell Death Dis 2016; 7:e2074. [PMID: 26821069 PMCID: PMC4816181 DOI: 10.1038/cddis.2015.402] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022]
Abstract
Dysregulated cell cycle progression has a critical role in tumorigenesis. Cell division cycle 27 (CDC27) is a core subunit of the anaphase-promoting complex/cyclosome, although the specific role of CDC27 in cancer remains unknown. In our study, we explored the biological and clinical significance of CDC27 in colorectal cancer (CRC) growth and progression and investigated the underlying molecular mechanisms. Results showed that CDC27 expression is significantly correlated with tumor progression and poor patient survival. Functional assays demonstrated that overexpression of CDC27 promoted proliferation in DLD1 cells, whereas knockdown of CDC27 in HCT116 cells inhibited proliferation both in vitro and in vivo. Further mechanistic investigation showed that CDC27 downregulation resulted in G1/S phase transition arrest via the significant accumulation of p21 in HCT116 cells, and the upregulation of CDC27 promoted G1/S phase transition via the attenuation of p21 in DLD1 cells. Furthermore, we also demonstrated that CDC27 regulated inhibitor of DNA binding 1 (ID1) protein expression in DLD1 and HCT116 cells, and rescue assays revealed that CDC27 regulated p21 expression through modulating ID1 expression. Taken together, our results indicate that CDC27 contributes to CRC cell proliferation via the modulation of ID1-mediated p21 regulation, which offers a novel approach to the inhibition of tumor growth. Indeed, these findings provide new perspectives for the future study of CDC27 as a target for CRC treatment.
Collapse
Affiliation(s)
- L Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - J Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - C Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, China
| | - X Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - J Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - R Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - S Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - R Geng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - W Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
36
|
Stieg DC, Cooper KF. Parkin New Cargos: a New ROS Independent Role for Parkin in Regulating Cell Division. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:315-324. [PMID: 28920079 DOI: 10.20455/ros.2016.857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell cycle progression requires the destruction of key cell cycle regulators by the multi-subunit E3 ligase called the anaphase promoting complex (APC/C). As the cell progresses through the cell cycle, the APC/C is sequentially activated by two highly conserved co-activators called Cdc20 and Cdh1. Importantly, APC/CCdc20 is required to degrade substrates in G2/M whereas APCCdh1 drives the cells into G1. Recently, Parkin, a monomeric E3 ligase that is required for ubiquitin-mediated mitophagy following mitochondrial stress, was shown to both bind and be activated by Cdc20 or Cdh1 during the cell cycle. This mitotic role for Parkin does not require an activating phosphorylation by its usual kinase partner PINK. Rather, mitotic Parkin activity requires phosphorylation on a different serine by the polo-like kinase Plk1. Interestingly, although ParkinCdc20 and ParkinCdh1 activity is independent of the APC/C, it mediates degradation of an overlapping subset of substrates. However, unlike the APC/C, Parkin is not necessary for cell cycle progression. Despite this, loss of Parkin activity accelerates genome instability and tumor growth in xenograft models. These findings provide a mechanism behind the previously described, but poorly understood, tumor suppressor role for Parkin. Taken together, studies suggest that the APC/C and Parkin have similar and unique roles to play in cell division, possibly being dependent upon the different subcellular address of these two ligases.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055, USA
| |
Collapse
|
37
|
The role of APC/C(Cdh1) in replication stress and origin of genomic instability. Oncogene 2015; 35:3062-70. [PMID: 26455319 DOI: 10.1038/onc.2015.367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
It has been proposed that the APC/C(Cdh1) functions as a tumor suppressor by maintaining genomic stability. However, the exact nature of genomic instability following loss of Cdh1 is unclear. Using biochemistry and live cell imaging of single cells we found that Cdh1 knockdown (kd) leads to strong nuclear stabilization of the substrates cyclin A and B and deregulated kinetics of DNA replication. Restoration of the Cdh1-dependent G2 DNA damage checkpoint did not result in G2 arrest but blocked cells in prometaphase, suggesting that these cells enter mitosis despite incomplete replication. This results in DNA double-strand breaks, anaphase bridges, cytokinesis defects and tetraploidization. Tetraploid cells are the source of supernumerary centrosomes following Cdh1-kd, leading to multipolar mitosis or centrosome clustering, in turn resulting in merotelic attachment and lagging chromosomes. Whereas some of these events cause apoptosis during mitosis, surviving cells may accumulate chromosomal aberrations.
Collapse
|
38
|
Cao J, Dai X, Wan L, Wang H, Zhang J, Goff PS, Sviderskaya EV, Xuan Z, Xu Z, Xu X, Hinds P, Flaherty KT, Faller DV, Goding CR, Wang Y, Wei W, Cui R. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth. Sci Signal 2015; 8:ra87. [PMID: 26329581 DOI: 10.1126/scisignal.aab1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.
Collapse
Affiliation(s)
- Juxiang Cao
- Department of Pharmacology and Experimental Therapeutics, Boston University Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hongshen Wang
- Department of Pharmacology and Experimental Therapeutics, Boston University Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA. Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, P. R. China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Philip S Goff
- Molecular Cell Sciences Research Centre, Canadian Cancer Society Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, Canadian Cancer Society Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Dallas, TX 75080, USA
| | - Zhixiang Xu
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Hinds
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith T Flaherty
- Cancer Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas V Faller
- Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, P. R. China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Rutao Cui
- Department of Pharmacology and Experimental Therapeutics, Boston University Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA. Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, P. R. China.
| |
Collapse
|
39
|
Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, Paulsen BDS, Belmonte-de-Abreu P, Vieira H, Krepischi AC, Carraro DM, Palha JA, Rehen S, Brentani H. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics 2015; 8:23. [PMID: 25981335 PMCID: PMC4493810 DOI: 10.1186/s12920-015-0098-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0098-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Maschietto
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Ana C Tahira
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Renato Puga
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Leandro Lima
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Daniel Mariani
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | | | | | - Henrique Vieira
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Ana Cv Krepischi
- Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Dirce M Carraro
- International Research Center-AC Camargo Cancer Center, São Paulo, Brazil.
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Stevens Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| | - Helena Brentani
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil. .,Department of Psychiatry, University of Sao Paulo, Medical School (FMUSP), Rua Dr Ovídio Pires de Campos,785-CEP 05403-010, São Paulo, SP, Caixa Postal n 3671, Brazil. .,National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Liu C, Louhimo R, Laakso M, Lehtonen R, Hautaniemi S. Identification of sample-specific regulations using integrative network level analysis. BMC Cancer 2015; 15:319. [PMID: 25928379 PMCID: PMC4424448 DOI: 10.1186/s12885-015-1265-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Histologically similar tumors even from the same anatomical position may still show high variability at molecular level hindering analysis of genome-wide data. Leveling the analysis to a gene regulatory network instead of focusing on single genes has been suggested to overcome the heterogeneity issue although the majority of the network methods require large datasets. Network methods that are able to function at a single sample level are needed to overcome the heterogeneity and sample size issues. Methods We present a novel network method, Differentially Expressed Regulation Analysis (DERA) that integrates expression data to biological network information at a single sample level. The sample-specific networks are subsequently used to discover samples with similar molecular functions by identification of regulations that are shared between samples or are specific for a subgroup. Results We applied DERA to identify key regulations in triple negative breast cancer (TNBC), which is characterized by lack of estrogen receptor, progesterone receptor and HER2 expression and has poorer prognosis than the other breast cancer subtypes. DERA identified 110 core regulations consisting of 28 disconnected subnetworks for TNBC. These subnetworks are related to oncogenic activity, proliferation, cancer survival, invasiveness and metastasis. Our analysis further revealed 31 regulations specific for TNBC as compared to the other breast cancer subtypes and thus form a basis for understanding TNBC. We also applied DERA to high-grade serous ovarian cancer (HGS-OvCa) data and identified several common regulations between HGS-OvCa and TNBC. The performance of DERA was compared to two pathway analysis methods GSEA and SPIA and our results shows better reproducibility and higher sensitivity in a small sample set. Conclusions We present a novel method called DERA to identify subnetworks that are similarly active for a group of samples. DERA was applied to breast cancer and ovarian cancer data showing our method is able to identify reliable and potentially important regulations with high reproducibility. R package is available at http://csbi.ltdk.helsinki.fi/pub/czliu/DERA/. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengyu Liu
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Riku Louhimo
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Marko Laakso
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Rainer Lehtonen
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology Research Program and Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, Helsinki, FI-00014, Finland.
| |
Collapse
|
41
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
42
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
43
|
Nagai M, Ushimaru T. Cdh1 is an antagonist of the spindle assembly checkpoint. Cell Signal 2014; 26:2217-22. [PMID: 25025567 DOI: 10.1016/j.cellsig.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takashi Ushimaru
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
44
|
Ayuda-Durán P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gómez M, Calzada A. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 2014; 42:7057-68. [PMID: 24753426 PMCID: PMC4066753 DOI: 10.1093/nar/gku313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.
Collapse
Affiliation(s)
- Pilar Ayuda-Durán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fernando Devesa
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fábia Gomes
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Joana Sequeira-Mendes
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | | | - María Gómez
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Arturo Calzada
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| |
Collapse
|
45
|
Li C, Peart N, Xuan Z, Lewis DE, Xia Y, Jin J. PMA induces SnoN proteolysis and CD61 expression through an autocrine mechanism. Cell Signal 2014; 26:1369-78. [PMID: 24637302 DOI: 10.1016/j.cellsig.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APC(Cdh1) ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation.
Collapse
Affiliation(s)
- Chonghua Li
- Department of Biochemistry and Molecular Biology, Medical School, United States
| | - Natoya Peart
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Zhenyu Xuan
- Department of Molecular and Cellular Biology, The University of Texas at Dallas, Dallas, TX, United States
| | - Dorothy E Lewis
- Department of Internal Medicine, Medical School, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, Medical School, United States; Program of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| |
Collapse
|
46
|
Zhang J, Wan L, Dai X, Sun Y, Wei W. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:277-93. [PMID: 24569229 DOI: 10.1016/j.bbcan.2014.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
47
|
Holt JE, Pye V, Boon E, Stewart JL, García-Higuera I, Moreno S, Rodríguez R, Jones KT, McLaughlin EA. The APC/C activator FZR1 is essential for meiotic prophase I in mice. Development 2014; 141:1354-65. [PMID: 24553289 DOI: 10.1242/dev.104828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fizzy-related 1 (FZR1) is an activator of the Anaphase promoting complex/cyclosome (APC/C) and an important regulator of the mitotic cell division cycle. Using a germ-cell-specific conditional knockout model we examined its role in entry into meiosis and early meiotic events in both sexes. Loss of APC/C(FZR1) activity in the male germline led to both a mitotic and a meiotic testicular defect resulting in infertility due to the absence of mature spermatozoa. Spermatogonia in the prepubertal testes of such mice had abnormal proliferation and delayed entry into meiosis. Although early recombination events were initiated, male germ cells failed to progress beyond zygotene and underwent apoptosis. Loss of APC/C(FZR1) activity was associated with raised cyclin B1 levels, suggesting that CDK1 may trigger apoptosis. By contrast, female FZR1Δ mice were subfertile, with premature onset of ovarian failure by 5 months of age. Germ cell loss occurred embryonically in the ovary, around the time of the zygotene-pachytene transition, similar to that observed in males. In addition, the transition of primordial follicles into the growing follicle pool in the neonatal ovary was abnormal, such that the primordial follicles were prematurely depleted. We conclude that APC/C(FZR1) is an essential regulator of spermatogonial proliferation and early meiotic prophase I in both male and female germ cells and is therefore important in establishing the reproductive health of adult male and female mammals.
Collapse
Affiliation(s)
- Janet E Holt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
49
|
The anaphase promoting complex regulates yeast lifespan and rDNA stability by targeting Fob1 for degradation. Genetics 2013; 196:693-709. [PMID: 24361936 DOI: 10.1534/genetics.113.158949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity. The APC governs passage through M and G1 via ubiquitin-dependent targeting of substrate proteins and is associated with cancer and premature aging when defective. Our two-hybrid screen utilizing Apc5 as bait recovered the lifespan determinant Fob1 as prey. Fob1 is unstable specifically in G1, cycles throughout the cell cycle in a manner similar to Clb2 (an APC target), and is stabilized in APC (apc5(CA)) and proteasome (rpn10) mutants. Deletion of FOB1 increased replicative lifespan (RLS) in wild type (WT), apc5(CA), and apc10 cells, and suppressed apc5(CA) cell cycle progression and rDNA recombination defects. Alternatively, increased FOB1 expression decreased RLS in WT cells, but did not reduce the already short apc5(CA) RLS, suggesting an epistatic interaction between apc5(CA) and fob1. Mutation to a putative L-Box (Fob1(E420V)), a Destruction Box-like motif, abolished Fob1 modifications, stabilized the protein, and increased rDNA recombination. Our work provides a mechanistic role played by the APC to promote replicative longevity and genomic stability in yeast.
Collapse
|
50
|
Yuan X, Srividhya J, De Luca T, Lee JHE, Pomerening JR. Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol Biol Cell 2013; 25:441-56. [PMID: 24356446 PMCID: PMC3923637 DOI: 10.1091/mbc.e13-08-0480] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Premature S-phase entry due to Cdh1 ablation results from premature loss of the CDK inhibitor p27 and a reduced requirement for cyclin E1. This prolonged S phase coincides with slowed replication fork elongation and fewer replication terminations, both of which could contribute to genome instability. Cdh1, a coactivator of the anaphase-promoting complex (APC), is a potential tumor suppressor. Cdh1 ablation promotes precocious S-phase entry, but it was unclear how this affects DNA replication dynamics while contributing to genomic instability and tumorigenesis. We find that Cdh1 depletion causes early S-phase onset in conjunction with increase in Rb/E2F1-mediated cyclin E1 expression, but reduced levels of cyclin E1 protein promote this transition. We hypothesize that this is due to a weakened cyclin-dependent kinase inhibitor (CKI)–cyclin-dependent kinase 2 positive-feedback loop, normally generated by APC-Cdh1–mediated proteolysis of Skp2. Indeed, Cdh1 depletion increases Skp2 abundance while diminishing levels of the CKI p27. This lowers the level of cyclin E1 needed for S-phase entry and delays cyclin E1 proteolysis during S-phase progression while corresponding to slowed replication fork movement and reduced frequency of termination events. In summary, using both experimental and computational approaches, we show that APC-Cdh1 establishes a stimulus–response relationship that promotes S phase by ensuring that proper levels of p27 accumulate during G1 phase, and defects in its activation accelerate the timing of S-phase onset while prolonging its progression.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Biology, Indiana University, Bloomington, IN 47405-7003 Biocomplexity Institute, Department of Physics, Indiana University, Bloomington, IN 47405-7003 Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN 47408-2671 Department of Statistics, Indiana University, Bloomington, IN 47408-3825
| | | | | | | | | |
Collapse
|