1
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
2
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
3
|
Yang Y, Guo J, Li M, Chu G, Jin H, Ma J, Jia Q. Cancer stem cells and angiogenesis. Pathol Res Pract 2024; 253:155064. [PMID: 38160481 DOI: 10.1016/j.prp.2023.155064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Cancer remains the primary cause of mortality in developed nations. Although localized tumors can be effectively addressed through surgery, radiotherapy, and other targeted methods, drug efficacy often wanes in the context of metastatic diseases. As a result, significant efforts are being made to develop drugs capable of not only inhibiting tumor growth but also impeding the metastasis of malignant tumors, with a focus on hindering their migration to adjacent organs. Cancer stem cells metastasize via blood and lymphatic vessels, exhibiting a high mutation rate, significant variability, and a predisposition to drug resistance. In contrast, endothelial cells, being less prone to mutation, are less likely to give rise to drug-resistant clones. Furthermore, the direct contact of circulating anti-angiogenic drugs with vascular endothelial cells expedites their therapeutic impact. Hence, anti-angiogenesis targeted therapy assumes a pivotal role in cancer treatment. This paper provides a succinct overview of the molecular mechanisms governing the interaction between cancer stem cells and angiogenesis.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyu Guo
- Department of Anesthesiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jing Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
4
|
Eslahi M, Nematbakhsh N, Dastmalchi N, Teimourian S, Safaralizadeh R. Signaling Pathways in Drosophila gonadal Stem Cells. Curr Stem Cell Res Ther 2024; 19:154-165. [PMID: 36788694 DOI: 10.2174/1574888x18666230213144531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023]
Abstract
The stem cells' ability to divide asymmetrically to produce differentiating and self-renewing daughter cells is crucial to maintain tissue homeostasis and development. Stem cell maintenance and differentiation rely on their regulatory microenvironment termed 'niches'. The mechanisms of the signal transduction pathways initiated from the niche, regulation of stem cell maintenance and differentiation were quite challenging to study. The knowledge gained from the study of Drosophila melanogaster testis and ovary helped develop our understanding of stem cell/niche interactions and signal pathways related to the regulatory mechanisms in maintaining homeostasis of adult tissue. In this review, we discuss the role of signaling pathways in Drosophila gonadal stem cell regeneration, competition, differentiation, dedifferentiation, proliferation, and fate determination. Furthermore, we present the current knowledge on how these signaling pathways are implicated in cancer, and how they contribute as potential candidates for effective cancer treatment.
Collapse
Affiliation(s)
- Maede Eslahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Nematbakhsh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Lin Y, Deng H, Deng F, Yao S, Deng X, Cheng Y, Chen Y, He B, Dai W, Zhang H, Zhang Q, Wang X. Remodeling of intestinal epithelium derived extracellular vesicles by nanoparticles and its bioeffect on tumor cell migration. J Control Release 2024; 365:60-73. [PMID: 37972765 DOI: 10.1016/j.jconrel.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Extracellular vesicles (EVs) are an effective tool to elucidate the bioeffect of nanomedicines. To clarify the interaction between oral nanomedicines and intestinal epithelial cells, and their bioeffects on downstream cells, polystyrene nanoparticles (PS-NPs) with different sizes were used as the model nanomedicines for EVs induction. Caco-2 monolayers were selected as the model of the intestinal epithelium and DLD-1 cells as the colorectal cancer model proximal to the gastrointestinal tract. It is found that compared with small-sized (25, 50, 100 nm) PS-NPs, the large-sized (200 and 500 nm) exhibited higher co-localization with multivesicular bodies and lysosomes, and more significant reduction of lysosomal acidification in Caco-2 cells. Proteomic and western-blotting analysis showed that the EVs remodeled by large-sized PS-NPs exhibited a higher extent of protein expression changes. The in vitro and in vivo signaling pathway detection in DLD-1 cells and DLD-1 cell xenograft nude mice showed that the remodeled EVs by large-sized PS-NPs inhibited the activation of multiple signaling pathways including Notch3, EGF/EGFR, and PI3K/Akt pathways, which resulted in the inhibition of tumor cell migration. These results primarily clarify the regulation mechanisms of nanomedicines-EVs-receptor cells chain. It provides a new perspective for the rational design and bioeffect evaluation of oral drug nanomaterials and sets up the fundamental knowledge for novel tumor therapeutics in the future.
Collapse
Affiliation(s)
- Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA 02215, USA
| | - Siyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinxin Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Chen
- Guangdong Institute for Drug Control, Guangzhou 510700, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China.
| |
Collapse
|
6
|
Zhang B, Dong S, Wang J, Huang T, Zhao P, Xu J, Liu D, Fu L, Wang L, Wang G, Zou C. NOTCH4 ΔL12_16 sensitizes lung adenocarcinomas to EGFR-TKIs through transcriptional down-regulation of HES1. Nat Commun 2023; 14:3183. [PMID: 37268635 DOI: 10.1038/s41467-023-38833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI) remains one of the major challenges in lung adenocarcinoma (LUAD) therapy. Here, we find an increased frequency of the L12_16 amino acid deletion mutation in the signal peptide region of NOTCH4 (NOTCH4ΔL12_16) in EGFR-TKI-sensitive patients. Functionally, exogenous induction of NOTCH4ΔL12_16 in EGFR-TKI -resistant LUAD cells sensitizes them to EGFR-TKIs. This process is mainly mediated by the reduction of the intracellular domain of NOTCH4 (NICD4) caused by the NOTCH4ΔL12_16 mutation, which results in a lower localization of NOTCH4 in the plasma membrane. Mechanistically, NICD4 transcriptionally upregulates the expression of HES1 by competitively binding to the gene promoter relative to p-STAT3. Because p-STAT3 can downregulate the expression of HES1 in EGFR-TKI-resistant LUAD cells, the reduction of NICD4 induced by NOTCH4ΔL12_16 mutation leads to a decrease in HES1. Moreover, inhibition of the NOTCH4-HES1 pathway using inhibitors and siRNAs abolishes the resistance of EGFR-TKI. Overall, we report that the NOTCH4ΔL12_16 mutation sensitizes LUAD patients to EGFR-TKIs through transcriptional down-regulation of HES1 and that targeted blockade of this signaling cohort could reverse EGFR-TKI -resistance in LUAD, providing a potential approach to overcome resistance to EGFR-TKI -therapy.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Tuxiong Huang
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Pan Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Dongcheng Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Li Fu
- Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, PR China
| | - Lingwei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Guangsuo Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chang Zou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China.
| |
Collapse
|
7
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
8
|
Decreased TSPAN14 Expression Contributes to NSCLC Progression. Life (Basel) 2022; 12:life12091291. [PMID: 36143328 PMCID: PMC9506201 DOI: 10.3390/life12091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Tspan14 is a transmembrane protein of the tetraspanin (Tspan) protein family. Different members of the Tspan family can promote or suppress tumor progression. The exact role of Tspan14 in tumor cells is unknown. Earlier, mutational inactivation of the TSPAN14 gene has been proposed to coincide with a low survival rate in NSCLC patients. This study aimed to investigate the correlation of TSPAN14 lack of function with clinicopathological features of NSCLC patients, and to elucidate the role TSPAN14 might have in NSCLC progression. TSPAN14 expression was lower in tumor cells than non-tumor cells in NSCLC patients’ samples. The decreased gene expression was correlated with a low survival rate of patients and was more frequent in patients with aggressive, invasive tumor types. Additionally, the role of decreased TSPAN14 expression in the metastatic potential of cancer cells was confirmed in NSCLC cell lines. The highly invasive NSCLC cell line (NCI-H661) had the lowest TSPAN14 gene and protein expression, whereas the NSCLC cell line with the highest TSPAN14 expression (NCI-H460) had no significant metastatic potential. Finally, silencing of TSPAN14 in these non-metastatic cancer cells caused an increased expression of matrix-degrading enzymes MMP-2 and MMP-9, followed by an elevated capacity of cancer cells to degrade gelatin. The results of this study propose TSPAN14 expression as an indicator of NSCLC metastatic potential and progression.
Collapse
|
9
|
Suresh PK. Refined cancer stem cells-enriched lung cancer model systems: Cross-talk and fine-tuning Notch1 inhibition. J Cancer Res Ther 2022; 18:866-867. [PMID: 35900580 DOI: 10.4103/jcrt.jcrt_807_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- P K Suresh
- Department of Biomedical Sciences, School of Biosciences and Technology VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
11
|
Wu Y, Huang J, Ivan C, Sun Y, Ma S, Mangala LS, Fellman BM, Urbauer DL, Jennings NB, Ram P, Coleman RL, Hu W, Sood AK. MEK inhibition overcomes resistance to EphA2-targeted therapy in uterine cancer. Gynecol Oncol 2021; 163:181-190. [PMID: 34391578 DOI: 10.1016/j.ygyno.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.
Collapse
Affiliation(s)
- Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yunjie Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bryan M Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Diana L Urbauer
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Prahlad Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
12
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Bi-Lin KW, Seshachalam PV, Tuoc T, Stoykova A, Ghosh S, Singh MK. Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet 2021; 17:e1009446. [PMID: 33750945 PMCID: PMC8016319 DOI: 10.1371/journal.pgen.1009446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/01/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The BAF complex plays an important role in the development of a wide range of tissues by modulating gene expression programs at the chromatin level. However, its role in neural crest development has remained unclear. To determine the role of the BAF complex, we deleted BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF complex in neural crest cells (NCCs). Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial, pharyngeal arch artery, and OFT defects. RNAseq and transcription factor enrichment analysis revealed that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the migration, proliferation, and differentiation of the NCCs. Furthermore, we demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate an important role of the BAF complex in modulating the gene regulatory network essential for neural crest development. Neural crest cells (NCCs) are a multipotent and migratory cell population that is induced at the neural plate border during neurulation and contributes to the formation of a wide range of tissues. Defects in the development, differentiation, or migration of NCCs lead to various birth defects including craniofacial and heart anomalies. Here, by genetically deleting BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF chromatin remodeling complex, we demonstrate that the BAF complex is essential for the proliferation, survival, and differentiation of the NCCs. Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial and cardiovascular defects. By performing RNAseq and transcription factor enrichment analysis we show that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the development of the NCCs. Furthermore, the BAF complex component physically interacts with the Hippo signaling components in NCCs to regulate gene expression. We demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate a critical role of the BAF complex in modulating the gene regulatory network essential for the proper development of neural crest and neural crest-derived tissues.
Collapse
Affiliation(s)
- Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | | | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | | | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Manvendra K. Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
- * E-mail:
| |
Collapse
|
14
|
Adonin L, Drozdov A, Barlev NA. Sea Urchin as a Universal Model for Studies of Gene Networks. Front Genet 2021; 11:627259. [PMID: 33552139 PMCID: PMC7854572 DOI: 10.3389/fgene.2020.627259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
The purple sea urchin Strongylocentrotus purpuratus has been used for over 150 years as a model organism in developmental biology. Using this model species, scientists have been able to describe, in detail, the mechanisms of cell cycle control and cell adhesion, fertilization, calcium signaling, cell differentiation, and death. Massive parallel sequencing of the sea urchin genome enabled the deciphering of the main components of gene regulatory networks during the activation of embryonic signaling pathways. This knowledge helped to extrapolate aberrations in somatic cells that may lead to diseases, including cancer in humans. Furthermore, since many, if not all, developmental signaling pathways were shown to be controlled by non-coding RNAs (ncRNAs), the sea urchin organism represents an attractive experimental model. In this review, we discuss the main discoveries in the genetics, genomics, and transcriptomics of sea urchins during embryogenesis with the main focus on the role of ncRNAs. This information may be useful for comparative studies between different organisms, and may help identify new regulatory networks controlled by ncRNAs.
Collapse
Affiliation(s)
- Leonid Adonin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia.,Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
15
|
Bousquet Mur E, Bernardo S, Papon L, Mancini M, Fabbrizio E, Goussard M, Ferrer I, Giry A, Quantin X, Pujol JL, Calvayrac O, Moll HP, Glasson Y, Pirot N, Turtoi A, Cañamero M, Wong KK, Yarden Y, Casanova E, Soria JC, Colinge J, Siebel CW, Mazieres J, Favre G, Paz-Ares L, Maraver A. Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma. J Clin Invest 2020; 130:612-624. [PMID: 31671073 DOI: 10.1172/jci126896] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
EGFR-mutated lung adenocarcinoma patients treated with gefitinib and osimertinib show a therapeutic benefit limited by the appearance of secondary mutations, such as EGFRT790M and EGFRC797S. It is generally assumed that these secondary mutations render EGFR completely unresponsive to the inhibitors, but contrary to this, we uncovered here that gefitinib and osimertinib increased STAT3 phosphorylation (p-STAT3) in EGFRT790M and EGFRC797S tumoral cells. Interestingly, we also found that concomitant Notch inhibition with gefitinib or osimertinib treatment induced a p-STAT3-dependent strong reduction in the levels of the transcriptional repressor HES1. Importantly, we showed that tyrosine kinase inhibitor-resistant tumors, with EGFRT790M and EGFRC797S mutations, were highly responsive to the combined treatment of Notch inhibitors with gefitinib or osimertinib, respectively. Finally, in patients with EGFR mutations treated with tyrosine kinase inhibitors, HES1 protein levels increased during relapse and correlated with shorter progression-free survival. Therefore, our results offer a proof of concept for an alternative treatment to chemotherapy in lung adenocarcinoma osimertinib-treated patients after disease progression.
Collapse
Affiliation(s)
- Emilie Bousquet Mur
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sara Bernardo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Laura Papon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Maicol Mancini
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Eric Fabbrizio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Marion Goussard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Irene Ferrer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.,Unidad de Investigación Clínica de Cáncer de Pulmón, Instituto de Investigación Hospital 12 de Octubre-CNIO, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Anais Giry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Xavier Quantin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Jean-Louis Pujol
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.,Montpellier Academic Hospital, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Olivier Calvayrac
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Yaël Glasson
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Nelly Pirot
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Andrei Turtoi
- IRCM, Université de Montpellier, ICM, Montpellier, France
| | - Marta Cañamero
- Roche Pharmaceutical Research and Early Development, Translational Medicine, Roche Innovation Center, Munich, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Sud University, Villejuif, France
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Julien Mazieres
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France.,Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, France; INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Gilles Favre
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Luis Paz-Ares
- Unidad de Investigación Clínica de Cáncer de Pulmón, Instituto de Investigación Hospital 12 de Octubre-CNIO, Madrid, Spain.,Montpellier Academic Hospital, Hôpital Arnaud de Villeneuve, Montpellier, France.,Medical School, Universidad Complutense, Madrid, Spain
| | - Antonio Maraver
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
16
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1139] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
17
|
Shin S, Kim K, Kim HR, Ylaya K, Do SI, Hewitt SM, Park HS, Roe JS, Chung JY, Song J. Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ 2019; 27:1341-1354. [PMID: 31527799 DOI: 10.1038/s41418-019-0419-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Notch, an essential factor in tissue development and homoeostasis, has been reported to play an oncogenic function in a variety of cancers. Here, we report ubiquitin-specific protease 8 (USP8) as a novel deubiquitylase of Notch1 intracellular domain (NICD). USP8 specifically stabilizes and deubiquitylates NICD through a direct interaction. The inhibition of USP8 downregulated the Notch signalling pathway via NICD destabilization, resulting in the retardation of cellular growth, wound closure, and colony forming ability of breast cancer cell lines. These phenomena were restored by the reconstitution of NICD or USP8, supporting the direct interaction between these two proteins. The expression levels of NICD and USP8 proteins were positively correlated in patients with advanced breast cancer. Taken together, our results suggest that USP8 functions as a positive regulator of Notch signalling, offering a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungeun Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
19
|
Zheng Y, Wang Z, Xiong X, Zhong Y, Zhang W, Dong Y, Li J, Zhu Z, Zhang W, Wu H, Gu W, Wu Y, Wang X, Song X. Membrane-tethered Notch1 exhibits oncogenic property via activation of EGFR-PI3K-AKT pathway in oral squamous cell carcinoma. J Cell Physiol 2018; 234:5940-5952. [PMID: 30515785 DOI: 10.1002/jcp.27022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Abstract
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1WT ) or mutant Notch1 vectors (Notch1V1754L ) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γ-secretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)-phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, membrane-tethered Notch1 was strongly associated with activated EGFR-PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Xianbin Xiong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yibo Dong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Jialiang Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zaiou Zhu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Yunong Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist 2018; 23:900-911. [PMID: 29622701 PMCID: PMC6156186 DOI: 10.1634/theoncologist.2017-0677] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review article focuses on the third Notch family subtype, Notch3. Regulation via Notch3 signaling was first implicated in vasculogenesis. However, more recent findings suggest that Notch3 signaling may play an important role in oncogenesis, tumor maintenance, and resistance to chemotherapy. Its role is mainly oncogenic, although in some cancers it appears to be tumor suppressive. Despite the wealth of published literature, it remains relatively underexplored and requires further research to shed more light on its role in cancer development, determine its tissue-specific function, and elaborate novel treatment strategies. Herein we summarize the role of Notch3 in cancer, possible mechanisms of its action, and current cancer treatment strategies targeting Notch3 signaling. IMPLICATIONS FOR PRACTICE The Notch family is a highly conserved gene group that regulates cell-cell interaction, embryogenesis, and tissue commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect Notch3 signaling activity.
Collapse
Affiliation(s)
- Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Renata Jaskula-Stzul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Sosa Iglesias V, Giuranno L, Dubois LJ, Theys J, Vooijs M. Drug Resistance in Non-Small Cell Lung Cancer: A Potential for NOTCH Targeting? Front Oncol 2018; 8:267. [PMID: 30087852 PMCID: PMC6066509 DOI: 10.3389/fonc.2018.00267] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Drug resistance is a major cause for therapeutic failure in non-small cell lung cancer (NSCLC) leading to tumor recurrence and disease progression. Cell intrinsic mechanisms of resistance include changes in the expression of drug transporters, activation of pro-survival, and anti-apoptotic pathways, as well as non-intrinsic influences of the tumor microenvironment. It has become evident that tumors are composed of a heterogeneous population of cells with different genetic, epigenetic, and phenotypic characteristics that result in diverse responses to therapy, and underlies the emergence of resistant clones. This tumor heterogeneity is driven by subpopulations of tumor cells termed cancer stem cells (CSCs) that have tumor-initiating capabilities, are highly self-renewing, and retain the ability for multi-lineage differentiation. CSCs have been identified in NSCLC and have been associated with chemo- and radiotherapy resistance. Stem cell pathways are frequently deregulated in cancer and are implicated in recurrence after treatment. Here, we focus on the NOTCH signaling pathway, which has a role in stem cell maintenance in non-squamous non-small lung cancer, and we critically assess the potential for targeting the NOTCH pathway to overcome resistance to chemotherapeutic and targeted agents using both preclinical and clinical evidence.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Lorena Giuranno
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Jan Theys
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| |
Collapse
|
22
|
Chammaa M, Malysa A, Redondo C, Jang H, Chen W, Bepler G, Fernandez-Valdivia R. RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. J Cell Physiol 2018; 233:9548-9562. [PMID: 29953591 DOI: 10.1002/jcp.26858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Recent comprehensive next-generation genome and transcriptome analyses in lung cancer patients, several clinical observations, and compelling evidence from mouse models of lung cancer have uncovered a critical role for Notch signaling in the initiation and progression of non-small-cell lung cancer (NSCLC). Notably, Rumi is a "protein O-glucosyltransferase" that regulates Notch signaling through O-glucosylation of Notch receptors, and is the only enzymatic regulator whose activity is required for both ligand-dependent and ligand-independent activation of Notch. We have conducted a detailed study on RUMI's involvement in NSCLC development and progression, and have further explored the therapeutic potential of its targeting in NSCLC. We have determined that Rumi is highly expressed in the alveolar and bronchiolar epithelia, including club cells and alveolar type II cells. Remarkably, RUMI maps to the region of chromosome 3q that corresponds to the major signature of neoplastic transformation in NSCLC, and is markedly amplified and overexpressed in NSCLC tumors. Notably, RUMI expression levels are predictive of poor prognosis and survival in NSCLC patients. Our data indicates that RUMI modulates Notch activity in NSCLC cells, and that its silencing dramatically decreases cell proliferation, migration, and survival. RUMI downregulation causes severe cell cycle S-phase arrest, increases genome instability, and induces late apoptotic-nonapoptotic cell death. Our studies demonstrate that RUMI is a novel negative prognostic factor with significant therapeutic potential in NSCLC, which embodies particular relevance especially when considering that, while current Notch inhibitory strategies target only ligand-dependent Notch activation, a large number of NSCLCs are driven by ligand-independent Notch activity.
Collapse
Affiliation(s)
- May Chammaa
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Agnes Malysa
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carlos Redondo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hyejeong Jang
- Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Gerold Bepler
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Rodrigo Fernandez-Valdivia
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
23
|
Su T, Yang X, Deng JH, Huang QJ, Huang SC, Zhang YM, Zheng HM, Wang Y, Lu LL, Liu ZQ. Evodiamine, a Novel NOTCH3 Methylation Stimulator, Significantly Suppresses Lung Carcinogenesis in Vitro and in Vivo. Front Pharmacol 2018; 9:434. [PMID: 29765324 PMCID: PMC5938359 DOI: 10.3389/fphar.2018.00434] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Collapse
Affiliation(s)
- Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Hua Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Ju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Su-Chao Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Min Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ming Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Zou B, Zhou XL, Lai SQ, Liu JC. Notch signaling and non-small cell lung cancer. Oncol Lett 2018; 15:3415-3421. [PMID: 29467866 PMCID: PMC5796339 DOI: 10.3892/ol.2018.7738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. Elucidation of the pathogenesis and biology of lung cancer is critical for the design of an effective treatment for patients. Non-small cell lung cancer (NSCLC) accounts for 80–85% of lung cancer cases. The abnormal expression of Notch signaling pathway members is a relatively frequent event in NSCLC. The Notch signaling pathway serves important roles in cell fate determination, proliferation, differentiation and apoptosis. Increasing evidence supports the association of Notch signaling dysregulation with various types of malignant tumor, including NSCLC. Several studies have demonstrated that members of the Notch signaling pathway may be potential biomarkers for predicting the progression and prognosis of patients with NSCLC. Furthermore, Notch signaling serves critical roles in the tumorigenesis and treatment resistance of NSCLC cells by promoting the proliferation or inhibiting the apoptosis of NSCLC cells. The present review provides a detailed summary of the roles of Notch signaling in NSCLC.
Collapse
Affiliation(s)
- Bin Zou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue-Liang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Segiet O, Kurek J, Harabin-Słowińska M, Wojnicz R. Notch and its oncogenic activity in human malignancies. Eur Surg 2017; 49:199-209. [PMID: 29104587 PMCID: PMC5653712 DOI: 10.1007/s10353-017-0491-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Increasing evidence has demonstrated that Notch signaling is deregulated in human hematological malignancies and solid tumors. This signaling has a protumorigenic effect but may also act as a tumor suppressor. How induction of a single pathway gives rise to the opposite effects in different cell types is still unknown. METHODS This review article includes available data from peer-reviewed publications associated with the role of Notch signaling during cancer pathogenesis. RESULTS Numerous reports have indicated that alterations in Notch signaling and its oncogenic activity were originally associated with the pathogenesis of T‑cell acute lymphoblastic leukemia/lymphoma (T-ALL), an aggressive hematologic tumor affecting children and adolescents. The possibility that Notch could play a significant role in human breast cancer development comes from studies on mouse mammary tumor virus-induced cancer. Numerous findings over the past several years have indicated that alterations in Notch signaling are also responsible for ovarian cancer development. Mention should also be made of the connection between expression of Notch 3 and increased resistance to chemotherapy, which remains a major obstacle to successful treatment. Notch as an oncogenic factor is also involved in the development of colon cancer, lung carcinoma and Kaposi's sarcoma. CONCLUSION Notch is a binary cell fate determinant and its overexpression has been described as oncogenic in a wide array of human malignancies. This finding led to interest in therapeutically targeting this pathway, especially by the use of gamma-secretase inhibitors (GSIs) blocking the cleavage of Notch receptors at the cell membrane by the inhibition of Notch intracellular domain (NICD) releasing. Preclinical cancer models have revealed that GSIs suppress the growth of cancers such as pancreatic, breast and lung cancer.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Adam Piecuch
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Oliwia Segiet
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | | | - Marzena Harabin-Słowińska
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Romuald Wojnicz
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
27
|
Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol 2017; 34:180. [DOI: 10.1007/s12032-017-1039-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
|
28
|
Endothelial-to-mesenchymal transition: A novel therapeutic target for cardiovascular diseases. Trends Cardiovasc Med 2017; 27:383-393. [PMID: 28438397 DOI: 10.1016/j.tcm.2017.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 01/14/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a complex biological process in which endothelial cells lose their specific markers and acquire a mesenchymal or myofibroblastic phenotype. Similar to epithelial-to-mesenchymal transition (EMT), EndMT can be induced by multiple stimulants such as cytokines and metabolic factors that play crucial roles in the development of the cardiovascular system. Recent studies have demonstrated that EndMT may play a significant role in the pathogenesis of cardiovascular diseases (CVDs), and may represent a novel therapeutic target for cardiovascular remodeling and fibrotic disorders. The exact molecular mechanisms involved in cardiovascular pathogenesis that occur as a result of EndMT, however, are not fully explained. In this review, we reveal the multiple intercellular mechanisms of EndMT including stimulants, signaling pathways, and seek to explore the relationship between this biological process, cardiovascular system development, and CVDs that may lead to new therapeutic strategies for the treatment of CVDs.
Collapse
|
29
|
Targeting Notch3 in Hepatocellular Carcinoma: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2016; 18:ijms18010056. [PMID: 28036048 PMCID: PMC5297691 DOI: 10.3390/ijms18010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway is a very conserved system that controls embryonic cell fate decisions and the maintenance of adult stem cells through cell to cell communication. Accumulating evidence support the relevance of Notch signaling in different human diseases and it is one of the most commonly activated signaling pathways in cancer. This review focuses mainly on the role of Notch3 signaling in hepatocellular carcinoma and its potential therapeutic applications against this malignancy. In this regard, the crosstalk between Notch and p53 may play an important role.
Collapse
|
30
|
Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 2016; 15:80. [PMID: 27938406 PMCID: PMC5148895 DOI: 10.1186/s12943-016-0566-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) ranks the most common cancer types and is one of the leading causes of cancer-related death. Due to delayed diagnosis and high metastatic frequency, 5-year survival rate of GC is rather low. It is a complex disease resulting from the interaction between environmental factors and host genetic alterations that deregulate multiple signaling pathways. The Notch signaling pathway, a highly conserved system in the regulation of the fate in several cell types, plays a pivotal role in cell differentiation, survival and proliferation. Notch is also one of the most commonly activated signaling pathways in tumors and its aberrant activation plays a key role in cancer advancement. Whether Notch cascade exerts oncogenic or tumor suppressive function in different cancer types depends on the cellular context. Mammals have four NOTCH receptors that modulate Notch pathway activity. In this review, we provide a comprehensive summary on the functional role of NOTCH receptors in gastric and other gastrointestinal cancers. Increasing knowledge of NOTCH receptors in gastrointestinal cancers will help us recognize the underlying mechanisms of Notch signaling and develop novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
31
|
Pancewicz‐Wojtkiewicz J. Epidermal growth factor receptor and notch signaling in non-small-cell lung cancer. Cancer Med 2016; 5:3572-3578. [PMID: 27770511 PMCID: PMC5224843 DOI: 10.1002/cam4.944] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the most common reason of cancer deaths and about 85% of these are non-small-cell lung cancer. Currently, lung cancer therapy is mainly based on the tumor node metastasis (TNM) disease staging and tumor histological classification. Despite therapeutic innovations, the prognosis for lung cancer patients has not significantly changed in the last years. Therefore, a proper understanding of cell signaling pathways involved in cancer pathogenesis seems to be essential for improvement in cancer therapy field. The knowledge of crosstalk between epidermal growth factor receptor (EGFR) and Notch pathway can lead to enhanced screening for the expression of these genes allowing patients to optimize treatment options and predict potential treatment resistance. This review focuses on recent advances related to the mechanisms of EGFR and Notch signaling in non-small-cell lung cancer and the effectiveness of current Notch- and EGFR-targeted therapies.
Collapse
|
32
|
Combined antitumor effect of γ-secretase inhibitor and ABT-737 in Notch-expressing non-small cell lung cancer. Int J Clin Oncol 2016; 22:257-268. [PMID: 27816990 DOI: 10.1007/s10147-016-1060-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inhibition of Notch by γ-secretase inhibitor (GSI) has been shown to have an antitumor effect in Notch-expressing non-small cell lung cancer (NSCLC) and to induce apoptosis through modulation of Bcl-2 family proteins. In particular, Bim, a BH3-only member of the Bcl-2 family of proteins, has an important role in the induction of apoptosis in NSCLC when cells are treated with GSI. ABT-737, a BH3-only mimetic, targets the pro-survival Bcl-2 family and also induces apoptosis. METHODS The Notch-expressing NSCLC cell lines H460, A549, H1793, and HCC2429 were used. The combined antitumor effect of GSI and ABT-737 was evaluated using the MTT proliferation assay in vitro and in xenograft mouse models. The expression of the Notch pathway and Bcl-2 family was analyzed using Western blotting analysis when cells were treated with a single drug treatment or a combination treatment. RESULTS GSI XX or ABT-737 alone inhibited cell proliferation in a dose-dependent manner, and combination drug treatment showed a synergistic antitumor effect in vitro. In vivo, this drug combination significantly suppressed tumor proliferation compared to the single drug treatment. Phospho-Bcl-2 was downregulated and Bax was upregulated by both the single and combination drug treatments. Bim was induced by a single drug treatment and was enhanced by combination treatment. Combination treatment-induced apoptosis was decreased by Bim inhibition, suggesting that the antitumor effect of the drug combination was dependent on Bim. CONCLUSION Based on our data, we propose that the combination treatment is a promising strategy for NSCLC therapy.
Collapse
|
33
|
Qiao J, Liu J, Jia K, Li N, Liu B, Zhang Q, Zhu R. Diosmetin triggers cell apoptosis by activation of the p53/Bcl-2 pathway and inactivation of the Notch3/NF-κB pathway in HepG2 cells. Oncol Lett 2016; 12:5122-5128. [PMID: 28101238 PMCID: PMC5228289 DOI: 10.3892/ol.2016.5347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/11/2016] [Indexed: 12/02/2022] Open
Abstract
Diosmetin (DIOS), a flavonoid compound, is abundant in Citrus limon. Emerging studies have shown that DIOS is an effective compound implicated in multiple types of cancer. However, whether DIOS serves a role in hepatocellular carcinoma (HCC) is still obscure. HepG2 cells were used in the present study, and it was observed that DIOS exhibited antitumor activity against liver cancer cells. Western blotting was performed to evaluate cell apoptosis and survival-associated proteins, and the results demonstrated that DIOS treatment resulted in the activation of the p53-dependent apoptosis pathway. Our results revealed that DIOS caused inhibition of the nuclear factor (NF)-κB signaling pathway and downregulation of Notch3 receptor. Furthermore, by using small hairpin RNA-Notch3, it was confirmed that DIOS inhibited the NF-κB signaling pathway by inactivation of Notch3. In conclusion, the present results demonstrated that DIOS triggered cell apoptosis by activation of the p53 signaling pathway and inhibited the NF-κB cell survival pathway by downregulation of Notch3 receptor expression. DIOS is a potential agent for prevention of HCC.
Collapse
Affiliation(s)
- Jie Qiao
- Laboratory of Hepatobiliary Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jie Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Kaiqiao Jia
- Laboratory of Hepatobiliary Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qingyu Zhang
- Laboratory of Hepatobiliary Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
34
|
Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. Int J Clin Oncol 2016; 22:59-69. [DOI: 10.1007/s10147-016-1031-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
35
|
Liu ZY, Wu T, Li Q, Wang MC, Jing L, Ruan ZP, Yao Y, Nan KJ, Guo H. Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma. Medicine (Baltimore) 2016; 95:e3715. [PMID: 27196489 PMCID: PMC4902431 DOI: 10.1097/md.0000000000003715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- From the Department of Medical Oncology, the First Affiliated Hospital of Xi'an JiaoTong University (Z-YL, TW, QL, M-CW, LJ, Z-PR, YY, K-JN, HG); and Department of Respiratory Medicine, Xi'an central Hospital (Z-YL), Xi'an, Shaanxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Falco F, Sabatini R, Del Papa B, Falzetti F, Di Ianni M, Sportoletti P, Baldoni S, Screpanti I, Marconi P, Rosati E. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget 2016; 6:16559-72. [PMID: 26041884 PMCID: PMC4599289 DOI: 10.18632/oncotarget.4116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/23/2015] [Indexed: 01/19/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4. Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells. Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL.
Collapse
Affiliation(s)
- Filomena De Falco
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Rita Sabatini
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Paolo Sportoletti
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pierfrancesco Marconi
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Pant S, Jones SF, Kurkjian CD, Infante JR, Moore KN, Burris HA, McMeekin DS, Benhadji KA, Patel BKR, Frenzel MJ, Kursar JD, Zamek-Gliszczynski MJ, Yuen ESM, Chan EM, Bendell JC. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer 2016; 56:1-9. [PMID: 26798966 DOI: 10.1016/j.ejca.2015.11.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/02/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Notch signalling regulates stem cell development and survival and is deregulated in multiple malignancies. LY900009 is a small molecule inhibitor of Notch signalling via selective inhibition of the γ-secretase protein. We report the first-in-human phase I trial of LY900009. METHODS Dose escalation (Part A) was performed in cohorts of three advanced cancer patients using a modified continual reassessment method and dose confirmation (Part B) was performed in ovarian cancer patients. LY900009 was taken orally thrice weekly (every Monday, Wednesday, and Friday) during a 28-d cycle. The primary objective determined the maximum tolerated dose (MTD); secondary end-points included toxicity, pharmacokinetics, pharmacodynamics, and antitumour activity. RESULTS Thirty-five patients received LY900009 at dose levels ranging from 2-60 mg. Study drug-related adverse events were diarrhoea (46%), vomiting (34%), anorexia (31%), nausea (31%), and fatigue (23%). At 30 mg, a dose-limiting toxicity (grade III mucosal inflammation) was observed. LY900009 absorption was rapid, with median tmax at 1-4 h post-dose. LY900009 inhibited plasma levels of amyloid-β peptide in a dose-dependent manner with 80-90% inhibition observed in the 30- to 60-mg cohorts. No responses were seen, but five patients had stable disease. Two patients (5.7%) with leiomyosarcoma and ovarian cancer received four cycles of therapy. One patient (15 mg) showed markedly increased glandular mucin consistent with pharmacologic inhibition of the Notch pathway. CONCLUSIONS The recommended MTD schedule for future studies was 30 mg thrice weekly, which exceeds the target inhibition level observed in preclinical models to promote tumour regression in humans.
Collapse
Affiliation(s)
- Shubham Pant
- Stephenson Cancer Center University of Oklahoma, Oklahoma City, OK, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | | | - Carla D Kurkjian
- Stephenson Cancer Center University of Oklahoma, Oklahoma City, OK, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | - Jeffrey R Infante
- Tennessee Oncology, Nashville, TN, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | - Kathleen N Moore
- Stephenson Cancer Center University of Oklahoma, Oklahoma City, OK, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | - Howard A Burris
- Tennessee Oncology, Nashville, TN, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | - Donald S McMeekin
- Stephenson Cancer Center University of Oklahoma, Oklahoma City, OK, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | | | | | | | | | | | | | | | - Johanna C Bendell
- Tennessee Oncology, Nashville, TN, USA; Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
38
|
Epidermal growth factor receptor status and Notch inhibition in non-small cell lung cancer cells. J Biomed Sci 2015; 22:98. [PMID: 26497899 PMCID: PMC4619334 DOI: 10.1186/s12929-015-0196-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/06/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Notch may behave as an oncogene or a tumor suppressor gene in lung cancer cells. Notch receptor undergoes cleavage by enzymes, including γ-secretase, generating the active Notch intracellular domain (NICD). The aim of the present study was to investigate the effect of DAPT, a γ-secretase inhibitor, in non-small cell lung cancer (NSCLC) cells, as well as the impact of epidermal growth factor (EGF) that is over-expressed by NSCLC cells, on Notch signaling. H23, A549, H661 and HCC827 human NSCLC cell lines were used, expressing various NICD and EGF receptor (EGFR) protein levels. RESULTS DAPT decreased the number of H661 cells in a concentration-dependent manner, while it had a small effect on H23 and A549 cells and no effect on HCC827 cells that carry mutated EGFR. Notch inhibition did not affect the stimulatory effect of EGF on cell proliferation, while EGF prevented DAPT-induced NICD decrease in H23 and H661 cells. The type of cell death induced by DAPT seems to depend on the cell type. CONCLUSIONS Our data indicate that inhibition of Notch cleavage may not affect cell number in the presence of EGFR mutations and that EGFR may affect Notch signalling suggesting that a dual inhibition of these pathways might be promising in NSCLC.
Collapse
|
39
|
Barse L, Bocchetta M. Non-small-cell lung carcinoma: role of the Notch signaling pathway. LUNG CANCER (AUCKLAND, N.Z.) 2015; 6:43-53. [PMID: 28210150 PMCID: PMC5217522 DOI: 10.2147/lctt.s60329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notch signaling plays a pivotal role during embryogenesis. It regulates three fundamental processes: lateral inhibition, boundary formation, and lineage specification. During post-natal life, Notch receptors and ligands control critical cell fate decisions both in compartments that are undergoing differentiation and in pluripotent progenitor cells. First recognized as a potent oncogene in certain lymphoblastic leukemias and mesothelium-derived tissue, the role of Notch signaling in epithelial, solid tumors has been far more controversial. The overall consequence of Notch signaling and which form of the Notch receptor drives malignancy in humans is deeply debated. Most likely, this is due to the high degree of context-dependent effects of Notch signaling. More recently, it has been discovered that Notch (especially Notch-1) can exert different, even opposite effects in the same tissue under differing microenvironmental conditions. Further complicating the understanding of Notch receptors is the recently discovered role for non-canonical Notch signaling. Additionally, the most frequent Notch signaling antagonists used in biological systems have been inhibitors of the transmembrane protease complex γ-secretase, which itself processes a plethora of class one transmembrane proteins and thus cannot be considered a Notch-specific upstream regulator. Here we review the available empirical evidence gathered in recent years concerning Notch receptors and ligands in non-small-cell lung carcinoma (NSCLC). Although an overview of the field reveals seemingly contradicting results, we propose that Notch signaling can be exploited as a therapeutic target in NSCLC and represents a promising complement to the current arsenal utilized to combat this malignancy, particularly in targeting NSCLC tissues under specific environmental conditions, such as hypoxia.
Collapse
Affiliation(s)
- Levi Barse
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| | - Maurizio Bocchetta
- Department of Pathology, Oncology Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
40
|
Yousef H, Conboy MJ, Mamiya H, Zeiderman M, Schlesinger C, Schaffer DV, Conboy IM. Mechanisms of action of hESC-secreted proteins that enhance human and mouse myogenesis. Aging (Albany NY) 2015; 6:602-20. [PMID: 25109702 PMCID: PMC4169857 DOI: 10.18632/aging.100659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adult stem cells grow poorly in vitro compared to embryonic stem cells, and in vivo stem cell maintenance and proliferation by tissue niches progressively deteriorates with age. We previously reported that factors produced by human embryonic stem cells (hESCs) support a robust regenerative capacity for adult and old mouse muscle stem/progenitor cells. Here we extend these findings to human muscle progenitors and investigate underlying molecular mechanisms. Our results demonstrate that hESC-conditioned medium enhanced the proliferation of mouse and human muscle progenitors. Furthermore, hESC-produced factors activated MAPK and Notch signaling in human myogenic progenitors, and Delta/Notch-1 activation was dependent on MAPK/pERK. The Wnt, TGF-β and BMP/pSmad1,5,8 pathways were unresponsive to hESC-produced factors, but BMP signaling was dependent on intact MAPK/pERK. c-Myc, p57, and p18 were key effectors of the enhanced myogenesis promoted by the hECS factors. To define some of the active ingredients of the hESC-secretome which may have therapeutic potential, a comparative proteomic antibody array analysis was performed and identified several putative proteins, including FGF2, 6 and 19 which as ligands for MAPK signaling, were investigated in more detail. These studies emphasize that a “youthful” signaling of multiple signaling pathways is responsible for the pro-regenerative activity of the hESC factors.
Collapse
Affiliation(s)
- Hanadie Yousef
- Department of Molecular and Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA. co-first authors
| | - Michael J Conboy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA. co-first authors
| | - Hikaru Mamiya
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| | - Matthew Zeiderman
- Department of Molecular and Cellular Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Christina Schlesinger
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA. Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720 USA
| | - Irina M Conboy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Baeten JT, Lilly B. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells. J Biol Chem 2015; 290:16226-37. [PMID: 25957400 DOI: 10.1074/jbc.m115.655548] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression.
Collapse
Affiliation(s)
- Jeremy T Baeten
- From the Center for Cardiovascular and Pulmonary Research, and The Heart Center at Nationwide Children's Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205
| | - Brenda Lilly
- From the Center for Cardiovascular and Pulmonary Research, and The Heart Center at Nationwide Children's Hospital, and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205
| |
Collapse
|
42
|
Koltes JE, Kumar D, Kataria RS, Cooper V, Reecy JM. Transcriptional profiling of PRKG2-null growth plate identifies putative down-stream targets of PRKG2. BMC Res Notes 2015; 8:177. [PMID: 25924610 PMCID: PMC4419418 DOI: 10.1186/s13104-015-1136-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 11/16/2022] Open
Abstract
Background Kinase activity of cGMP-dependent, type II, protein kinase (PRKG2) is required for the proliferative to hypertrophic transition of growth plate chondrocytes during endochondral ossification. Loss of PRKG2 function in rodent and bovine models results in dwarfism. The objective of this study was to identify pathways regulated or impacted by PRKG2 loss of function that may be responsible for disproportionate dwarfism at the molecular level. Methods Microarray technology was used to compare growth plate cartilage gene expression in dwarf versus unaffected Angus cattle to identify putative downstream targets of PRGK2. Results Pathway enrichment of 1284 transcripts (nominal p < 0.05) was used to identify candidate pathways consistent with the molecular phenotype of disproportionate dwarfism. Analysis with the DAVID pathway suite identified differentially expressed genes that clustered in the MHC, cytochrome B, WNT, and Muc1 pathways. A second analysis with pathway studio software identified differentially expressed genes in a host of pathways (e.g. CREB1, P21, CTNNB1, EGFR, EP300, JUN, P53, RHOA, and SRC). As a proof of concept, we validated the differential expression of five genes regulated by P53, including CEBPA, BRCA1, BUB1, CD58, and VDR by real-time PCR (p < 0.05). Conclusions Known and novel targets of PRKG2 were identified as enriched pathways in this study. This study indicates that loss of PRKG2 function results in differential expression of P53 regulated genes as well as additional pathways consistent with increased proliferation and apoptosis in the growth plate due to achondroplastic dwarfism. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1136-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James E Koltes
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| | - Dinesh Kumar
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India. .,Current address: Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India.
| | - Ranjit S Kataria
- National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Vickie Cooper
- Veterinary Diagnostics and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, 50011-3150, USA.
| | - James M Reecy
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
43
|
Tanaka K, Kumano K, Ueno H. Intracellular signals of lung cancer cells as possible therapeutic targets. Cancer Sci 2015; 106:489-96. [PMID: 25707772 PMCID: PMC4452148 DOI: 10.1111/cas.12643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023] Open
Abstract
In recent years, several molecularly targeted therapies have been developed as part of lung cancer treatment; they have produced dramatically good results. However, among the many oncogenes that have been identified to be involved in the development of lung cancers, a number of oncogenes are not covered by these advanced therapies. For the treatment of lung cancers, which is a group of heterogeneous diseases, persistent effort in developing individual therapies based on the respective causal genes is important. In addition, for the development of a novel therapy, identification of the lung epithelial stem cells and the origin cells of lung cancer, and understanding about candidate cancer stem cells in lung cancer tissues, their intracellular signaling pathways, and the mechanism of dysregulation of the pathways in cancer cells are extremely important. However, the development of drug resistance by cancer cells, despite the use of molecularly targeted drugs for the causal genes, thus obstructing treatment, is a well-known phenomenon. In this article, we discuss major causal genes of lung cancers and intracellular signaling pathways involving those genes, and review studies on origin and stem cells of lung cancers, as well as the possibility of developing molecularly targeted therapies based on these studies.
Collapse
Affiliation(s)
- Kiyomichi Tanaka
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| | - Keiki Kumano
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
44
|
Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, Chen Y, Wu K. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 2014; 7:87. [PMID: 25477004 PMCID: PMC4267749 DOI: 10.1186/s13045-014-0087-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hua Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Shiying Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Building 303, 1095 Jie Fang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|
45
|
El Machhour F, Keuylian Z, Kavvadas P, Dussaule JC, Chatziantoniou C. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease. J Am Soc Nephrol 2014; 26:1561-75. [PMID: 25421557 DOI: 10.1681/asn.2013090968] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/13/2014] [Indexed: 11/03/2022] Open
Abstract
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN.
Collapse
Affiliation(s)
- Fala El Machhour
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and
| | - Zela Keuylian
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France
| | - Panagiotis Kavvadas
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and Department of Physiology, Saint-Antoine Hospital, Public Hospital Network of Paris, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and
| |
Collapse
|
46
|
Arasada RR, Amann JM, Rahman MA, Huppert SS, Carbone DP. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling. Cancer Res 2014; 74:5572-84. [PMID: 25125655 DOI: 10.1158/0008-5472.can-13-3724] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH(+) stem-like cells through EGFR-dependent activation of Notch3. In addition, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a γ secretase inhibitor-sensitive manner and causes Notch activation, leading to an increase in ALDH high(+) cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect.
Collapse
Affiliation(s)
- Rajeswara Rao Arasada
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Mohammad A Rahman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Center for Critical Care Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
47
|
Liu W, Xu C, Wan H, Liu C, Wen C, Lu H, Wan F. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells. Int J Mol Med 2014; 34:420-8. [PMID: 24919811 PMCID: PMC4094593 DOI: 10.3892/ijmm.2014.1800] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT‑PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuanming Xu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huifang Wan
- Medical Experiment Education Department of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunju Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi College of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Can Wen
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongfei Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investig 2014; 1:9. [PMID: 27358855 DOI: 10.3978/j.issn.2306-9759.2014.03.06] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Abstract
The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called "cancer stem cells" (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs.
Collapse
Affiliation(s)
- Amanda K Templeton
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shinya Miyamoto
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anish Babu
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anupama Munshi
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajagopal Ramesh
- 1 Department of Pathology, 2 Peggy and Charles Stephenson Cancer Center, 3 Department of Radiation Oncology, 4 Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
49
|
Abstract
Non-small-cell lung cancer is often diagnosed at the metastatic stage, with median survival of just 1 year. The identification of driver mutations in the epidermal growth factor receptor (EGFR) as the primary oncogenic event in a subset of lung adenocarcinomas led to a model of targeted treatment and genetic profiling of the disease. EGFR tyrosine kinase inhibitors confer remission in 60% of patients, but responses are short-lived. The pre-existing EGFR Thr790Met mutation could be a subclonal driver responsible for these transient responses. Overexpression of AXL and reduced MED12 function are hallmarks of resistance to tyrosine kinase inhibitors in EGFR-mutant non-small-cell lung cancer. Crosstalk between signalling pathways is another mechanism of resistance; therefore, identification of the molecular components involved could lead to the development of combination therapies cotargeting these molecules instead of EGFR tyrosine kinase inhibitor monotherapy. Additionally, novel biomarkers could be identified through deep sequencing analysis of serial rebiopsies before and during treatment.
Collapse
|
50
|
Zheng Y, de la Cruz CC, Sayles LC, Alleyne-Chin C, Vaka D, Knaak TD, Bigos M, Xu Y, Hoang CD, Shrager J, Fehling HJ, French D, Forrest W, Jiang Z, Jackson EL, Sweet-Cordero EA. A rare population of CD24(+)ITGB4(+)Notch(hi) cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell 2013; 24:59-74. [PMID: 23845442 PMCID: PMC3923526 DOI: 10.1016/j.ccr.2013.05.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/05/2013] [Accepted: 05/30/2013] [Indexed: 01/15/2023]
Abstract
Sustained tumor progression has been attributed to a distinct population of tumor-propagating cells (TPCs). To identify TPCs relevant to lung cancer pathogenesis, we investigated functional heterogeneity in tumor cells isolated from Kras-driven mouse models of non-small-cell lung cancer (NSCLC). CD24(+)ITGB4(+)Notch(hi) cells are capable of propagating tumor growth in both a clonogenic and an orthotopic serial transplantation assay. While all four Notch receptors mark TPCs, Notch3 plays a nonredundant role in tumor cell propagation in two mouse models and in human NSCLC. The TPC population is enriched after chemotherapy, and the gene signature of mouse TPCs correlates with poor prognosis in human NSCLC. The role of Notch3 in tumor propagation may provide a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yanyan Zheng
- Cancer Biology Program, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | | | - Leanne C. Sayles
- Cancer Biology Program, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | - Chris Alleyne-Chin
- Cancer Biology Program, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco CA 94132
| | - Dedeepya Vaka
- Cancer Biology Program, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | - Tim D. Knaak
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, California, 94305
| | - Marty Bigos
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, California, 94305
| | - Yue Xu
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | - Chuong D. Hoang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | - Joseph Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
| | - Hans Joerg Fehling
- Institute of Immunology, University Clinics Ulm, Albert-Einstein-Allee 11, D-89081 Ulm
| | - Dorothy French
- Genentech, Inc. 1 DNA Way, South San Francisco, 94080-4990
| | | | - Zhaoshi Jiang
- Genentech, Inc. 1 DNA Way, South San Francisco, 94080-4990
| | - Erica L. Jackson
- Genentech, Inc. 1 DNA Way, South San Francisco, 94080-4990
- Correspondence: or
| | - E. Alejandro Sweet-Cordero
- Cancer Biology Program, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, 94305. U.S.A
- Correspondence: or
| |
Collapse
|