1
|
Cruzado JM, Sola A, Pato ML, Manonelles A, Varela C, Setién FE, Quero-Dotor C, Heald JS, Piñeyro D, Amaya-Garrido A, Doladé N, Codina S, Couceiro C, Bolaños N, Gomà M, Vigués F, Merkel A, Romagnani P, Berdasco M. Severe ischemia-reperfusion injury induces epigenetic inactivation of LHX1 in kidney progenitor cells after kidney transplantation. Am J Transplant 2024:S1600-6135(24)00687-7. [PMID: 39521058 DOI: 10.1016/j.ajt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Severe ischemia-reperfusion injury (IRI) causes acute and chronic kidney allograft damage. As therapeutic interventions to reduce damage are limited yet, research on how to promote kidney repair has gained significant interest. To address this question, we performed genome-wide transcriptome and epigenome profiling in progenitor cells isolated from the urine of deceased (severe IRI) and living (mild IRI) donor human kidney transplants and identified LIM homeobox-1 (LHX1) as an epigenetically regulated gene whose expression depends on the IRI severity. Using a mouse model of IRI, we observed a relationship between IRI severity, LHX1 promoter hypermethylation, and LHX1 gene expression. Using functional studies, we confirmed that LHX1 expression is involved in the proliferation of epithelial tubular cells and podocyte differentiation from kidney progenitor cells. Our results provide evidence that severe IRI may reduce intrinsic mechanisms of kidney repair through epigenetic signaling.
Collapse
Affiliation(s)
- Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Anna Sola
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Miguel L Pato
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Varela
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Fernando E Setién
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - James S Heald
- Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - David Piñeyro
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ana Amaya-Garrido
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Doladé
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Carlos Couceiro
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Bolaños
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Montserrat Gomà
- Department of Pathology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Francesc Vigués
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Department of Urology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
2
|
Zhang F, Gu Q, Song J, Zhao Y, Wang Z, Men S, Wang L. Prenatal diagnosis and family analysis of 17q12 microdeletion syndrome with fetal renal abnormalities. Front Genet 2024; 15:1401315. [PMID: 38957807 PMCID: PMC11217314 DOI: 10.3389/fgene.2024.1401315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose To analyze the prenatal diagnosis, parental verification, and pregnancy outcomes of three fetuses with 17ql2 microdeletion syndrome. Methods We retrospectively reviewed 46 singleton pregnancies with anomalies in the urinary system who underwent amniocentesis from Feb 2022 to October 2023 in the Prenatal Diagnosis Center of Lianyungang Maternal and Child Health Hospital. These fetuses were subjected to chromosomal microarray analysis (CMA) and/or trio whole-exome sequencing (Trio-WES). We specifically evaluated these cases' prenatal renal ultrasound findings and clinical characteristics of the affected parents. Results Three fetuses were diagnosed as 17q12 microdeletions, and the detection rate was 6.5% in fetuses with anomalies in the urinary system (3/46). The heterogeneous deletions range from 1.494 to 1.66 Mb encompassing the complete hepatocyte nuclear factor 1 homeobox B (HNF1B) gene. Fetuses with 17q12 deletion exhibited varied renal phenotypes. Moreover, the clinical phenotypes of the affected parents differed greatly in the two cases (case 2 and case 3) in which the deletion was inherited. For case 3, the mother manifested classic symptoms of 17q12 deletion syndrome as well as unreported characteristics, such as very high myopia. Conclusion Our findings demonstrate the necessity and significance of offering prenatal genetic testing when various renal anomalies are detected. In addition, our study broadens the phenotypic spectrum of 17q12 deletions. Most importantly, our findings may allow timely supportive genetic counseling and guidance for pregnancy in affected families, e.g., with the help of preimplantation genetic testing (PGT).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leilei Wang
- Department of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| |
Collapse
|
3
|
Kato H, Saeki N, Imai M, Onji H, Yano A, Yoshida S, Sakaue T, Fujioka T, Sugiyama T, Imai Y. LIM1 contributes to the malignant potential of endometrial cancer. Front Oncol 2023; 13:1082441. [PMID: 36969081 PMCID: PMC10036843 DOI: 10.3389/fonc.2023.1082441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThe incidence of endometrial cancer (EC) has been increasing worldwide. However, because there are limited chemotherapeutic options for the treatment of EC, the prognosis of advanced-stage EC is poor.MethodsGene expression profile datasets for EC cases registered in The Cancer Genome Atlas (TCGA) was reanalyzed. Highly expressed genes in advanced-stage EC (110 cases) compared with early-stage EC (255 cases) were extracted and Gene Ontology (GO) enrichment analysis was performed. Among the enriched genes, Kaplan-Meier (KM) plotter analysis was performed. Candidate genes expression was analyzed in HEC50B cells and Ishikawa cells by RT-qPCR. In HEC50B cells, LIM homeobox1 (LIM1) was knocked down (KD) and cell proliferation, migration, and invasion ability of the cells were evaluated. Xenografts were generated using LIM1-KD cells and tumor growth was evaluated. Ingenuity Pathway Analysis (IPA) of RNA-seq data using LIM-KD cells was performed. Expression of phospho-CREB and CREB-related proteins were evaluated in LIM1-KD cells by western blotting and in xenograft tissue by immunofluorescent staining. Two different CREB inhibitors were treated in HEC50B and cell proliferation was evaluated by MTT assay.ResultsReanalysis of TCGA followed by GO enrichment analysis revealed that homeobox genes were highly expressed in advanced-stage EC. Among the identified genes, KM plotter analysis showed that high LIM1 expression was associated with a significantly poorer prognosis in EC. Additionally, LIM1 expression was significantly higher in high-grade EC cell lines, HEC50B cells than Ishikawa cells. Knockdown of LIM1 showed reduced cell proliferation, migration and invasion in HEC50B cells. Xenograft experiments revealed that tumor growth was significantly suppressed in LIM1-KD cells. IPA of RNA-seq data using LIM-KD cells predicted that the mRNA expression of CREB signaling-related genes was suppressed. Indeed, phosphorylation of CREB was decreased in LIM1-KD cells and LIM1-KD cells derived tumors. HEC50B cells treated by CREB inhibitors showed suppression of cell proliferation.Conclusion and discussionCollectively, these results suggested that high LIM1 expression contributed to tumor growth via CREB signaling in EC. Inhibition of LIM1 or its downstream molecules would be new therapeutic strategies for EC.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Noritaka Saeki
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Toon, Ehime, Japan
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Matome Imai
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroshi Onji
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Akiko Yano
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime, Japan
| | - Toru Fujioka
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takashi Sugiyama
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- *Correspondence: Yuuki Imai,
| |
Collapse
|
4
|
Anderson MJ, Misaghian S, Sharma N, Perantoni AO, Lewandoski M. Fgf8 promotes survival of nephron progenitors by regulating BAX/BAK-mediated apoptosis. Differentiation 2023; 130:7-15. [PMID: 36527791 PMCID: PMC10718080 DOI: 10.1016/j.diff.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.
Collapse
Affiliation(s)
- Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Salvia Misaghian
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nirmala Sharma
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Alan O Perantoni
- Renal Differentiation and Neoplasia Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Idriss S, Hallal M, El-Kurdi A, Zalzali H, El-Rassi I, Ehli EA, Davis CM, Chung PED, Gendoo DMA, Zacksenhaus E, Saab R, Khoueiry P. A temporal in vivo catalog of chromatin accessibility and expression profiles in pineoblastoma reveals a prevalent role for repressor elements. Genome Res 2023; 33:269-282. [PMID: 36650051 PMCID: PMC10069464 DOI: 10.1101/gr.277037.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Pediatric pineoblastomas (PBs) are rare and aggressive tumors of grade IV histology. Although some oncogenic drivers are characterized, including germline mutations in RB1 and DICER1, the role of epigenetic deregulation and cis-regulatory regions in PB pathogenesis and progression is largely unknown. Here, we generated genome-wide gene expression, chromatin accessibility, and H3K27ac profiles covering key time points of PB initiation and progression from pineal tissues of a mouse model of CCND1-driven PB. We identified PB-specific enhancers and super-enhancers, and found that in some cases, the accessible genome dynamics precede transcriptomic changes, a characteristic that is underexplored in tumor progression. During progression of PB, newly acquired open chromatin regions lacking H3K27ac signal become enriched for repressive state elements and harbor motifs of repressor transcription factors like HINFP, GLI2, and YY1. Copy number variant analysis identified deletion events specific to the tumorigenic stage, affecting, among others, the histone gene cluster and Gas1, the growth arrest specific gene. Gene set enrichment analysis and gene expression signatures positioned the model used here close to human PB samples, showing the potential of our findings for exploring new avenues in PB management and therapy. Overall, this study reports the first temporal and in vivo cis-regulatory, expression, and accessibility maps in PB.
Collapse
Affiliation(s)
- Salam Idriss
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdullah El-Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hasan Zalzali
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Inaam El-Rassi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Philip E D Chung
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deena M A Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raya Saab
- Department of Pediatric and Adolescent Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; .,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
6
|
Stavas J, Filler G, Jain D, Ludlow JW, Basu J, Payne R, Butler E, Díaz-González de Ferris M, Bertram T. Renal Autologous Cell Therapy (REACT®) to Stabilize Function in Diabetes-Related Chronic Kidney Disease: Corroboration of Mechanistic Action with Cell Marker Analysis. Kidney Int Rep 2022; 7:1619-1629. [PMID: 35812284 PMCID: PMC9263255 DOI: 10.1016/j.ekir.2022.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 10/31/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
7
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:pharmaceutics14040718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
- Correspondence: ; Tel.: +39-040-399-3227
| |
Collapse
|
8
|
Habib I, Anjum F, Mohammad T, Sulaimani MN, Shafie A, Almehmadi M, Yadav DK, Sohal SS, Hassan MI. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 2022; 477:1361-1370. [PMID: 35142951 DOI: 10.1007/s11010-022-04379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein-protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan-Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
9
|
Tian Y, Wen F, Wang S, Lv N. LHX1 as a potential biomarker regulates EMT induction and cellular behaviors in uterine corpus endometrial carcinoma. Clinics (Sao Paulo) 2022; 77:100103. [PMID: 36116266 PMCID: PMC9489736 DOI: 10.1016/j.clinsp.2022.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the expression of LHX1 and its role as a biomarker in the diagnosis and prognosis of Uterine Corpus Endometrial Carcinoma (UCEC). METHODS The Cancer Genome Atlas (TCGA) database was used to detect the expression level of LHX1 in UCEC cells and tissues, and to find out the effect of LHX1 on prognosis. Co-expressed genes were then identified by Spearman correlation analysis, and the protein-protein interaction network was constructed using Cytoscape software. The R "clusterProfiler" package was used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A series of in vitro experiments were performed to evaluate LHX1 expression and detect UCEC cell proliferation, invasion, and migration. Western blotting was used to determine the effect of LHX1 on expression levels of Epithelial-Mesenchymal Transition (EMT)-related proteins. RESULTS LHX1 was upregulated in UCEC tissues and correlated with poor overall survival and disease-specific survival outcomes. Functional enrichment analysis suggested that genes co-expressed with LHX1 were enriched in cell adhesion. The expression of LHX1 was positively correlated with the expression levels of genes related to EMT induction and invasion. LHX1 can enhance the proliferation, migration, and invasion activities of UCEC cells in vitro, and alter the expression levels of EMT-related proteins. CONCLUSION LHX1 expression was highly upregulated in UCEC cells and tissues, which was correlated with the prognosis of patients with UCEC. LHX1 may regulate UCEC progression at least in part by modulating EMT induction.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China.
| | - Fang Wen
- Department of Gynecology, The First Hospital, China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China
| | - Na Lv
- Blood Collection Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ghaddar N, Wang S, Woodvine B, Krishnamoorthy J, van Hoef V, Darini C, Kazimierczak U, Ah-Son N, Popper H, Johnson M, Officer L, Teodósio A, Broggini M, Mann KK, Hatzoglou M, Topisirovic I, Larsson O, Le Quesne J, Koromilas AE. The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer. Nat Commun 2021; 12:4651. [PMID: 34330898 PMCID: PMC8324901 DOI: 10.1038/s41467-021-24661-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment.
Collapse
Affiliation(s)
- Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Bethany Woodvine
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Vincent van Hoef
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Urszula Kazimierczak
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nicolas Ah-Son
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Helmuth Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Myriam Johnson
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Ana Teodósio
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - John Le Quesne
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- MRC Toxicology Unit, University of Cambridge, Leicester, UK.
- Beatson Cancer Research Institute, Glasgow, UK.
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Kim H, Kim Y, Bang S, Park S, Jee S, Sim J, Shin SJ, Paik SS, Jang K. Low Expression of Single-stranded DNA Binding Protein 2 (SSBP2) Predicts Unfavourable Postoperative Outcomes in Patients With Clear Cell Renal Cell Carcinoma. In Vivo 2020; 34:101-107. [PMID: 31882468 DOI: 10.21873/invivo.11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Single-stranded DNA binding protein 2 (SSBP2) is a subunit of a single-stranded DNA binding complex, which is involved in the maintenance of hematopoietic stem cells and stress responses. Numerous studies have suggested that SSBP2 functions as a tumor suppressor and is silenced through a pathway mediated by promoter hypermethylation. However, the role of SSBP2 in human renal cell carcinoma has not been reported, to date. Herein, we investigated the clinicopathological significance of SSBP2 expression in clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS We constructed tissue micro arrays consisting of 173 ccRCC tissues, and SSBP2 expression was evaluated semi-quantitatively based on the staining intensity and the proportion of stained cells. Regarding statistical analysis, the tissues were divided into two groups according to SSBP2 expression, and correlation of SSBP2 expression with various clinicopathological characteristics and patient outcomes was evaluated. RESULTS Low SSBP2 expression was observed in 114 of 175 (65.9%) of ccRCC cases, and low SSBP2 expression was significantly correlated with larger tumor size (p=0.005, Chi-square test), higher WHO/ISUP histological grade (p<0.001, Chi-square test), tumor necrosis (p=0.008, Chi-square test), sarcomatoid change (p=0.021, Chi-square test), and higher pT AJCC stage (p=0.002, Chi-square test). Kaplan-Meier survival curves revealed that patients with low SSBP2 expression had worse recurrence-free survival (p=0.041, log-rank test). CONCLUSION ccRCC with low SSBP2 expression was associated with adverse clinicopathological characteristics and poor patient outcomes.
Collapse
Affiliation(s)
- Hyunsung Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yeseul Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seongsik Bang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seongeon Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seungyun Jee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Symmank J, Gölling V, Gerstmann K, Zimmer G. The Transcription Factor LHX1 Regulates the Survival and Directed Migration of POA-derived Cortical Interneurons. Cereb Cortex 2020; 29:1644-1658. [PMID: 29912395 DOI: 10.1093/cercor/bhy063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Vanessa Gölling
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Katrin Gerstmann
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
13
|
Huang B, Tian ZF, Li LF, Fan Y, Yin HY, Li Y, Mao Q, You ZL. LHX3 is an advanced-stage prognostic biomarker and metastatic oncogene in hepatocellular carcinoma. Cancer Biomark 2020; 26:31-39. [PMID: 31306102 DOI: 10.3233/cbm-182257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer and exhibits high morbidity and mortality in the world. We recently identified LHX3 as a preferentially expressed gene with a possible involvement in HCC. OBJECTIVE To determine the expression, clinical relevance, prognostic significance and functions of LHX3 in HCC. MATERIALS AND METHODS LHX3 expression was assessed in 190 cancerous and 40 adjacent non-cancerous tissues by PCR, western blot and immunohistochemistry. Associations between LHX3 expression and clinicopathological characteristics of patients were investigated. Correlations between LHX3 expression and overall survival of patients were analyzed by Kaplan-Meier and Cox-regression methods. Functional roles of LHX3 were evaluated by transwell assays. RESULTS LHX3 expression is significantly increased in carcinoma tissues, and associated with clinical stage and metastasis of patients. LHX3 expression is much higher in the advanced-stage patients than the early-stage patients, and is sharply increased in metastasic patients. High LHX3 expression is associated with unfavorable overall survival, and is an independent prognostic factor of patients. Moreover, LHX3 is an unfavorable and independent prognostic factor unique to advanced-stage patients. Knockdown expression of LHX3 obviously inhibits tumor cell migration and invasion. CONCLUSION LHX3 is an advanced-stage prognostic biomarker, and acts as a new potential metastatic oncogene in HCC.
Collapse
Affiliation(s)
- Bo Huang
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Zhan-Fei Tian
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Infectious Diseases, Chinese PLA Central Theater General Hospital, Wuhan, Hubei, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Lu-Feng Li
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Fan
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao-Yang Yin
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhong-Lan You
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen HQ, Zhao J, Li Y, Huang YJ, Chen DJ, He LX, Wang LQ, Zheng CF, Wang J, Cao J, Shu WQ, Liu JY, Liu WB. Epigenetic inactivation of LHX6 mediated microcystin-LR induced hepatocarcinogenesis via the Wnt/β-catenin and P53 signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:216-226. [PMID: 31151060 DOI: 10.1016/j.envpol.2019.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs) have been shown to be carcinogenic by animal and cellular experiments and found to be associated with the development of human hepatocellular carcinoma (HCC) through epidemiological studies. However, the molecular mechanism of microcystin-LR (MC-LR) induced HCC is still unclear. This study is determined to clarify the role and mechanism of LHX6 in MC-LR-induced hepatocarcinogenesis. Using the previously established MC-LR-induced malignant transformation model in L02 cells, we screened out LHX6, homeobox gene that was significantly changed. We found that LHX6 was significantly down-regulated in MC-LR treated L02 cells and the liver tissue of rats treated for 35 weeks with 10 μg/kg body weight of MC-LR. Expression of LHX6 in human tumor tissue was significantly down-regulated in high MC-LR-exposure group. LHX6 was hypermethylated in MC-LR treated L02 cells and up-regulated after treatment with 10 μM of 5-aza-2'-deoxycytidine. Furthermore, overexpression of LHX6 inhibited proliferation, invasion and migration of malignantly transformed L02 cells in vitro and in vivo, while knockdown of LHX6 resulted in an opposite phenotype. In addition, we found that up-regulation of P53 and Bax resulted in apoptosis, and that down-regulation of CTNNB1 and MMP7 led to migration of MC-LR treated L02 cells. Blockade of P53 and CTNNB1 by its inhibitor significantly diminished the effect of LHX6. These genes were working together during the process of MC-LR-induced hepatocarcinogenesis. Our study demonstrated for the first time that LHX6 gene expression is regulated by DNA methylation and can inhibit the proliferation, invasion and migration through Wnt/β-catenin and P53 signaling pathways during the MC-LR-induced hepatocarcinogenesis. This result may suggest that LHX6 gene can be used as a potential target gene and a biomarker for liver cancer treatment.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; The Calmette International Hospital, Kunming, 650224, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
15
|
Fults DW, Taylor MD, Garzia L. Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. J Neurosurg Pediatr 2019; 23:613-621. [PMID: 30771762 DOI: 10.3171/2018.11.peds18506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
Abstract
Leptomeningeal dissemination (LMD) is the defining pattern of metastasis for medulloblastoma. Although LMD is responsible for virtually 100% of medulloblastoma deaths, it remains the least well-understood part of medulloblastoma pathogenesis. The fact that medulloblastomas rarely metastasize outside the CNS but rather spread almost exclusively to the spinal and intracranial leptomeninges has fostered the long-held belief that medulloblastoma cells spread directly through the CSF, not the bloodstream. In this paper the authors discuss selected molecules for which experimental evidence explains how the effects of each molecule on cell physiology contribute mechanistically to LMD. A model of medulloblastoma LMD is described, analogous to the invasion-metastasis cascade of hematogenous metastasis of carcinomas. The LMD cascade is based on the molecular themes that 1) transcription factors launch cell programs that mediate cell motility and invasiveness and maintain tumor cells in a stem-like state; 2) disseminating medulloblastoma cells escape multiple death threats by subverting apoptosis; and 3) inflammatory chemokine signaling promotes LMD by creating an oncogenic microenvironment. The authors also review recent experimental evidence that challenges the belief that CSF spread is the sole mechanism of LMD and reveal an alternative scheme in which medulloblastoma cells can enter the bloodstream and subsequently home to the leptomeninges.
Collapse
Affiliation(s)
- Daniel W Fults
- 1Department of Neurosurgery, University of Utah School of Medicine and Huntsman Cancer Institute, Salt Lake City, Utah
| | - Michael D Taylor
- 2Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Center, and Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Ontario, Canada; and
| | - Livia Garzia
- 3Cancer Research Program, Research Institute of the McGill University Health Center and Department of Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Hamaidi I, Coquard C, Danilin S, Dormoy V, Béraud C, Rothhut S, Barthelmebs M, Benkirane-Jessel N, Lindner V, Lang H, Massfelder T. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene 2018; 38:60-72. [DOI: 10.1038/s41388-018-0413-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
17
|
Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy JS. Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. NANOSCALE 2018; 10:1587-1590. [PMID: 29322141 DOI: 10.1039/c7nr09202d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polydiacetylenic nanofibers (PDA-Nfs) obtained by photopolymerization of surfactant 1 were optimized for intracellular delivery of small interfering RNAs (siRNAs). PDA-Nfs/siRNA complexes efficiently silenced the oncogene Lim-1 in the renal cancer cells 786-O in vitro. Intraperitoneal injection of PDA-Nfs/siLim1 downregulated Lim-1 in subcutaneous tumor xenografts obtained with 786-O cells in nude mice. Thus, PDA-Nfs represent an innovative system for in vivo delivery of siRNAs.
Collapse
Affiliation(s)
- P Neuberg
- V-SAT Laboratory, Vectors: Synthesis and Therapeutic Applications, Labex Medalis, CAMB UMR7199 CNRS-Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stenfelt S, Blixt MKE, All-Ericsson C, Hallböök F, Boije H. Heterogeneity in retinoblastoma: a tale of molecules and models. Clin Transl Med 2017; 6:42. [PMID: 29124525 PMCID: PMC5680409 DOI: 10.1186/s40169-017-0173-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma, an intraocular pediatric cancer, develops in the embryonic retina following biallelic loss of RB1. However, there is a wide range of genetic and epigenetic changes that can affect RB1 resulting in different clinical outcomes. In addition, other transformations, such as MYCN amplification, generate particularly aggressive tumors, which may or may not be RB1 independent. Recognizing the cellular characteristics required for tumor development, by identifying the elusive cell-of-origin for retinoblastoma, would help us understand the development of these tumors. In this review we summarize the heterogeneity reported in retinoblastoma on a molecular, cellular and tissue level. We also discuss the challenging heterogeneity in current retinoblastoma models and suggest future platforms that could contribute to improved understanding of tumor initiation, progression and metastasis in retinoblastoma, which may ultimately lead to more patient-specific treatments.
Collapse
Affiliation(s)
- Sonya Stenfelt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Maria K E Blixt
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
19
|
Lin X, Li Y, Wang J, Han F, Lu S, Wang Y, Luo W, Zhang M. LHX3 is an early stage and radiosensitivity prognostic biomarker in lung adenocarcinoma. Oncol Rep 2017; 38:1482-1490. [PMID: 28731174 PMCID: PMC5549242 DOI: 10.3892/or.2017.5833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We previously identified LHX3 as a new preferentially expressed gene in NSCLC. In the present study, we sought to determine its expression, the clinical relevance and the functional roles in NSCLC. LHX3 expression is sharply increased in carcinoma tissues compared to non-carcinoma tissues. Relational analysis reveals a significant association between LHX3 expression and clinical stage (n=172, P=0.032) or radiotherapy (n=167, P=0.022) of patients. LHX3 expression is much higher in the patients at advanced stages (stage III–IV) than in the patients at early stages (stage I–II, P=0.0304), and LHX3 expression is remarkably increased in the patients with radiotherapy treatment (P=0.0002). Survival analyses indicate that LHX3 is associated with unfavorable survival (n=180, P=0.002) and represents an independent prognostic factor [hazard ratio (HR)=1.834, P=0.004] of the NSCLC patients. Furthermore, LHX3 is associated with unfavorable overall survival (n=866, P=0.004) and represents an independent prognostic factor (HR=2.36, P=0.000) in lung adenocarcinoma (ADC) patients, but is not associated with overall survival of squamous cell carcinoma (SCC) patients (n=524, P=0.27). Further analyses found that LHX3 is an early-stage (n=94, P=0.003) and radiosensitivity (n=45, P=0.002) prognostic factor in ADC patients. The patients without radiotherapy have a significantly prolonged survival compared to those with radiotherapy (P=0.0069). Further functional studies show that forced expression of LHX3 in lung cancer cells obviously promotes cell proliferation and invasion, whereas inhibits cell apoptosis. In summary, LHX3 is an early-stage and radiosensitivity prognostic biomarker, and a novel potential oncogene in ADC.
Collapse
Affiliation(s)
- Xin Lin
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yan Li
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jin Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Shuang Lu
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yu Wang
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wenjian Luo
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mingqian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
20
|
Liu X, Gao Y, Shen J, Yang W, Choy E, Mankin H, Hornicek FJ, Duan Z. Cyclin-Dependent Kinase 11 (CDK11) Is Required for Ovarian Cancer Cell Growth In Vitro and In Vivo, and Its Inhibition Causes Apoptosis and Sensitizes Cells to Paclitaxel. Mol Cancer Ther 2016; 15:1691-701. [PMID: 27207777 DOI: 10.1158/1535-7163.mct-16-0032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/21/2016] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is currently the most lethal gynecologic malignancy with limited treatment options. Improved targeted therapies are needed to combat ovarian cancer. Here, we report the identification of cyclin-dependent kinase 11 (CDK11) as a mediator of tumor cell growth and proliferation in ovarian cancer cells. Although CDK11 has not been implicated previously in this disease, we have found that its expression is upregulated in human ovarian cancer tissues and associated with malignant progression. Metastatic and recurrent tumors have significantly higher CDK11 expression when compared with the matched, original primary tumors. RNAi-mediated CDK11 silencing by synthetic siRNA or lentiviral shRNA decreased cell proliferation and induced apoptosis in ovarian cancer cells. Moreover, CDK11 knockdown enhances the cytotoxic effect of paclitaxel to inhibit cell growth in ovarian cancer cells. Systemic in vivo administration of CDK11 siRNA reduced the tumor growth in an ovarian cancer xenograft model. Our findings suggest that CDK11 may be a promising therapeutic target for the treatment of ovarian cancer patients. Mol Cancer Ther; 15(7); 1691-701. ©2016 AACR.
Collapse
Affiliation(s)
- Xianzhe Liu
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jacson Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wen Yang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Matsui A, Fujimoto J, Ishikawa K, Ito E, Goshima N, Watanabe S, Semba K. Hepatocyte nuclear factor 1 beta induces transformation and epithelial-to-mesenchymal transition. FEBS Lett 2016; 590:1211-21. [PMID: 27001343 DOI: 10.1002/1873-3468.12147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Gene amplification can be a cause of cancer, and driver oncogenes have been often identified in amplified regions. However, comprehensive analysis of other genes coamplified with an oncogene is rarely performed. We focused on the 17q12-21 amplicon, which contains ERBB2. We established a screening system for oncogenic activity with the NMuMG epithelial cell line. We identified a homeobox gene, HNF1B, as a novel cooperative transforming gene. HNF1B induced cancerous phenotypes, which were enhanced by the coexpression of ERBB2, and induced epithelial-to-mesenchymal transition and invasive phenotypes. These results suggest that HNF1B is a novel oncogene that can work cooperatively with ERBB2.
Collapse
Affiliation(s)
- Atsuka Matsui
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jiro Fujimoto
- Japan Biological Informatics Consortium (JBiC), Tokyo, Japan.,Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), Tokyo, Japan.,Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Emi Ito
- Division of Gene Expression Analysis, Translational Research Center, Fukushima Medical University, Japan
| | - Naoki Goshima
- Division of Transcriptome Analysis, Translational Research Center, Fukushima Medical University, Japan.,Quantitative Proteomics Team, Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shinya Watanabe
- Division of Gene Expression Analysis, Translational Research Center, Fukushima Medical University, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Division of Gene Function Analysis, Translational Research Center, Fukushima Medical University, Japan
| |
Collapse
|
22
|
Béraud C, Dormoy V, Danilin S, Lindner V, Béthry A, Hochane M, Coquard C, Barthelmebs M, Jacqmin D, Lang H, Massfelder T. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int J Cancer 2015; 137:1549-59. [PMID: 25809490 DOI: 10.1002/ijc.29522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
Human conventional renal cell carcinoma (CCC) remains resistant to current therapies. Focal Adhesion Kinase (FAK) is upregulated in many epithelial tumors and clearly implicated in nearly all facets of cancer. However, only few reports have assessed whether FAK may be associated with renal tumorigenesis. In this study, we investigated the potential role of FAK in the growth of human CCC using a panel of CCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as normal/tumoral renal tissue pairs. FAK was found constitutively expressed in human CCC both in culture cells and freshly harvested tumors obtained from patients. We showed that CCC cell growth was dramatically reduced in FAK-depleted cells or after FAK inhibition with various inhibitors and this effect was obtained through inhibition of cell proliferation and induction of cell apoptosis. Additionally, our results indicated that FAK knockdown decreased CCC cell migration and invasion. More importantly, depletion or pharmacological inhibition of FAK substantially inhibited tumor growth in vivo. Interestingly, investigations of the molecular mechanism revealed loss of FAK phosphorylation during renal tumorigenesis impacting multiple signaling pathways. Taken together, our findings reveal a previously uncharacterized role of FAK in CCC whereby FAK exerts oncogenic properties through a non canonical signaling pathway involving its scaffolding kinase-independent properties. Therefore, targeting the FAK scaffold may represent a promising approach for developing innovative and highly specific therapies in human CCC.
Collapse
Affiliation(s)
- Claire Béraud
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Véronique Lindner
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Audrey Béthry
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | - Mazène Hochane
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Didier Jacqmin
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | - Hervé Lang
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | | |
Collapse
|
23
|
Fu L, Shi K, Wang J, Chen W, Shi D, Tian Y, Guo W, Yu W, Xiao X, Kang T, Wang S, Huang W, Deng W. TFAP2B overexpression contributes to tumor growth and a poor prognosis of human lung adenocarcinoma through modulation of ERK and VEGF/PEDF signaling. Mol Cancer 2014; 13:89. [PMID: 24766673 PMCID: PMC4021500 DOI: 10.1186/1476-4598-13-89] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND TFAP2B is a member of the AP2 transcription factor family, which orchestrates a variety of cell processes. However, the roles of TFAP2B in regulating carcinogenesis remain largely unknown. Here, we investigated the regulatory effects of TFAP2B on lung adenocarcinomas growth and identified the underlying mechanisms of actions in non-small cell lung cancer (NSCLC) cells. METHODS We first examined the expression of TFAP2B in lung cancer cell lines and tumor tissues. We also analyzed the prognostic predicting value of TFAP2B in lung adenocarcinomas. Then we investigated the molecular mechanisms by which TFAP2B knockdown or overexpression regulated lung cancer cell growth, angiogenesis and apoptosis, and further confirmed the role of TFAP2B in tumor growth in a lung cancer xenograft mouse model. RESULTS TFAP2B was highly expressed in NSCLC cell lines and tumor tissues. Strong TFAP2B expression showed a positive correlation with the poor prognoses of patients with lung adenocarcinomas (P < 0.001). TFAP2B knockdown by siRNA significantly inhibited cell growth and induced apoptosis in NSCLC cells in vitro and in a lung cancer subcutaneous xenograft model, whereas TFAP2B overexpression promoted cell growth. The observed regulation of cell growth was accompanied by the TFAP2B-mediated modulation of the ERK/p38, caspase/cytochrome-c and VEGF/PEDF-dependent signaling pathways in NSCLC cells. CONCLUSIONS These results indicate that TFAP2B plays a critical role in regulating lung adenocarcinomas growth and could serve as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shusen Wang
- State Key Laboratory of Oncology in South China, Colaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | | | | |
Collapse
|
24
|
WANG XI, HE CHAO, HU XIAOTONG. LIM homeobox transcription factors, a novel subfamily which plays an important role in cancer (Review). Oncol Rep 2014; 31:1975-85. [DOI: 10.3892/or.2014.3112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
|
25
|
Hochane M, Raison D, Coquard C, Imhoff O, Massfelder T, Moulin B, Helwig JJ, Barthelmebs M. Parathyroid hormone-related protein is a mitogenic and a survival factor of mesangial cells from male mice: role of intracrine and paracrine pathways. Endocrinology 2013; 154:853-64. [PMID: 23284101 DOI: 10.1210/en.2012-1802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glomerulonephritis is characterized by the proliferation and apoptosis of mesangial cells (MC). The parathyroid-hormone related protein (PTHrP) is a locally active cytokine that affects these phenomena in many cell types, through either paracrine or intracrine pathways. The aim of this study was to evaluate the effect of both PTHrP pathways on MC proliferation and apoptosis. In vitro studies were based on MC from male transgenic mice allowing PTHrP-gene excision by a CreLoxP system. MC were also transfected with different PTHrP constructs: wild type PTHrP, PTHrP devoid of its signal peptide, or of its nuclear localization sequence. The results showed that PTHrP deletion in MC reduced their proliferation even in the presence of serum and increased their apoptosis when serum-deprived. PTH1R activation by PTHrP(1-36) or PTH(1-34) had no effect on proliferation but improved MC survival. Transfection of MC with PTHrP devoid of its signal peptide significantly increased their proliferation and minimally reduced their apoptosis. Overexpression of PTHrP devoid of its nuclear localization sequence protected cells from apoptosis without changing their proliferation. Wild type PTHrP transfection conferred both mitogenic and survival effects, which seem independent of midregion and C-terminal PTHrP fragments. PTHrP-induced MC proliferation was associated with p27(Kip1) down-regulation and c-Myc/E2F1 up-regulation. PTHrP increased MC survival through the activation of cAMP/protein kinase A and PI3-K/Akt pathways. These results reveal that PTHrP is a cytokine of multiple roles in MC, acting as a mitogenic factor only through an intracrine pathway, and reducing apoptosis mainly through the paracrine pathway. Thus, PTHrP appears as a probable actor in MC injuries.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale U682, Equipe Cancer du Rein et Physiopathologie Rénale, Faculté de Médecine, 11 rue Humann, F-67085 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The pluripotent renal stem cell regulator SIX2 is activated in renal neoplasms and influences cellular proliferation and migration. Hum Pathol 2012; 44:336-45. [PMID: 22995329 DOI: 10.1016/j.humpath.2012.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 10/27/2022]
Abstract
Embryonal renal mesenchyme contains pluripotent progenitor cells characterized by expression of SIX2, which suppresses cellular differentiation. Additionally hypomethylation of the promotor region in renal neoplasms indicates a role of SIX2 in tumorigenesis. This study focuses therefore on the investigation of SIX2 in different renal neoplasms and the mode and consequences of SIX2 activation. Expression of SIX2 was determined in renal cell carcinomas, nephroblastomas, and dysplastic kidneys using immunohistochemistry and quantitative real-time polymerase chain reaction. Its potential mode of activation was assessed by measuring upstream activators by quantitative real-time polymerase chain reaction and the level of methylation of the promoter region by quantitative DNA methylation analysis. Consequences of SIX2 activation were investigated by overexpressing SIX2 in a cell line. Forty-seven of 49 renal clear cell carcinomas showed nuclear staining of SIX2, whereas all papillary carcinomas were negative. In nephroblastomas of various subtypes blastema showed a significant up-regulation (P < .01) and a strong nuclear protein expression of SIX2 in contrast to negative epithelial and mesenchymal areas. 11 cases of dysplastic kidneys were entirely negative. Upstream activators of SIX2 indicated an activation of the signal transduction pathway in most samples. No difference of promoter methylation status was observed between blastema and epithelial structures. A significantly higher percentage of cells in the S-phase and an increased migration were detected in the cell-line overexpressing SIX2. Our study suggests that activation of SIX2 might contribute to the pathogenesis of renal clear cell carcinomas and nephroblastomas. SIX2 also appears to be a valuable marker for minimal residual blastema contributing to the prognosis of nephroblastomas.
Collapse
|
27
|
Mumert M, Dubuc A, Wu X, Northcott PA, Chin SS, Pedone CA, Taylor MD, Fults DW. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res 2012; 72:4944-53. [PMID: 22875024 DOI: 10.1158/0008-5472.can-12-1629] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Medulloblastomas are malignant brain tumors that arise in the cerebellum in children and disseminate via the cerebrospinal fluid to the leptomeningeal spaces of the brain and spinal cord. Challenged by the poor prognosis for patients with metastatic dissemination, pediatric oncologists have developed aggressive treatment protocols, combining surgery, craniospinal radiation, and high-dose chemotherapy, that often cause disabling neurotoxic effects in long-term survivors. Insights into the genetic control of medulloblastoma dissemination have come from transposon insertion mutagenesis studies. Mobilizing the Sleeping Beauty transposon in cerebellar neural progenitor cells caused widespread dissemination of typically nonmetastatic medulloblastomas in Patched(+/-) mice, in which Shh signaling is hyperactive. Candidate metastasis genes were identified by sequencing the insertion sites and then mapping these sequences back to the mouse genome. To determine whether genes located at transposon insertion sites directly caused medulloblastomas to disseminate, we overexpressed candidate genes in Nestin(+) neural progenitors in the cerebella of mice by retroviral transfer in combination with Shh. We show here that ectopic expression of Eras, Lhx1, Ccrk, and Akt shifted the in vivo growth characteristics of Shh-induced medulloblastomas from a localized pattern to a disseminated pattern in which tumor cells seeded the leptomeningeal spaces of the brain and spinal cord.
Collapse
Affiliation(s)
- Michael Mumert
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dormoy V, Béraud C, Lindner V, Coquard C, Barthelmebs M, Brasse D, Jacqmin D, Lang H, Massfelder T. Vitamin D3 triggers antitumor activity through targeting hedgehog signaling in human renal cell carcinoma. Carcinogenesis 2012; 33:2084-93. [PMID: 22843547 DOI: 10.1093/carcin/bgs255] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human clear cell renal cell carcinoma (CCC) remains resistant to treatments despite the progress in targeted therapies. Several signaling pathways acting during renal development are reactivated during kidney tumorigenesis; this is the case of the sonic hedgehog (SHH)-Gli. Interestingly, the precursor of active vitamin D3 (VD3), cholecalciferol, has been demonstrated to be a strong inhibitor of SHH-Gli signaling. Here, we show the preclinical efficacy of cholecalciferol in CCC both in vitro and in vivo. A panel of CCC cell lines, tumors and normal corresponding tissues from CCC patients were used to evaluate the expression of the VD3 receptor and metabolizing enzymes and the effects of cholecalciferol treatment. Subsequently, xenografted mice were treated with cholecalciferol in a prophylactic or therapeutic manner; their response and the adverse effects were evaluated on the basis of weekly monitoring, followed by blood collection procedures and X-ray micro-computed tomography. VD3 receptor and metabolizing enzymes are dramatically decreased in human cell lines and tumors. Cholecalciferol decreases cell proliferation and increases cell death by inhibition of the SHH-Gli pathway. Xenografted mice treated with cholecalciferol exhibit absence of tumor development or substantial growth inhibition. The treatment was shown to be safe; it did not induce calcification or calcium reabsorption. These findings establish that, although VD3 receptors and metabolizing enzymes are absent in CCC, cholecalciferol supplementation is a strong tool to block the reactivation of SHH-Gli pathway in this pathology, leading ultimately to tumor regression. Cholecalciferol may have highly therapeutic potential in CCC.
Collapse
Affiliation(s)
- Valérian Dormoy
- INSERM U682, Section of Kidney Cancer and Renal Physiopathology, University of Strasbourg, School of Medicine, Strasbourg 67085, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duan Z, Zhang J, Choy E, Harmon D, Liu X, Nielsen P, Mankin H, Gray NS, Hornicek FJ. Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clin Cancer Res 2012; 18:4580-8. [PMID: 22791884 DOI: 10.1158/1078-0432.ccr-12-1157] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of new targeted therapies is critical to improving the survival rate of patients with osteosarcoma. The goal of this study is to identify kinase based potential therapeutic target in osteosarcomas. EXPERIMENTAL DESIGN We used a lentiviral-based shRNA kinase library to screen for kinases which play a role in osteosarcoma cell survival. The cell proliferation assay was used to evaluate cell growth and survival. siRNA assays were applied to confirm the observed phenotypic changes resulting from the loss of kinase gene expression. CDK11 (PITSLRE) was identified as essential for the survival of osteosarcoma cells, and its expression was confirmed by Western blot analysis and immunohistochemistry. Overall patient survival was correlated with the CDK11 expression and its prognosis. The role of CDK11 expression in sustaining osteosarcoma growth was further evaluated in an osteosarcoma xenograft model in vivo. RESULTS Osteosarcoma cells display high levels of CDK11 expression. CDK11 expression knocked down by either lentiviral shRNA or siRNA inhibit cell growth and induce apoptosis in osteosarcoma cells. Immunohistochemical analysis showed that patients with osteosarcoma with high CDK11 tumor expression levels were associated with significantly shorter survival than patients with osteosarcoma with low level of tumor CDK11 expression. Systemic in vivo administration of in vivo ready siRNA of CDK11 reduced the tumor growth in an osteosarcoma subcutaneous xenograft model. CONCLUSIONS We show that CDK11 signaling is essential in osteosarcoma cell growth and survival, further elucidating the regulatory mechanisms controlling the expression of CDK11 and ultimately develop a CDK11 inhibitor that may provide therapeutic benefit against osteosarcoma.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Current world literature. Curr Opin Pediatr 2012; 24:277-84. [PMID: 22414891 DOI: 10.1097/mop.0b013e328351e459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ye L, Evans J, Gargett CE. Lim1/LIM1 is expressed in developing and adult mouse and human endometrium. Histochem Cell Biol 2012; 137:527-36. [DOI: 10.1007/s00418-011-0909-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/12/2023]
|