1
|
Krakowian D, Lesiak M, Auguściak-Duma A, Witecka J, Kusz D, Sieroń AL, Gawron K. Analysis of the TID-I and TID-L Splice Variants' Expression Profile under In Vitro Differentiation of Human Mesenchymal Bone Marrow Cells into Osteoblasts. Cells 2024; 13:1021. [PMID: 38920651 PMCID: PMC11201664 DOI: 10.3390/cells13121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Bone formation is a complex process regulated by a variety of pathways that are not yet fully understood. One of the proteins involved in multiple osteogenic pathways is TID (DNAJA3). The aim of this work was to study the association of TID with osteogenesis. Therefore, the expression profiles of the TID splice variants (TID-L, TID-I) and their protein products were analyzed during the proliferation and differentiation of bone marrow mesenchymal stromal cells (B-MSCs) into osteoblasts. As the reference, the hFOB1.19 cell line was used. The phenotype of B-MSCs was confirmed by the presence of CD73, CD90, and CD105 surface antigens on ~97% of cells. The osteoblast phenotype was confirmed by increased alkaline phosphatase activity, calcium deposition, and expression of ALPL and SPP1. The effect of silencing the TID gene on the expression of ALPL and SPP1 was also investigated. The TID proteins and the expression of TID splice variants were detected. After differentiation, the expression of TID-L and TID-I increased 5-fold and 3.7-fold, respectively, while their silencing resulted in increased expression of SPP1. Three days after transfection, the expression of SPP1 increased 7.6-fold and 5.6-fold in B-MSCs and differentiating cells, respectively. Our preliminary study demonstrated that the expression of TID-L and TID-I changes under differentiation of B-MSCs into osteoblasts and may influence the expression of SPP1. However, for better understanding the functional association of these results with the relevant osteogenic pathways, further studies are needed.
Collapse
Affiliation(s)
- Daniel Krakowian
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, 43-200 Pszczyna, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Witecka
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
2
|
Banerjee S, Chaturvedi R, Singh A, Kushwaha HR. Putting human Tid-1 in context: an insight into its role in the cell and in different disease states. Cell Commun Signal 2022; 20:109. [PMID: 35854300 PMCID: PMC9297570 DOI: 10.1186/s12964-022-00912-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumorous imaginal disc 1 (hTid-1) or DnaJ homolog subfamily A member 3 (DNAJA3), is a part of the heat shock protein (Hsp) 40 family and is predominantly found to reside in the mitochondria. hTid-1 has two mRNA splicing variants, hTid-1S and hTid-1L of 40 and 43 kDa respectively in the cytosol which are later processed upon import into the mitochondrial matrix. hTid-1 protein is a part of the DnaJ family of proteins which are co-chaperones and specificity factors for DnaK proteins of the Hsp70 family, and bind to Hsp70, thereby activating its ATPase activity. hTid-1 has been found to be critical for a lot of important cellular processes such as proliferation, differentiation, growth, survival, senescence, apoptosis, and movement and plays key roles in the embryo and skeletal muscle development.
Main body hTid-1 participates in several protein–protein interactions in the cell, which mediate different processes such as proteasomal degradation and autophagy of the interacting protein partners. hTid-1 also functions as a co-chaperone and participates in interactions with several different viral oncoproteins. hTid-1 also plays a critical role in different human diseases such as different cancers, cardiomyopathies, and neurodegenerative disorders. Conclusion This review article is the first of its kind presenting consolidated information on the research findings of hTid-1 to date. This review suggests that the current knowledge of the role of hTid-1 in disorders like cancers, cardiomyopathies, and neurodegenerative diseases can be correlated with the findings of its protein–protein interactions that can provide a deep insight into the pathways by which hTid-1 affects disease pathogenesis and it can be stated that hTid-1 may serve as an important therapeutic target for these disorders. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00912-5.
Collapse
Affiliation(s)
- Sagarika Banerjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Hemant R Kushwaha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India. .,School of Biotechnology and Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Maletzko A, Key J, Wittig I, Gispert S, Koepf G, Canet-Pons J, Torres-Odio S, West AP, Auburger G. Increased presence of nuclear DNAJA3 and upregulation of cytosolic STAT1 and of nucleic acid sensors trigger innate immunity in the ClpP-null mouse. Neurogenetics 2021; 22:297-312. [PMID: 34345994 PMCID: PMC8426249 DOI: 10.1007/s10048-021-00657-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.
Collapse
Affiliation(s)
- Antonia Maletzko
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Jana Key
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.,Faculty of Biosciences, Goethe University, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, 60590, Frankfurt, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Gabriele Koepf
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M, University Health Science Center, Bryan, TX, 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M, University Health Science Center, Bryan, TX, 77807, USA
| | - Georg Auburger
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.
| |
Collapse
|
4
|
Wang SF, Huang KH, Tseng WC, Lo JF, Li AFY, Fang WL, Chen CF, Yeh TS, Chang YL, Chou YC, Hung HH, Lee HC. DNAJA3/Tid1 Is Required for Mitochondrial DNA Maintenance and Regulates Migration and Invasion of Human Gastric Cancer Cells. Cancers (Basel) 2020; 12:cancers12113463. [PMID: 33233689 PMCID: PMC7699785 DOI: 10.3390/cancers12113463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer is a common health issue. Deregulated cellular energetics is regarded as a cancer hallmark and mitochondrial dysfunction might contribute to cancer progression. Tid1, a mitochondrial co-chaperone, may play a role as a tumor suppressor in various cancers, but the role of Tid1 in gastric cancers remains under investigated. METHODS The clinical TCGA online database and immunohistochemical staining for Tid1 expression in tumor samples of gastric cancer patients were analyzed. Tid1 knockdown by siRNA was applied to investigate the role of Tid1 in gastric cancer cells. RESULTS Low Tid1 protein-expressing gastric cancer patients had a poorer prognosis and higher lymph node invasion than high Tid1-expressing patients. Knockdown of Tid1 did not increase cell proliferation, colony/tumor sphere formation, or chemotherapy resistance in gastric cancer cells. However, Tid1 knockdown increased cell migration and invasion. Moreover, Tid1 knockdown reduced the mtDNA copy number of gastric cancer cells. In addition, the Tid1-galectin-7-MMP-9 axis might be associated with Tid1 knockdown-induced cell migration and invasion of gastric cancer cells. CONCLUSIONS Tid1 is required for mtDNA maintenance and regulates migration and invasion of gastric cancer cells. Tid1 deletion may be a poor prognostic factor in gastric cancers and could be further investigated for development of gastric cancer treatments.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
| | - Kuo-Hung Huang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wei-Chuan Tseng
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
| | - Jeng-Fan Lo
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Pathology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Yueh-Ching Chou
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Hung-Hsu Hung
- School of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medicine, Division of Gastroenterology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Correspondence: (H.-H.H.); (H.-C.L.); Tel.: +886-2-2826-7327 (H.-C.L.)
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Correspondence: (H.-H.H.); (H.-C.L.); Tel.: +886-2-2826-7327 (H.-C.L.)
| |
Collapse
|
5
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
6
|
de Vreede G, Morrison HA, Houser AM, Boileau RM, Andersen D, Colombani J, Bilder D. A Drosophila Tumor Suppressor Gene Prevents Tonic TNF Signaling through Receptor N-Glycosylation. Dev Cell 2018; 45:595-605.e4. [PMID: 29870719 PMCID: PMC5995582 DOI: 10.1016/j.devcel.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 01/18/2023]
Abstract
Drosophila tumor suppressor genes have revealed molecular pathways that control tissue growth, but mechanisms that regulate mitogenic signaling are far from understood. Here we report that the Drosophila TSG tumorous imaginal discs (tid), whose phenotypes were previously attributed to mutations in a DnaJ-like chaperone, are in fact driven by the loss of the N-linked glycosylation pathway component ALG3. tid/alg3 imaginal discs display tissue growth and architecture defects that share characteristics of both neoplastic and hyperplastic mutants. Tumorous growth is driven by inhibited Hippo signaling, induced by excess Jun N-terminal kinase (JNK) activity. We show that ectopic JNK activation is caused by aberrant glycosylation of a single protein, the fly tumor necrosis factor (TNF) receptor homolog, which results in increased binding to the continually circulating TNF. Our results suggest that N-linked glycosylation sets the threshold of TNF receptor signaling by modifying ligand-receptor interactions and that cells may alter this modification to respond appropriately to physiological cues.
Collapse
Affiliation(s)
- Geert de Vreede
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Holly A Morrison
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandra M Houser
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ryan M Boileau
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ditte Andersen
- University Nice Sophia Antipolis, CNRS, Inserm, iBV, Nice 06108, France
| | - Julien Colombani
- University Nice Sophia Antipolis, CNRS, Inserm, iBV, Nice 06108, France
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Meng E, Shevde LA, Samant RS. Emerging roles and underlying molecular mechanisms of DNAJB6 in cancer. Oncotarget 2018; 7:53984-53996. [PMID: 27276715 PMCID: PMC5288237 DOI: 10.18632/oncotarget.9803] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 12/29/2022] Open
Abstract
DNAJB6 also known as mammalian relative of DnaJ (MRJ) encodes a highly conserved member of the DnaJ/Hsp40 family of co-chaperone proteins that function with Hsp70 chaperones. DNAJB6 is widely expressed in all tissues, with higher expression levels detected in the brain. DNAJB6 is involved in diverse cellular functions ranging from murine placental development, reducing the formation and toxicity of mis-folded protein aggregates, to self-renewal of neural stem cells. Involvement of DNAJB6 is implicated in multiple pathologies such as Huntington's disease, Parkinson's diseases, limb-girdle muscular dystrophy, cardiomyocyte hypertrophy and cancer. This review summarizes the important involvement of the spliced isoforms of DNAJB6 in various pathologies with a specific focus on the emerging roles of human DNAJB6 in cancer and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Erhong Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Beijing DOING Biomedical Technology Co. Ltd., Beijing,China
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Chen CY, Jan CI, Pi WC, Wang WL, Yang PC, Wang TH, Karni R, Wang TCV. Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer. Oncotarget 2017; 7:16760-72. [PMID: 26919236 PMCID: PMC4941349 DOI: 10.18632/oncotarget.7606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 11/25/2022] Open
Abstract
The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University and Hospital, Taichung, Taiwan 404, Taiwan.,Department of Pathology, China Medical University and Beigang Hospital, Yunlin, Taiwan 651, Taiwan
| | - Wen-Chieh Pi
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| | - Wen-Lung Wang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Tao-Yuan 333, Taiwan.,Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Rotem Karni
- The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Ein Karem, 91120, Jerusalem, Israel
| | - Tzu-Chien V Wang
- Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan
| |
Collapse
|
9
|
Lin CY, Hu CT, Cheng CC, Lee MC, Pan SM, Lin TY, Wu WS. Oxidation of heat shock protein 60 and protein disulfide isomerase activates ERK and migration of human hepatocellular carcinoma HepG2. Oncotarget 2017; 7:11067-82. [PMID: 26840563 PMCID: PMC4905458 DOI: 10.18632/oncotarget.7093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/17/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met were frequently deregulated in hepatocellular carcinoma (HCC). Signaling pathways activated by HGF-c-Met are promising targets for preventing HCC progression. HGF can induce the reactive oxygen species (ROS) signaling for cell adhesion, migration and invasion of tumors including HCC. On the other hand, extracellular signal-regulated kinases (ERK), member of mitogen activated kinase, can be activated by ROS for a lot of cellular processes. As expected, HGF-induced phosphorylation of ERK and progression of HCC cell HepG2 were suppressed by ROS scavengers. By N-(biotinoyl)-N'-(iodoacetyl)-ethylenediamine (BIAM) labeling method, a lot of cysteine (-SH)-containing proteins with M.W. 50-75 kD were decreased in HepG2 treated with HGF or two other ROS generators, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and phenazine methosulfate. These redox sensitive proteins were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Among them, two chaperones, heat shock protein 60 (HSP60) and protein disulfide isomerase (PDI), were found to be the most common redox sensitive proteins in responding to all three agonists. Affinity blot of BIAM-labeled, immunoprecipitated HSP60 and PDI verified that HGF can decrease the cysteine (-SH) containing HSP60 and PDI. On the other hand, HGF and TPA increased cysteinyl glutathione-containing HSP60, consistent with the decrease of cysteine (-SH)-containing HSP60. Moreover, depletion of HSP60 and PDI or expression of dominant negative mutant of HSP60 with alteration of Cys, effectively prevented HGF-induced ERK phosphorylation and HepG2 migration.In conclusion, the redox sensitive HSP60 and PDI are required for HGF-induced ROS signaling and potential targets for preventing HCC progressions.
Collapse
Affiliation(s)
- Chung-Yi Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, and Division of Gastroenterology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Teng-Yi Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, and Division of Gastroenterology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Tid1-S regulates the mitochondrial localization of EGFR in non-small cell lung carcinoma. Oncogenesis 2017; 6:e361. [PMID: 28714950 PMCID: PMC5541714 DOI: 10.1038/oncsis.2017.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/21/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is the major driver of non-small cell lung carcinoma (NSCLC). Mitochondrial accumulation of EGFR has been shown to promote metastasis in NSCLC, yet little is known about how the mitochondrial localization of EGFR is regulated. In this work, we show that Tid1 (also known as mitochondrial HSP40) is involved in the mitochondrial localization of EGFR, and that the DnaJ domain of Tid1-S is essential for the Tid1-S-mediated transportation of EGFR into mitochondria. Overexpression of Tid1-S increased the migration and invasion of NSCLC cells cultured in vitro. High levels of EGFR and Tid1-S were detected in the mitochondria of cancerous lesions from stage IV NSCLC patients, and high levels of mitochondrial Tid1-S/EGFR were correlated with lymph node metastasis and poor overall survival of NSCLC patients. We thus conclude that Tid1-S critically governs the mitochondrial localization of EGFR through the mtHSP70 transportation pathway, and that the mitochondrial accumulation of EGFR appears to promote metastasis in NSCLC.
Collapse
|
11
|
Niu G, Zhang H, Liu D, Chen L, Belani C, Wang HG, Cheng H. Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex. J Biol Chem 2015; 290:18102-18110. [PMID: 26055714 DOI: 10.1074/jbc.m115.665950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.
Collapse
Affiliation(s)
- Ge Niu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Huan Zhang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dan Liu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Li Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chandra Belani
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
12
|
Pesce ER, Blatch GL, Edkins AL. Hsp40 Co-chaperones as Drug Targets: Towards the Development of Specific Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Tsai MF, Wang CC, Chen JJW. Tumour suppressor HLJ1: A potential diagnostic, preventive and therapeutic target in non-small cell lung cancer. World J Clin Oncol 2014; 5:865-873. [PMID: 25493224 PMCID: PMC4259948 DOI: 10.5306/wjco.v5.i5.865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/10/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality throughout the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all diagnosed lung cancers. Despite considerable progress in the diagnosis and treatment of the disease, the overall 5-year survival rate of NSCLC patients remains lower than 15%. The most common causes of death in lung cancer patients are treatment failure and metastasis. Therefore, developing novel strategies that target both tumour growth and metastasis is an important and urgent mission for the next generation of anticancer therapy research. Heat shock proteins (HSPs), which are involved in the fundamental defence mechanism for maintaining cellular viability, are markedly activated during environmental or pathogenic stress. HSPs facilitate rapid cell division, metastasis, and the evasion of apoptosis in cancer development. These proteins are essential players in the development of cancer and are prime therapeutic targets. In this review, we focus on the current understanding of the molecular mechanisms responsible for HLJ1’s role in lung cancer carcinogenesis and progression. HLJ1, a member of the human HSP 40 family, has been characterised as a tumour suppressor. Research studies have also reported that HLJ1 shows promising dual anticancer effects, inhibiting both tumour growth and metastasis in NSCLC. The accumulated evidence suggests that HLJ1 is a potential biomarker and treatment target for NSCLC.
Collapse
|
14
|
Current World Literature. Curr Opin Oncol 2012; 24:345-9. [DOI: 10.1097/cco.0b013e328352df9c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|