1
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Angione A, Patterson J, Akca E, Xu J, Xu E, Raab V, Elghawy O, Barsouk AA, Sussman JH. A Cross-Sectional Analysis of Interventional Clinical Trials in High-Grade Glioma Therapy. Life (Basel) 2024; 14:926. [PMID: 39202668 PMCID: PMC11355386 DOI: 10.3390/life14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
High-grade glioma is the most frequent and lethal primary tumor of the central nervous system. Despite advances in surgical, pharmacological, and cell-directed therapies, there have been no updates to the standard of care in over a decade. This cross-sectional study analyzes patient and trial data from 201 interventional trials completed between 2010 and 2023, encompassing 18,563 participants. Although we found that all trials reported participant age and sex, only 52% of trials reported participant demographics, resulting in 51% of total participant demographics being unreported. The majority of studies did not report ethnicity, with approximately 60% of participants unreported. Additionally, males were significantly underrepresented in trials, comprising 60% of participants despite representing 75% of glioblastoma patients. Improved demographic reporting has been observed since 2011; however, it is inconsistent. Furthermore, we cataloged the geographic diversity of trials across the United States and found significant coverage deserts in relatively rural, but highly affected, areas such as Montana and Maine. We found a wider distribution of trials in both urban and wealthier regions, which indicates extensive coverage gaps and decreased access to participation for patients of a lower socioeconomic status.
Collapse
Affiliation(s)
- Angelo Angione
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Patterson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ebrar Akca
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Xu
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Xu
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa Raab
- Biomedical Sciences Training Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Omar Elghawy
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A. Barsouk
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan H. Sussman
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Walker FM, Sobral LM, Danis E, Sanford B, Donthula S, Balakrishnan I, Wang D, Pierce A, Karam SD, Kargar S, Serkova NJ, Foreman NK, Venkataraman S, Dowell R, Vibhakar R, Dahl NA. Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy. Nat Commun 2024; 15:4616. [PMID: 38816355 PMCID: PMC11139976 DOI: 10.1038/s41467-024-48214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.
Collapse
Affiliation(s)
- Faye M Walker
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lays Martin Sobral
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bridget Sanford
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sahiti Donthula
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dong Wang
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soudabeh Kargar
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robin Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
4
|
Walker FM, Sobral LM, Danis E, Sanford B, Balakrishnan I, Wang D, Pierce A, Karam SD, Serkova NJ, Foreman NK, Venkataraman S, Dowell R, Vibhakar R, Dahl NA. Rapid PTEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525424. [PMID: 36747867 PMCID: PMC9900817 DOI: 10.1101/2023.01.24.525424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. PTEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates PTEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of PTEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for PTEFb underpinning the early adaptive response to radiotherapy, opening new avenues for combinatorial treatment in these lethal malignancies.
Collapse
|
5
|
Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev Rep 2021; 18:1495-1509. [PMID: 34403074 DOI: 10.1007/s12015-021-10227-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Collapse
|
6
|
Comparing Tumor Cell Invasion and Myeloid Cell Composition in Compatible Primary and Relapsing Glioblastoma. Cancers (Basel) 2021; 13:cancers13143636. [PMID: 34298846 PMCID: PMC8303884 DOI: 10.3390/cancers13143636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary We established a new minimally invasive mouse model for GBM relapse. For this, we utilized orthotopical implantation of HSVTK-transduced GBM cells and pharmacological treatment with GCV. In addition, we implanted patient-derived GBM cells of primary or recurrent tumors. We found that recurrent GBM were more aggressively invasive than primary GBM. Moreover, the recurring tumors had a higher ratio of monocyte-derived macrophages among the entire population of tumor associated myeloid cells. This shift in the composition of tumor-associated immune cells appeared to be independent from cell-death signaling or surgical intervention. This model provides the means to investigate the entire process of tumor relapse and test standard as well as experimental therapeutic strategies for relapsing GBM under defined conditions. Abstract Glioblastoma (GBM) recurrence after treatment is almost inevitable but addressing this issue with adequate preclinical models has remained challenging. Here, we introduce a GBM mouse model allowing non-invasive and scalable de-bulking of a tumor mass located deeply in the brain, which can be combined with conventional therapeutic approaches. Strong reduction of the GBM volume is achieved after pharmacologically inducing a tumor-specific cell death mechanism. This is followed by GBM re-growth over a predictable timeframe. Pharmacological de-bulking followed by tumor relapse was accomplished with an orthotopic mouse glioma model. Relapsing experimental tumors recapitulated pathological features often observed in recurrent human GBM, like increased invasiveness or altered immune cell composition. Orthotopic implantation of GBM cells originating from biopsies of one patient at initial or follow-up treatment reproduced these findings. Interestingly, relapsing GBM of both models contained a much higher ratio of monocyte-derived macrophages (MDM) versus microglia than primary GBM. This was not altered when combining pharmacological de-bulking with invasive surgery. We interpret that factors released from viable primary GBM cells preferentially attract microglia whereas relapsing tumors preponderantly release chemoattractants for MDM. All in all, this relapse model has the capacity to provide novel insights into clinically highly relevant aspects of GBM treatment.
Collapse
|
7
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Brahm CG, Abdul UK, Houweling M, van Linde ME, Lagerweij T, Verheul HMW, Westerman BA, Walenkamp AME, Fehrmann RSN. Data-driven prioritization and preclinical evaluation of therapeutic targets in glioblastoma. Neurooncol Adv 2021; 2:vdaa151. [PMID: 33392504 PMCID: PMC7764503 DOI: 10.1093/noajnl/vdaa151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Patients with glioblastoma (GBM) have a dismal prognosis, and there is an unmet need for new therapeutic options. This study aims to identify new therapeutic targets in GBM. Methods mRNA expression data of patient-derived GBM (n = 1279) and normal brain tissue (n = 46) samples were collected from Gene Expression Omnibus and The Cancer Genome Atlas. Functional genomic mRNA profiling was applied to capture the downstream effects of genomic alterations on gene expression levels. Next, a class comparison between GBM and normal brain tissue was performed. Significantly upregulated genes in GBM were further prioritized based on (1) known interactions with antineoplastic drugs, (2) current drug development status in humans, and (3) association with biologic pathways known to be involved in GBM. Antineoplastic agents against prioritized targets were validated in vitro and in vivo. Results We identified 712 significantly upregulated genes in GBM compared to normal brain tissue, of which 27 have a known interaction with antineoplastic agents. Seventeen of the 27 genes, including EGFR and VEGFA, have been clinically evaluated in GBM with limited efficacy. For the remaining 10 genes, RRM2, MAPK9 (JNK2, SAPK1a), and XIAP play a role in GBM development. We demonstrated for the MAPK9 inhibitor RGB-286638 a viability loss in multiple GBM cell culture models. Although no overall survival benefit was observed in vivo, there were indications that RGB-286638 may delay tumor growth. Conclusions The MAPK9 inhibitor RGB-286638 showed promising in vitro results. Furthermore, in vivo target engagement studies and combination therapies with this compound warrant further exploration.
Collapse
Affiliation(s)
- Cyrillo G Brahm
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - U Kulsoom Abdul
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Myra E van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Reduced EGFR and increased miR-221 is associated with increased resistance to temozolomide and radiotherapy in glioblastoma. Sci Rep 2020; 10:17768. [PMID: 33082482 PMCID: PMC7576591 DOI: 10.1038/s41598-020-74746-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Despite aggressive treatment with temozolomide and radiotherapy and extensive research into alternative therapies there has been little improvement in Glioblastoma patient survival. Median survival time remains between 12 and 15 months mainly due to treatment resistance and tumor recurrence. In this study, we aimed to explore the underlying mechanisms behind treatment resistance and the lack of success with anti-EGFR therapy in the clinic. After generating a number of treatment resistant Glioblastoma cell lines we observed that resistant cell lines lacked EGFR activation and expression. Furthermore, cell viability assays showed resistant cells were significantly less sensitive to the anti-EGFR agents when compared to parental cell lines. To further characterise the resistance mechanism in our cells microRNA prediction software identified miR-221 as a negative regulator of EGFR expression. miR-221 was up-regulated in our resistant cell lines, and this up-regulation led to a significant reduction in EGFR expression in both our cultured cell lines and a large cohort of glioblastoma patient tumor tissue.
Collapse
|
10
|
Abstract
Background: β-1, 4-galactosyltransferase III (B4GALT3) plays an important role in development tumourigenesis. But its role in human glioblastoma (GBM) is still unknown.Materials and methods: To perform gain-of-function and loss-of-function experiment, we transfected siRNA or vector into GBM cells. CCK-8, EdU staining, transwell, western blot, immunofluorescence staining were applied to perform phenotype and mechanism experiment. GlioVis platform was used to analyze B4GALT3 expression from TCGA datasets.Results: B4GALT3 is upregulated in glioblastoma and predicts poor prognosis. Upregulation of B4GALT3 promotes GBM cell proliferation and invasion while the downregulation of B4GALT3 reduces GBM cell proliferation and invasion. B4GALT3 regulates cell proliferation and invasion via β-catenin and vimentin. B4GALT3 correlates with cell invasion markers in clinical samples.Conclusion: B4GALT3 might be a potential molecular therapeutic target of glioblastoma.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yifei Li
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
11
|
He L, Zhou H, Zeng Z, Yao H, Jiang W, Qu H. Wnt/β‐catenin signaling cascade: A promising target for glioma therapy. J Cell Physiol 2018; 234:2217-2228. [PMID: 30277583 DOI: 10.1002/jcp.27186] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lu He
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hong Zhou
- Department of RadiologyFirst Affiliated Hospital, University of South ChinaHengyang China
- Learning Key Laboratory for PharmacoproteomicsInstitute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South ChinaHengyang China
| | - Zhiqing Zeng
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hailun Yao
- Department of Medical College, Hunan Polytechnic of Environment and BiologyHengyang China
| | - Weiping Jiang
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hongtao Qu
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| |
Collapse
|
12
|
Wang H, Zhao S, Chen B, Fu C, Dang Y, Fang P, Wang J, Wang N, Liu L. Repression of the expression of PPP3CC by ZEB1 confers activation of NF-κB and contributes to invasion and growth in glioma cells. Jpn J Clin Oncol 2018; 48:175-183. [PMID: 29294030 DOI: 10.1093/jjco/hyx182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
Background Gliomas are highly malignant brain tumors. Aberrant activation of NF-κB plays a crucial role in tumor progression. Method ELISA assay was used to detect NF-κB activity in glimoas cells with different treatments. PPP3CC expression was evaluated by qRT-PCR and western blot assay. Kaplan-Meier analysis estimated the overall survival rates according to the protein level of PPP3CC. Transwell and MTS assay were performed to determine cell invasion and growth. Chromatin immunoprecipitation combined with luciferase reporter assays illustrated the transcriptional regulation of PPP3CC. Results We showed that PPP3CC decrease was responsible for constitutive activation of NF-κB in gliomas. Restored PPP3CC expression inhibited activation of NF-κB. PPP3CC was frequently decreased in gliomas and that repression of the expression of PPP3CC correlated glioma progression. The ectopic expression of PPP3CC inhibited the invasive potential of glioma cells, and inhibited glioma cells proliferation in vitro and growth in vivo. Additionally, the expression of Zinc finger E-box-binding homeobox 1(ZEB1) was increased in gliomas and was negatively correlated with clinical outcomes of glioma patients. ZEB1 inversely correlated with the expression of PPP3CC. ZEB1 was also confirmed to physically bind to the PPP3CC promoter. ZEB1 knockdown resulted in an increase in the expression of PPP3CC and elevation of PPP3CC promoter activity in glioma cells. Conclusion These findings indicated that the down-regulation of PPP3CC by ZEB1 resulted in activation of NF-κB is a critical oncogenic event in gliomas.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Shuli Zhao
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei,PR China
| | - Bo Chen
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Chuhua Fu
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Yanwei Dang
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Peihai Fang
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Jun Wang
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Ning Wang
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| | - Lijun Liu
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
| |
Collapse
|
13
|
Yang B, Zhang S, Wang Z, Yang C, Ouyang W, Zhou F, Zhou Y, Xie C. Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget 2018; 7:79515-79525. [PMID: 27783990 PMCID: PMC5346732 DOI: 10.18632/oncotarget.12819] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
β-catenin is a crucial signal transduction molecule in the Wnt/β-catenin signal pathway, and increased β-catenin expression has consistently been found in high grade gliomas. However, the mechanisms responsible for β-catenin overexpression have remained elusive. Here we show that the deubiquitinase USP9X stabilizes β-catenin and thereby promotes high grade glioma cell growth. USP9X binds β-catenin and removes the Lys 48-linked polyubiquitin chains that normally mark β-catenin for proteasomal degradation. Increased USP9X expression correlates with increased β-catenin protein in high grade glioma tissues. Moreover, patients with high grade glioma overexpressing USP9X have a poor prognosis. Knockdown of USP9X suppresses cell proliferation, inhibits G1/S phase conversion, and induces apoptosis in U251 and A172 cells. Interestingly, c-Myc and cyclinD1, which are important downstream target genes in the Wnt/β-catenin signal pathway, also show decreased expression in cells with siRNA-mediated down-regulation of USP9X. Down-regulation of USP9X also consistently inhibits the tumorigenicity of primary glioma cells in vivo. In summary, these results indicate that USP9X stabilizes β-catenin and activates Wnt/β-catenin signal pathway to promote glioma cell proliferation and survival. USP9X could also potentially be a novel therapeutic target for high grade gliomas.
Collapse
Affiliation(s)
- Bo Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China.,Department of Oncology, Wuhan General Hospital of Guangzhou Command PLA, Wuchang District, Wuhan, 430070, China
| | - Shiming Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Wen Ouyang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, 430071, China
| |
Collapse
|
14
|
Gong L, Gu J, Ge J, Wu X, Zhang C, Yang C, Weng W, Gao G, Feng J, Mao Q. Differential radiation response between normal astrocytes and glioma cells revealed by comparative transcriptome analysis. Onco Targets Ther 2017; 10:5755-5764. [PMID: 29270020 PMCID: PMC5720034 DOI: 10.2147/ott.s144002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal astrocytes are more resistant to radiation than glioma cells. Radiation-resistant glioma cells and normal astrocytes usuallly share similar mechanisms of radioresistance. Investigation of the underlying mechanisms of differential radiation response between normal astrocytes and glioma cells is thus significant for improvement of glioma treatment. Here, we report on the differential radiation responses between normal astrocytes and glioma cells at the transcriptome level. Human astrocytes (HA) and U251 glioma cell lines were used as in vitro models. The transcriptome profiles of radiation-treated and nontreated HA and U251 cells were generated by next-generation sequencing. In total, 296 mRNAs and 224 lncRNAs in HA and 201 mRNAs and 107 lncRNAs in U251 were found to be differentially expressed after radiation treatment. Bioinformatics analyses indicated that radiation causes similar alterations in HA and U251 cells, while several key pathways involved in cancer development and radiation resistance, including P53, TGF-β, VEGF, Hippo and serotonergic synapse pathways, were oppositely regulated by radiation treatment, suggesting their important role in this process. Furthermore, we showed the critical role of Hippo/YAP signaling in radiation resistance of glioma cells. In summary, our findings revealed novel insights about differential responses between normal astrocytes and glioma cells. Our work suggested that YAP inhibitor could not be used in combination with radiation for glioma treatment.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurosurgery, Punan Hospital of Shanghai
| | - Jiacheng Gu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianwei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiang Wu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chun Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiji Weng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guoyi Gao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Junfeng Feng
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, Chang B, Sarkissian A, Brito A, Sanchez JF, Ostberg JR, D'Apuzzo M, Badie B, Barish ME, Forman SJ. Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 2017; 26:31-44. [PMID: 29103912 DOI: 10.1016/j.ymthe.2017.10.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/27/2022] Open
Abstract
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA.
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Lihong Weng
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Brenda Chang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Aniee Sarkissian
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Alfonso Brito
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - James F Sanchez
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Behnam Badie
- Department of Neurosurgery, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Michael E Barish
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Wang A, Zhang G. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database. Oncol Lett 2017; 14:6040-6044. [PMID: 29113243 PMCID: PMC5661398 DOI: 10.3892/ol.2017.6922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022] Open
Abstract
The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The ‘limma’ data packet in ‘R’ software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using ‘RobustRankAggreg’ package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in ‘neurotransmitter:sodium symporter activity’ and ‘neurotransmitter transporter activity’, which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in ‘protein processing in endoplasmic reticulum’, which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.
Collapse
Affiliation(s)
- Anping Wang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Guibin Zhang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
17
|
Hsieh M, Liu Y, Mostafaei F, Poulson JM, Nie LH. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Med Phys 2017; 44:637-643. [PMID: 28205309 DOI: 10.1002/mp.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 12/03/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. METHODS The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. RESULTS The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 105 nepi /cm2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10-13 Gy-cm2 /φepi , and photon dose per epithermal was 2.4 × 10-13 Gy-cm2 /φepi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10-3 cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in reasonable time was 4.9 × 1013 n/s. CONCLUSIONS Results demonstrated that a DD-based BNCT system could be designed to produce neutron beams that have acceptable in-air and in-phantom characteristics. The parameter values were comparable to those of existing BNCT facilities. Continuing efforts are ongoing to improve the DD neutron yield.
Collapse
Affiliation(s)
- Mindy Hsieh
- School of Health Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Yingzi Liu
- School of Health Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Farshad Mostafaei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jean M Poulson
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47906, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
18
|
Akasov R, Gileva A, Zaytseva-Zotova D, Burov S, Chevalot I, Guedon E, Markvicheva E. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly. Biotechnol Lett 2016; 39:45-53. [DOI: 10.1007/s10529-016-2218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023]
|
19
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2016; 37:271-313. [DOI: 10.1002/med.21408] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Isabele C. Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| | - Mariana B. Pereira
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Márcia R. Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular; Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA; Porto Alegre RS Brazil
| |
Collapse
|
20
|
Zheng Y, Yamamoto S, Ishii Y, Sang Y, Hamashima T, Van De N, Nishizono H, Inoue R, Mori H, Sasahara M. Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor-α and Remodels Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1081-91. [DOI: 10.1016/j.ajpath.2015.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
|
21
|
Zakaria Z, Tivnan A, Flanagan L, Murray DW, Salvucci M, Stringer BW, Day BW, Boyd AW, Kögel D, Rehm M, O'Brien DF, Byrne AT, Prehn JHM. Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. Br J Cancer 2015; 114:188-98. [PMID: 26657652 PMCID: PMC4815807 DOI: 10.1038/bjc.2015.420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment.
Collapse
Affiliation(s)
- Z Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Flanagan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D W Murray
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - B W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - B W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - A W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - D Kögel
- Experimental Neurosurgery, Neuroscience Center, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - M Rehm
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D F O'Brien
- National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A T Byrne
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
22
|
Areeb Z, Stylli SS, Koldej R, Ritchie DS, Siegal T, Morokoff AP, Kaye AH, Luwor RB. MicroRNA as potential biomarkers in Glioblastoma. J Neurooncol 2015; 125:237-48. [PMID: 26391593 DOI: 10.1007/s11060-015-1912-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/29/2015] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.
Collapse
Affiliation(s)
- Zammam Areeb
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Stanley S Stylli
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Tali Siegal
- Center for Neuro-Oncology, Davidoff Institute of Oncology, Rabin Medical Center, Petach Tokva, Israel
| | - Andrew P Morokoff
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Andrew H Kaye
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Rodney B Luwor
- Clinical Sciences Building, Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
23
|
MA JIANGCHUN, CHENG PENG, HU YI, XUE YIXUE, LIU YUNHUI. Integrin α4 is involved in the regulation of glioma-induced motility of bone marrow mesenchymal stem cells. Oncol Rep 2015; 34:779-86. [DOI: 10.3892/or.2015.4012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023] Open
|
24
|
Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 2015; 35:1504-16. [DOI: 10.1038/onc.2015.210] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/03/2023]
|
25
|
Dahlrot RH, Sørensen MD, Rosager AM, Hellwege S, Bangsø JA, Rosenberg T, Petterson SA, Klitkou J, Fosmark S, Hansen S, Kristensen BW. Novel approaches for quantifying protein biomarkers in gliomas: benefits and pitfalls. CNS Oncol 2015; 3:287-98. [PMID: 25286040 DOI: 10.2217/cns.14.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The therapeutic paradigm of gliomas is changing from a general approach towards an individualized and targeted approach. Accordingly, the search for prognostic and predictive biomarkers, as well as the demand for quantitative, feasible and robust methods for biomarker analysis increases. We find that software classifiers can identify and quantify the expression of a given biomarker within different subcellular compartments and that such classifiers can exclude frequently occurring nontumor cells, thereby avoiding potential bias. The use of a quantitative approach provides a continuous measurement of the expression, allowing establishment of new cut-points and identification of patients with specific prognoses. However, some pitfalls must be noted. This article focuses on benefits and pitfalls of novel approaches for quantifying protein biomarkers in gliomas.
Collapse
Affiliation(s)
- Rikke H Dahlrot
- Department of Oncology, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Luwor RB, Stylli SS, Kaye AH. Using bioluminescence imaging in glioma research. J Clin Neurosci 2015; 22:779-84. [DOI: 10.1016/j.jocn.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023]
|
27
|
Abstract
Reactive astrogliosis is associated with many pathologic processes in the central nervous system, including gliomas. The glycoprotein podoplanin (PDPN) is upregulated in malignant gliomas. Using a syngeneic intracranial glioma mouse model, we show that PDPN is highly expressed in a subset of glial fibrillary acidic protein-positive astrocytes within and adjacent to gliomas. The expression of PDPN in tumor-associated reactive astrocytes was confirmed by its colocalization with the astrocytic marker S100β and with connexin43, a major astrocytic gap junction protein. To determine whether the increase in PDPN is a general feature of gliosis, we used 2 mouse models in which astrogliosis was induced either by a needle injury or ischemia and observed similar upregulation of PDPN in reactive astrocytes in both models. Astrocytic PDPN was also found to be coexpressed with nestin, an intermediate filament marker for neural stem/progenitor cells. Our findings confirm that expression of PDPN is part of the normal host response to brain injury and gliomas, and suggest that it may be a novel cell surface marker for a specific population of reactive astrocytes in the vicinity of gliomas and nonneoplastic brain lesions. The findings also highlight the heterogeneity of glial fibrillary acidic protein-positive astrocytes in reactive gliosis.
Collapse
|
28
|
Zhang B, Zhang Y, Liao Z, Jiang T, Zhao J, Tuo Y, She X, Shen S, Chen J, Zhang Q, Jiang X, Hu Y, Pang Z. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials 2015; 36:98-109. [DOI: 10.1016/j.biomaterials.2014.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/29/2014] [Indexed: 01/07/2023]
|
29
|
Chikano Y, Domoto T, Furuta T, Sabit H, Kitano-Tamura A, Pyko IV, Takino T, Sai Y, Hayashi Y, Sato H, Miyamoto KI, Nakada M, Minamoto T. Glycogen synthase kinase 3β sustains invasion of glioblastoma via the focal adhesion kinase, Rac1, and c-Jun N-terminal kinase-mediated pathway. Mol Cancer Ther 2014; 14:564-74. [PMID: 25504636 DOI: 10.1158/1535-7163.mct-14-0479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3β (GSK3β), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3β compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3β also contributes to the highly invasive nature of glioblastoma. The effects of GSK3β inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion. Inhibition of GSK3β attenuated the migration and invasion of glioblastoma cells in vitro and that of tumor cells in a mouse model of glioblastoma. These effects were associated with suppression of the molecular axis involving focal adhesion kinase, guanine nucleotide exchange factors/Rac1 and c-Jun N-terminal kinase. Changes in cellular phenotypes responsible for cell motility and invasion were also observed, including decreased formation of lamellipodia and invadopodium-like microstructures and alterations in the subcellular localization, and activity of Rac1 and F-actin. These changes coincided with decreased expression of matrix metalloproteinases. Our results confirm the potential of GSK3β as an attractive therapeutic target against glioblastoma invasion, thus highlighting a second role in this tumor type in addition to its involvement in chemo- and radioresistance.
Collapse
Affiliation(s)
- Yuri Chikano
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan. Department of Hospital Pharmacy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takuya Furuta
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ayako Kitano-Tamura
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan. Department of Hospital Pharmacy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ilya V Pyko
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan. Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takahisa Takino
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yoshimichi Sai
- Department of Hospital Pharmacy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yutaka Hayashi
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Sato
- Division of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ken-ichi Miyamoto
- Department of Hospital Pharmacy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
30
|
Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep 2014; 11:3078-86. [PMID: 25434368 DOI: 10.3892/mmr.2014.3017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/25/2014] [Indexed: 11/05/2022] Open
Abstract
The treatment of glioblastoma, and other types of brain cancer, is limited due to the poor transport of drugs across the blood brain barrier and poor penetration of the blood‑brain‑tumor barrier. In the present study, cyclic Arginine‑Glycine‑Aspartic acid‑D‑Tyrosine‑Lysine [c(RGDyK)], that has a high binding affinity to integrin αvβ3 receptors, that are overexpressed in glioblastoma cancers, was employed as a novel approach to target cancer by delivering therapeutic molecules intracellularly. The c(RGDyK)/docetaxel polylactic acid‑polyethylene glycol (DTX‑PLA‑PEG) micelle was prepared and characterized for various in vitro and in vivo parameters. The specific binding affinity of the Arginine‑Glycine‑Aspartic acid (RGD) micelles, to the integrin receptor, enhanced the intracellular accumulation of DTX, and markedly increased its cytotoxic efficacy. The effect of microtubule stabilization was evident in the inhibition of glioma spheroid volume. Upon intravenous administration, c(RGDyK)/DTX‑PLA‑PEG showed enhanced accumulation in brain tumor tissues through active internalization, whereas non‑targeted micelles showed limited transport ability. Furthermore, RGD‑linked micelles showed marked anti‑glioma activity in U87MG malignant glioma tumor xenografts, and significantly suppressed the growth of tumors without signs of systemic toxicity. In conclusion, the results of the present study suggest that ligand‑mediated drug delivery may improve the efficacy of brain cancer chemotherapy.
Collapse
Affiliation(s)
- Ai-Jun Li
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong 261021, P.R. China
| | - Yue-Hua Zheng
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong 261021, P.R. China
| | - Guo-Dong Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei-Sheng Liu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong 261021, P.R. China
| | - Pei-Cheng Cao
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong 261021, P.R. China
| | - Zhen-Fu Bu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
31
|
Zhou X, Xue P, Yang M, Shi H, Lu D, Wang Z, Shi Q, Hu J, Xie S, Zhan W, Yu R. Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 2014; 355:121-9. [PMID: 25218347 DOI: 10.1016/j.canlet.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Protein kinase D2 (PKD2) has been demonstrated to promote tumorigenesis in many types of cancers. However, how PKD2 regulates cancer cell growth is largely unknown. In this study, we found that over-expression of PKD2 promoted glioma cell growth but down-regulation of PKD2 inhibited it. Further investigation indicated that PKD2 down-regulation decreased the protein level of Golgi phosphoprotein 3(GOLPH3) as well as p-AKT level. On the contrary, over-expression of PKD2 increased the protein level of GOLPH3 and p-AKT. In addition, GOLPH3 exhibited similar effect on glioma cell growth to that of PKD2. Importantly, GOLPH3 down-regulation partially abolished glioma cell proliferation induced by PKD2 over-expression, while over-expression of GOLPH3 also partially rescued the inhibition effect of PKD2 down-regulation on glioma cell growth. Interestingly, the level of PKD2 and GOLPH3 significantly increased and was positively correlated in a cohort of glioma patients, as well as in patients from TCGA database. Taken together, these results reveal that PKD2 promotes glioma cell proliferation by regulating GOLPH3 and then AKT activation. Our findings indicate that both PKD2 and GOLPH3 play important roles in the progression of human gliomas and PKD2-GOLPH3-AKT signaling pathway might be a potential glioma therapeutic target.
Collapse
Affiliation(s)
- Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Pengfei Xue
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Minglin Yang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dong Lu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shao Xie
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
32
|
Disruption of prion protein-HOP engagement impairs glioblastoma growth and cognitive decline and improves overall survival. Oncogene 2014; 34:3305-14. [PMID: 25151961 DOI: 10.1038/onc.2014.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
Glioblastomas (GBMs) are resistant to current therapy protocols and identification of molecules that target these tumors is crucial. Interaction of secreted heat-shock protein 70 (Hsp70)-Hsp90-organizing protein (HOP) with cellular prion protein (PrP(C)) triggers a large number of trophic effects in the nervous system. We found that both PrP(C) and HOP are highly expressed in human GBM samples relative to non-tumoral tissue or astrocytoma grades I-III. High levels of PrP(C) and HOP were associated with greater GBM proliferation and lower patient survival. HOP-PrP(C) binding increased GBM proliferation in vitro via phosphatidylinositide 3-kinase and extracellular-signal-regulated kinase pathways, and a HOP peptide mimicking the PrP(C) binding site (HOP230-245) abrogates this effect. PrP(C) knockdown impaired tumor growth and increased survival of mice with tumors. In mice, intratumor delivery of HOP230-245 peptide impaired proliferation and promoted apoptosis of GBM cells. In addition, treatment with HOP230-245 peptide inhibited tumor growth, maintained cognitive performance and improved survival. Thus, together, the present results indicate that interfering with PrP(C)-HOP engagement is a promising approach for GBM therapy.
Collapse
|
33
|
Clinical radiobiology of glioblastoma multiforme. Strahlenther Onkol 2014; 190:925-32. [DOI: 10.1007/s00066-014-0638-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/05/2014] [Indexed: 12/29/2022]
|
34
|
Zhang B, Shen S, Liao Z, Shi W, Wang Y, Zhao J, Hu Y, Yang J, Chen J, Mei H, Hu Y, Pang Z, Jiang X. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials 2014; 35:4088-98. [PMID: 24513320 DOI: 10.1016/j.biomaterials.2014.01.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023]
Abstract
The abundant extracellular matrix (ECM) in the glioma microenvironment play a critical role in the maintenance of glioma morphology, glioma cells differentiation and proliferation, but little has been done to understand the feasibility of ECM as the therapeutic target for glioma therapy. In this study, a drug delivery system targeting fibronectins (FNs), a prevailing component in the ECM of many solid tumors, was constructed for glioma therapy based on the interaction between the abundant FNs in glioma tissues and the FNs-targeting moiety CLT1 peptide. CLT1 peptide was successfully conjugated to PEG-PLA nanoparticles (CNP). FNs were demonstrated to be highly expressed in the ECM of glioma spheroids in vitro and glioma tissues in vivo. CLT1 modification favored targeting nanoparticles penetration into the core of glioma spheroids and consequently induced more severe inhibitive effects on glioma spheroids growth than traditional NP. In vivo imaging, ex vivo imaging and glioma tissue slides showed that CNP enhanced nanoparticles retention in glioma site, distributed more extensively and more deeply into glioma tissues than that of conventional NP, and mainly located in glioma cells rather than in extracellular matrix as conventional NP. Pharmacodynamics outcomes revealed that the median survival time of glioma-bearing mice models treated with paclitaxel-loaded CNP (CNP-PTX) was significantly prolonged when compared with that of any other group. TUNEL assay demonstrated that more extensive cell apoptosis was induced by CNP-PTX treatment compared with other treatments. Altogether, these promising results indicated that this ECM-targeting drug delivery system enhanced retention and glioma cell uptake of nanoparticles and might have a great potential for glioma therapy in clinical applications.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Shun Shen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Ziwei Liao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Yu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jingjing Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Yue Hu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Jiarong Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Jun Chen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China.
| | - Xinguo Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|
35
|
Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, Ino Y, Nomoto T, Matsumoto Y, Koyama H, Cabral H, Nishiyama N, Kataoka K. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS NANO 2013; 7:8583-92. [PMID: 24028526 DOI: 10.1021/nn402662d] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ligand-mediated drug delivery systems have enormous potential for improving the efficacy of cancer treatment. In particular, Arg-Gly-Asp peptides are promising ligand molecules for targeting αvβ3/αvβ5 integrins, which are overexpressed in angiogenic sites and tumors, such as intractable human glioblastoma (U87MG). We here achieved highly efficient drug delivery to U87MG tumors by using a platinum anticancer drug-incorporating polymeric micelle (PM) with cyclic Arg-Gly-Asp (cRGD) ligand molecules. Intravital confocal laser scanning microscopy revealed that the cRGD-linked polymeric micelles (cRGD/m) accumulated rapidly and had high permeability from vessels into the tumor parenchyma compared with the PM having nontargeted ligand, "cyclic-Arg-Ala-Asp" (cRAD). As both cRGD/m- and cRAD-linked polymeric micelles have similar characteristics, including their size, surface charge, and the amount of incorporated drugs, it is likely that the selective and accelerated accumulation of cRGD/m into tumors occurred via an active internalization pathway, possibly transcytosis, thereby producing significant antitumor effects in an orthotopic mouse model of U87MG human glioblastoma.
Collapse
Affiliation(s)
- Yutaka Miura
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Soares IN, Caetano FA, Pinder J, Rodrigues BR, Beraldo FH, Ostapchenko VG, Durette C, Pereira GS, Lopes MH, Queiroz-Hazarbassanov N, Cunha IW, Sanematsu PI, Suzuki S, Bleggi-Torres LF, Schild-Poulter C, Thibault P, Dellaire G, Martins VR, Prado VF, Prado MAM. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1. Mol Cell Proteomics 2013; 12:3253-70. [PMID: 23938469 DOI: 10.1074/mcp.m113.031005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation. Using yeast two-hybrid screenings we identified several nuclear proteins as STI1 interactors. Overexpression of one of these interactors, PIAS1, seems to be specifically involved in STI1 nuclear retention and in directing STI1 and Hsp90 to specific sub-nuclear regions. PIAS1 and STI1 co-immunoprecipitate and PIAS1 can function as an E3 SUMO ligase for STI. Using mass spectrometry we identified five SUMOylation sites in STI1. A STI1 mutant lacking these five sites is not SUMOylated, but still accumulates in the nucleus in response to increased expression of PIAS1, suggesting the possibility that a direct interaction with PIAS1 could be responsible for STI1 nuclear retention. To test this possibility, we mapped the interaction sites between PIAS1 and STI1 using yeast-two hybrid assays and surface plasmon resonance and found that a large domain in the N-terminal region of STI1 interacts with high affinity with amino acids 450-480 of PIAS1. Knockdown of PIAS1 in astrocytes impairs the accumulation of nuclear STI1 in response to irradiation. Moreover, a PIAS1 mutant lacking the STI1 binding site is unable to increase STI1 nuclear retention. Interestingly, in human glioblastoma multiforme PIAS1 expression is increased and we found a significant correlation between increased PIAS1 expression and STI1 nuclear localization. These experiments provide evidence that direct interaction between STI1 and PIAS1 is involved in the accumulation of nuclear STI1. This retention mechanism could facilitate nuclear chaperone activity.
Collapse
Affiliation(s)
- Iaci N Soares
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Herbert B. Tanowitz
- Departments of Pathology and Medicine; Albert Einstein College of Medicine; Bronx NY USA
| | - Fabiana S. Machado
- Institute of Biological Sciences; Department of Biochemistry and Immunology and Faculty of Medicine; Federal University of Minas Gerais; Belo Horizonte, Brazil
| | - Maria Laura Avantaggiati
- Department of Oncology and Lombardi Cancer Center; Georgetown University Medical Center; Washington, DC USA
| | - Chris Albanese
- Department of Oncology and Lombardi Cancer Center; Georgetown University Medical Center; Washington, DC USA
- Center for Cellular Reprogramming; Department of Pathology; Georgetown University Medical Center; Washington, DC USA
- Correspondence to: Chris Albanese,
| |
Collapse
|
38
|
Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS One 2013; 8:e54752. [PMID: 23349962 PMCID: PMC3551925 DOI: 10.1371/journal.pone.0054752] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/18/2012] [Indexed: 11/21/2022] Open
Abstract
Glioblastomas (GBMs) are characterized as highly invasive; the contribution of GBM stem-like cells (GSCs) to the invasive phenotype, however, has not been completely defined. Towards this end, we have defined the invasion potential of CD133+ GSCs and their differentiated CD133− counterparts grown under standard in vitro conditions and in co-culture with astrocytes. Using a trans-well assay, astrocytes or astrocyte conditioned media in the bottom chamber significantly increased the invasion of GSCs yet had no effect on CD133− cells. In addition, a monolayer invasion assay showed that the GSCs invaded farther into an astrocyte monolayer than their differentiated progeny. Gene expression profiles were generated from two GSC lines grown in trans-well culture with astrocytes in the bottom chamber or directly in contact with astrocyte monolayers. In each co-culture model, genes whose expression was commonly increased in both GSC lines involved cell movement and included a number of genes that have been previously associated with tumor cell invasion. Similar gene expression modifications were not detected in CD133− cells co-cultured under the same conditions with astrocytes. Finally, evaluation of the secretome of astrocytes grown in monolayer identified a number of chemokines and cytokines associated with tumor cell invasion. These data suggest that astrocytes enhance the invasion of CD133+ GSCs and provide additional support for a critical role of brain microenvironment in the regulation of GBM biology.
Collapse
|
39
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|