1
|
Chaya T, Maeda Y, Tsutsumi R, Ando M, Ma Y, Kajimura N, Tanaka T, Furukawa T. Ccrk-Mak/Ick signaling is a ciliary transport regulator essential for retinal photoreceptor survival. Life Sci Alliance 2024; 7:e202402880. [PMID: 39293864 PMCID: PMC11412320 DOI: 10.26508/lsa.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose dysfunction causes ciliopathies in humans. The formation, function, and maintenance of primary cilia depend crucially on intraflagellar transport (IFT); however, the regulatory mechanisms of IFT at ciliary tips are poorly understood. Here, we identified that the ciliopathy kinase Mak is a ciliary tip-localized IFT regulator that cooperatively acts with the ciliopathy kinase Ick, an IFT regulator. Simultaneous disruption of Mak and Ick resulted in loss of photoreceptor ciliary axonemes and severe retinal degeneration. Gene delivery of Ick and pharmacological inhibition of FGF receptors, Ick negative regulators, ameliorated retinal degeneration in Mak -/- mice. We also identified that Ccrk kinase is an upstream activator of Mak and Ick in retinal photoreceptor cells. Furthermore, the overexpression of Mak, Ick, and Ccrk and pharmacological inhibition of FGF receptors suppressed ciliopathy-related phenotypes caused by cytoplasmic dynein inhibition in cultured cells. Collectively, our results show that the Ccrk-Mak/Ick axis is an IFT regulator essential for retinal photoreceptor maintenance and present activation of Ick as a potential therapeutic approach for retinitis pigmentosa caused by MAK mutations.
Collapse
Affiliation(s)
- Taro Chaya
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Makoto Ando
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yujie Ma
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoko Kajimura
- https://ror.org/035t8zc32 Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahisa Furukawa
- https://ror.org/035t8zc32 Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Chiang HJ, Nishiwaki Y, Chiang WC, Masai I. Male germ cell-associated kinase is required for axoneme formation during ciliogenesis in zebrafish photoreceptors. Dis Model Mech 2024; 17:dmm050618. [PMID: 38813692 PMCID: PMC11273301 DOI: 10.1242/dmm.050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Vertebrate photoreceptors are highly specialized retinal neurons that have cilium-derived membrane organelles called outer segments, which function as platforms for phototransduction. Male germ cell-associated kinase (MAK) is a cilium-associated serine/threonine kinase, and its genetic mutation causes photoreceptor degeneration in mice and retinitis pigmentosa in humans. However, the role of MAK in photoreceptors is not fully understood. Here, we report that zebrafish mak mutants show rapid photoreceptor degeneration during embryonic development. In mak mutants, both cone and rod photoreceptors completely lacked outer segments and underwent apoptosis. Interestingly, zebrafish mak mutants failed to generate axonemes during photoreceptor ciliogenesis, whereas basal bodies were specified. These data suggest that Mak contributes to axoneme development in zebrafish, in contrast to mouse Mak mutants, which have elongated photoreceptor axonemes. Furthermore, the kinase activity of Mak was found to be critical in ciliary axoneme development and photoreceptor survival. Thus, Mak is required for ciliogenesis and outer segment formation in zebrafish photoreceptors to ensure intracellular protein transport and photoreceptor survival.
Collapse
Affiliation(s)
- Hung-Ju Chiang
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Yuko Nishiwaki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Wei-Chieh Chiang
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
5
|
Li M, Zhang J, Zhou H, Xiang R. Primary Cilia-Related Pathways Moderate the Development and Therapy Resistance of Glioblastoma. Front Oncol 2021; 11:718995. [PMID: 34513696 PMCID: PMC8426355 DOI: 10.3389/fonc.2021.718995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
As microtubule-based structures, primary cilia are typically present on the cells during the G0 or G1-S/G2 phase of the cell cycle and are closely related to the development of the central nervous system. The presence or absence of this special organelle may regulate the central nervous system tumorigenesis (e.g., glioblastoma) and several degenerative diseases. Additionally, the development of primary cilia can be regulated by several pathways. Conversely, primary cilia are able to regulate a few signaling transduction pathways. Therefore, development of the central nervous system tumors in conjunction with abnormal cilia can be regulated by up- or downregulation of the pathways related to cilia and ciliogenesis. Here, we review some pathways related to ciliogenesis and tumorigenesis, aiming to provide a potential target for developing new therapies at genetic and molecular levels.
Collapse
Affiliation(s)
- Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxun Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Zhou
- School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
6
|
Cheng WC, Wang HJ. Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer. Tzu Chi Med J 2021; 33:224-232. [PMID: 34386358 PMCID: PMC8323647 DOI: 10.4103/tcmj.tcmj_220_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 11/15/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal malignancy of prostate cancer (PCa). Treatment with next-generation androgen receptor (AR) pathway inhibitors (ARPIs) has successfully extended patients' lifespan. However, with the emergence of drug resistance, PCa tumors increasingly adapt to potent ARPI therapies by transitioning to alternative cellular lineage. Such therapy-induced drug resistance is largely driven from the cellular plasticity of PCa cells to alter their phenotypes of AR independence for cell growth and survival. Some of the resistant PCa cells undergo cellular reprogramming to form neuroendocrine phenotypes. Recent evidences suggest that this cellular reprogramming or the lineage plasticity is driven by dysregulation of the epigenome and transcriptional networks. Aberrant DNA methylation and altered expression of epigenetic modifiers, such as enhancer of zeste-homolog 2, transcription factors, histone demethylases, are hallmarks of NEPC. In this review, we discuss the nature of the epigenetic and transcriptional landscapes of PCa cells which lose their AR independence and transition to the neuroendocrine lineage. We also discuss how oncogenic signaling and metabolic reprogramming fuel epigenetic and transcriptional alterations. In addition, the current state of epigenetic therapies for NEPC is addressed.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- SDGs Teaching and Research Headquarters, Tzu Chi University, Hualien, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
7
|
Warecki B, Ling X, Bast I, Sullivan W. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels. J Cell Biol 2020; 219:133702. [PMID: 32032426 PMCID: PMC7054997 DOI: 10.1083/jcb.201905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Mitotic cells must form a single nucleus during telophase or exclude part of their genome as damage-prone micronuclei. While research has detailed how micronuclei arise from cells entering anaphase with lagging chromosomes, cellular mechanisms allowing late-segregating chromosomes to rejoin daughter nuclei remain underexplored. Here, we find that late-segregating acentric chromosome fragments that rejoin daughter nuclei are associated with nuclear membrane but devoid of lamin and nuclear pore complexes in Drosophila melanogaster. We show that acentrics pass through membrane-, lamin-, and nuclear pore-based channels in the nuclear envelope that extend and retract as acentrics enter nuclei. Membrane encompassing the acentrics fuses with the nuclear membrane, facilitating integration of the acentrics into newly formed nuclei. Fusion, mediated by the membrane fusion protein Comt/NSF and ESCRT-III components Shrub/CHMP4B and CHMP2B, facilitates reintegration of acentrics into nuclei. These results suggest a previously unsuspected role for membrane fusion, similar to nuclear repair, in the formation of a single nucleus during mitotic exit and the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Xi Ling
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
8
|
Jiang S, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiol Genomics 2020; 52:305-313. [PMID: 32538278 DOI: 10.1152/physiolgenomics.00022.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Contamination with polycyclic aromatic hydrocarbons (PAHs) causes noticeable ecological problems in aquatic ecosystems. 9,10-Phenanthrenequione (9,10-PQ) is an oxidized PAH and is highly toxic to aquatic animals. However, the effects of 9,10-PQ on the molecular metabolism of fish remain largely unknown. In this study, Takifugu obscurus juveniles were acutely exposed to 44.30 µg/L 9,10-PQ for 3 days. The transcriptome profile changes in their livers were compared between the 9,10-PQ treatment group and the control using T. rubripes as the reference genome. The results identified 22,414 genes in our transcriptome. Among them, 767 genes were differentially expressed after exposure to 9,10-PQ, which enriched 16 KEGG pathways. Among them, the glycolysis, phagosome, and FOXO signaling pathways were significantly activated in 9,10-PQ treatment compared with the control. These data indicate that 9,10-PQ increased the glycolysis capacity to produce more energy for resistance and harmed immune function. Moreover, several genes related to tumorigenesis were significantly upregulated in response to 9,10-PQ, displaying the carcinogenic toxicity of 9,10-PQ to T. obscurus. Genes in steroid biosynthesis pathways were downregulated in the 9,10-PQ treatment group, suggesting interference with the endocrine system. Overall, these findings provide information to help evaluate the environmental risks that oxygenated-PAHs present to T. obscurus.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
9
|
Fu Z, Gailey CD, Wang EJ, Brautigan DL. Ciliogenesis associated kinase 1: targets and functions in various organ systems. FEBS Lett 2019; 593:2990-3002. [PMID: 31506943 DOI: 10.1002/1873-3468.13600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Ciliogenesis associated kinase 1 (CILK1) was previously known as intestinal cell kinase because it was cloned from that origin. However, CILK1 is now recognized as a widely expressed and highly conserved serine/threonine protein kinase. Mutations in the human CILK1 gene have been associated with ciliopathies, a group of human genetic disorders with defects in the primary cilium. In mice, both Cilk1 knock-out and Cilk1 knock-in mutations have recapitulated human ciliopathies. Thus, CILK1 has a fundamental role in the function of the cilium. Several candidate substrates have been proposed for CILK1 and the challenge is to relate these to the mutant phenotypes. In this review, we summarize what is known about CILK1 functions and targets, and discuss gaps in current knowledge that motivate further experimentation to fully understand the role of CILK1 in organ development in humans.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Casey D Gailey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Eric J Wang
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Jiang YY, Maier W, Baumeister R, Minevich G, Joachimiak E, Wloga D, Ruan Z, Kannan N, Bocarro S, Bahraini A, Vasudevan KK, Lechtreck K, Orias E, Gaertig J. LF4/MOK and a CDK-related kinase regulate the number and length of cilia in Tetrahymena. PLoS Genet 2019; 15:e1008099. [PMID: 31339880 PMCID: PMC6682161 DOI: 10.1371/journal.pgen.1008099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/05/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022] Open
Abstract
The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Wolfgang Maier
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Bio 3/Bioinformatics and Molecular Genetics, Faculty of Biology and ZBMZ, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen Bocarro
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Anoosh Bahraini
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Krishna Kumar Vasudevan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
11
|
Mok MT, Zhou J, Tang W, Zeng X, Oliver AW, Ward SE, Cheng AS. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol Ther 2018; 186:138-151. [PMID: 29360538 DOI: 10.1016/j.pharmthera.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 20 (CDK20), or more commonly referred to as cell cycle-related kinase (CCRK), is the latest member of CDK family with strong linkage to human cancers. Accumulating studies have reported the consistent overexpression of CCRK in cancers arising from brain, colon, liver, lung and ovary. Such aberrant up-regulation of CCRK is clinically significant as it correlates with tumor staging, shorter patient survival and poor prognosis. Intriguingly, the signalling molecules perturbed by CCRK are divergent and cancer-specific, including the cell cycle regulators CDK2, cyclin D1, cyclin E and RB in glioblastoma, ovarian carcinoma and colorectal cancer, and KEAP1-NRF2 cytoprotective pathway in lung cancer. In hepatocellular carcinoma (HCC), CCRK mediates virus-host interaction to promote hepatitis B virus-associated tumorigenesis. Further mechanistic analyses reveal that CCRK orchestrates a self-reinforcing circuitry comprising of AR, GSK3β, β-catenin, AKT, EZH2, and NF-κB signalling for transcriptional and epigenetic regulation of oncogenes and tumor suppressor genes. Notably, EZH2 and NF-κB in this circuit have been recently shown to induce IL-6 production to facilitate tumor immune evasion. Concordantly, in a hepatoma preclinical model, ablation of Ccrk disrupts the immunosuppressive tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade via potentiation of anti-tumor T cell responses. In this review, we summarized the multifaceted tumor-intrinsic and -extrinsic functions of CCRK, which represents a novel signalling hub exploitable in cancer immunotherapy.
Collapse
Affiliation(s)
- Myth T Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Cardiff, Wales, CF10 3AT, UK
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Yi P, Xie C, Ou G. The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility inCaenorhabditis elegansneuronal cilia. Traffic 2018; 19:522-535. [DOI: 10.1111/tra.12572] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science; Tsinghua University; Beijing China
| |
Collapse
|
13
|
Mervin LH, Cao Q, Barrett IP, Firth MA, Murray D, McWilliams L, Haddrick M, Wigglesworth M, Engkvist O, Bender A. Understanding Cytotoxicity and Cytostaticity in a High-Throughput Screening Collection. ACS Chem Biol 2016; 11:3007-3023. [PMID: 27571164 DOI: 10.1021/acschembio.6b00538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While mechanisms of cytotoxicity and cytostaticity have been studied extensively from the biological side, relatively little is currently understood regarding areas of chemical space leading to cytotoxicity and cytostasis in large compound collections. Predicting and rationalizing potential adverse mechanism-of-actions (MoAs) of small molecules is however crucial for screening library design, given the link of even low level cytotoxicity and adverse events observed in man. In this study, we analyzed results from a cell-based cytotoxicity screening cascade, comprising 296 970 nontoxic, 5784 cytotoxic and cytostatic, and 2327 cytostatic-only compounds evaluated on the THP-1 cell-line. We employed an in silico MoA analysis protocol, utilizing 9.5 million active and 602 million inactive bioactivity points to generate target predictions, annotate predicted targets with pathways, and calculate enrichment metrics to highlight targets and pathways. Predictions identify known mechanisms for the top ranking targets and pathways for both phenotypes after review and indicate that while processes involved in cytotoxicity versus cytostaticity seem to overlap, differences between both phenotypes seem to exist to some extent. Cytotoxic predictions highlight many kinases, including the potentially novel cytotoxicity-related target STK32C, while cytostatic predictions outline targets linked with response to DNA damage, metabolism, and cytoskeletal machinery. Fragment analysis was also employed to generate a library of toxicophores to improve general understanding of the chemical features driving toxicity. We highlight substructures with potential kinase-dependent and kinase-independent mechanisms of toxicity. We also trained a cytotoxic classification model on proprietary and public compound readouts, and prospectively validated these on 988 novel compounds comprising difficult and trivial testing instances, to establish the applicability domain of models. The proprietary model performed with precision and recall scores of 77.9% and 83.8%, respectively. The MoA results and top ranking substructures with accompanying MoA predictions are available as a platform to assess screening collections.
Collapse
Affiliation(s)
- Lewis H. Mervin
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Qing Cao
- Discovery Sciences, AstraZeneca R&D, Waltham, United States
| | - Ian P. Barrett
- Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, United Kingdom
| | - Mike A. Firth
- Discovery Sciences, AstraZeneca R&D, Cambridge Science Park, Cambridge, United Kingdom
| | - David Murray
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Malcolm Haddrick
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Mark Wigglesworth
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, United Kingdom
| | - Ola Engkvist
- Discovery Sciences, AstraZeneca R&D, Mölndal, Sweden
| | - Andreas Bender
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Paige Taylor S, Kunova Bosakova M, Varecha M, Balek L, Barta T, Trantirek L, Jelinkova I, Duran I, Vesela I, Forlenza KN, Martin JH, Hampl A, Bamshad M, Nickerson D, Jaworski ML, Song J, Ko HW, Cohn DH, Krakow D, Krejci P. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum Mol Genet 2016; 25:3998-4011. [PMID: 27466187 DOI: 10.1093/hmg/ddw240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022] Open
Abstract
The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.
Collapse
Affiliation(s)
- S Paige Taylor
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Iva Vesela
- Institute of Experimental Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge H Martin
- Department of Orthopaedic Surgery.,Department of Human Genetics.,Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | | | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Jieun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Korea
| | - Daniel H Cohn
- Department of Orthopaedic Surgery.,International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Deborah Krakow
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA .,Department of Orthopaedic Surgery.,International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,Department of Orthopaedic Surgery.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
15
|
Devi AN, Anil Kumar TR, Pillai SM, Jayakrishnan K, Kumar PG. Expression profiles of NPHP1 in the germ cells in the semen of men with male factor infertility. Andrology 2015. [DOI: 10.1111/andr.12062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- A. N. Devi
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - T. R. Anil Kumar
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - S. M. Pillai
- Samad IVF Hospital; Thiruvananthapuram Kerala India
| | | | - P. G. Kumar
- Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| |
Collapse
|
16
|
Tanneeru K, Balla AR, Guruprasad L. In silico3D structure modeling and inhibitor binding studies of human male germ cell-associated kinase. J Biomol Struct Dyn 2014; 33:1710-9. [DOI: 10.1080/07391102.2014.968622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Distinct expression patterns of ICK/MAK/MOK protein kinases in the intestine implicate functional diversity. PLoS One 2013; 8:e79359. [PMID: 24244486 PMCID: PMC3820702 DOI: 10.1371/journal.pone.0079359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/29/2013] [Indexed: 02/07/2023] Open
Abstract
ICK/MRK (intestinal cell kinase/MAK-related kinase), MAK (male germ cell-associated kinase), and MOK (MAPK/MAK/MRK-overlapping kinase) are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.
Collapse
|
18
|
Yang Y, Roine N, Mäkelä TP. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep 2013; 14:741-7. [PMID: 23743448 DOI: 10.1038/embor.2013.80] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/01/2013] [Accepted: 05/16/2013] [Indexed: 01/09/2023] Open
Abstract
Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | | | | |
Collapse
|
19
|
Penas C, Ramachandran V, Ayad NG. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2012; 1:60. [PMID: 22655255 PMCID: PMC3356048 DOI: 10.3389/fonc.2011.00060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C's cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
Collapse
Affiliation(s)
- Clara Penas
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | |
Collapse
|