1
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
2
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
3
|
Schwab K, Coronel L, Riege K, Sacramento EK, Rahnis N, Häckes D, Cirri E, Groth M, Hoffmann S, Fischer M. Multi-omics analysis identifies RFX7 targets involved in tumor suppression and neuronal processes. Cell Death Discov 2023; 9:80. [PMID: 36864036 PMCID: PMC9981735 DOI: 10.1038/s41420-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recurrently mutated in lymphoid neoplasms, the transcription factor RFX7 is emerging as a tumor suppressor. Previous reports suggested that RFX7 may also have a role in neurological and metabolic disorders. We recently reported that RFX7 responds to p53 signaling and cellular stress. Furthermore, we found RFX7 target genes to be dysregulated in numerous cancer types also beyond the hematological system. However, our understanding of RFX7's target gene network and its role in health and disease remains limited. Here, we generated RFX7 knock-out cells and employed a multi-omics approach integrating transcriptome, cistrome, and proteome data to obtain a more comprehensive picture of RFX7 targets. We identify novel target genes linked to RFX7's tumor suppressor function and underscoring its potential role in neurological disorders. Importantly, our data reveal RFX7 as a mechanistic link that enables the activation of these genes in response to p53 signaling.
Collapse
Affiliation(s)
- Katjana Schwab
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Luis Coronel
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Erika K. Sacramento
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Norman Rahnis
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Emilio Cirri
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Marco Groth
- grid.418245.e0000 0000 9999 5706Core Facility for Next-Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Steve Hoffmann
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
4
|
Samdani MN, Reza R, Morshed N, Asaduzzaman M, Islam ABMMK. Ligand-based modelling for screening natural compounds targeting Minichromosome Maintenance Complex Component-7 for potential anticancer effects. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2022.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
6
|
Shaikh N, Mazzagatti A, De Angelis S, Johnson SC, Bakker B, Spierings DCJ, Wardenaar R, Maniati E, Wang J, Boemo MA, Foijer F, McClelland SE. Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. Genome Biol 2022; 23:223. [PMID: 36266663 PMCID: PMC9583511 DOI: 10.1186/s13059-022-02781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major driver of cancer chromosomal instability is replication stress, the slowing or stalling of DNA replication. How replication stress and genomic instability are connected is not known. Aphidicolin-induced replication stress induces breakages at common fragile sites, but the exact causes of fragility are debated, and acute genomic consequences of replication stress are not fully explored. RESULTS We characterize DNA copy number alterations (CNAs) in single, diploid non-transformed cells, caused by one cell cycle in the presence of either aphidicolin or hydroxyurea. Multiple types of CNAs are generated, associated with different genomic regions and features, and observed copy number landscapes are distinct between aphidicolin and hydroxyurea-induced replication stress. Coupling cell type-specific analysis of CNAs to gene expression and single-cell replication timing analyses pinpointed the causative large genes of the most recurrent chromosome-scale CNAs in aphidicolin. These are clustered on chromosome 7 in RPE1 epithelial cells but chromosome 1 in BJ fibroblasts. Chromosome arm level CNAs also generate acentric lagging chromatin and micronuclei containing these chromosomes. CONCLUSIONS Chromosomal instability driven by replication stress occurs via focal CNAs and chromosome arm scale changes, with the latter confined to a very small subset of chromosome regions, potentially heavily skewing cancer genome evolution. Different inducers of replication stress lead to distinctive CNA landscapes providing the opportunity to derive copy number signatures of specific replication stress mechanisms. Single-cell CNA analysis thus reveals the impact of replication stress on the genome, providing insights into the molecular mechanisms which fuel chromosomal instability in cancer.
Collapse
Affiliation(s)
- Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alice Mazzagatti
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Simone De Angelis
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sarah C Johnson
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
- Current address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael A Boemo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
Matsukawa T, Yin M, Baslan T, Chung YJ, Cao D, Bertoli R, Zhu YJ, Walker RL, Freeland A, Knudsen E, Lowe SW, Meltzer PS, Aplan PD. Mcm2 hypomorph leads to acute leukemia or hematopoietic stem cell failure, dependent on genetic context. FASEB J 2022; 36:e22430. [PMID: 35920299 PMCID: PMC9377154 DOI: 10.1096/fj.202200061rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Erik Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Coronel L, Riege K, Schwab K, Förste S, Häckes D, Semerau L, Bernhart SH, Siebert R, Hoffmann S, Fischer M. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Res 2021; 49:7437-7456. [PMID: 34197623 PMCID: PMC8287911 DOI: 10.1093/nar/gkab575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7’s role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.
Collapse
Affiliation(s)
- Luis Coronel
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Katjana Schwab
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Silke Förste
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Lena Semerau
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
9
|
Zhou J, Wang M, Zhou Z, Wang W, Duan J, Wu G. Expression and Prognostic Value of MCM Family Genes in Osteosarcoma. Front Mol Biosci 2021; 8:668402. [PMID: 34239894 PMCID: PMC8257954 DOI: 10.3389/fmolb.2021.668402] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a detailed cancer VS normal analysis to explore the expression and prognostic value of minichromosome maintenance (MCM) proteinsin human sarcoma. The mRNA expression levels of the MCM family genes in sarcoma were analyzed using data from ONCOMINE, GEPIA and CCLE databases. KEGG database was used to analyze the function of MCM2–7 complex in DNA replication and cell cycle. QRT-PCR and western blot were used to confirm the differential expression of key MCMs in osteosarcoma cell lines. Cell Counting Kit-8 and flow cytometry method were used to detect the cell proliferation and apoptosis of hFOB1.19 cells. The results showed that MCM1–7 and MCM10 were all upregulated in sarcoma in ONCOMINE database. MCM2, and MCM4–7 were highly expressed in sarcoma in GEPIA database. Moreover, all these ten factors were highly expressed in sarcoma cell lines. Furthermore, we analyzed the prognostic value of MCMs for sarcoma in GEPIA and found that MCM2, MCM3, MCM4, and MCM10 are prognostic biomarkers for human sarcoma. Analysis results using KEGG datasets showed that MCM4 and MCM6–7 constituted a core structure of MCM2-7 hexamers. We found that AzadC treatment and overexpression of MCM4 significantly promoted hFOB1.19 cell proliferation and inhibited apoptosis. The present study implied that MCM2–4 and 10 are potential biomarkers for the prognosis of sarcoma. The prognostic role of MCM4 may be attributable to the change in its DNA methylation patterns.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Shin HY, Han KS, Park HW, Hong YH, Kim Y, Moon HE, Park KW, Park HR, Lee CJ, Lee K, Kim SJ, Heo MS, Park SH, Kim DG, Paek SH. Tumor Spheroids of an Aggressive Form of Central Neurocytoma Have Transit-Amplifying Progenitor Characteristics with Enhanced EGFR and Tumor Stem Cell Signaling. Exp Neurobiol 2021; 30:120-143. [PMID: 33972466 PMCID: PMC8118755 DOI: 10.5607/en21004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Central neurocytoma (CN) has been known as a benign neuronal tumor. In rare cases, CN undergoes malignant transformation to glioblastomas (GBM). Here we examined its cellular origin by characterizing differentiation potential and gene expression of CN-spheroids. First, we demonstrate that both CN tissue and cultured primary cells recapitulate the hierarchal cellular composition of subventricular zone (SVZ), which is comprised of neural stem cells (NSCs), transit amplifying progenitors (TAPs), and neuroblasts. We then derived spheroids from CN which displayed EGFR+/MASH+ TAP and BLBP+ radial glial cell (RGC) characteristic, and mitotic neurogenesis and gliogenesis by single spheroids were observed with cycling multipotential cells. CN-spheroids expressed increased levels of pluripotency and tumor stem cell genes such as KLF4 and TPD5L1, when compared to their differentiated cells and human NSCs. Importantly, Gene Set Enrichment Analysis showed that gene sets of GBM-Spheroids, EGFR Signaling, and Packaging of Telomere Ends are enriched in CN-spheroids in comparison with their differentiated cells. We speculate that CN tumor stem cells have TAP and RGC characteristics, and upregulation of EGFR signaling as well as downregulation of eph-ephrin signaling have critical roles in tumorigenesis of CN. And their ephemeral nature of TAPs destined to neuroblasts, might reflect benign nature of CN.
Collapse
Affiliation(s)
- Hye Young Shin
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Kyung-Seok Han
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Yun Hwa Hong
- Department of Neurophysiology, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Yona Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Kwang Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Hye Ran Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Kiyoung Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Sang Jeong Kim
- Department of Neurophysiology, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Man Seung Heo
- Smart Healthcare Medical Device Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 03082, Korea.,Ischemic/Hypoxic Disease Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03082, Korea.,Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| |
Collapse
|
11
|
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet 2021; 37:317-336. [DOI: 10.1016/j.tig.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022]
|
12
|
Tottone L, Lancho O, Loh JW, Singh A, Kimura S, Roels J, Kuchmiy A, Strubbe S, Lawlor MA, da Silva-Diz V, Luo S, Gachet S, García-Prieto CA, Hagelaar R, Esteller M, Meijerink JPP, Soulier J, Taghon T, Van Vlierberghe P, Mullighan CG, Khiabanian H, Rocha PP, Herranz D. A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. Blood Cancer Discov 2020; 2:92-109. [PMID: 33458694 DOI: 10.1158/2643-3230.bcd-20-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.
Collapse
Affiliation(s)
- Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jui-Wan Loh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Matthew A Lawlor
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Stéphanie Gachet
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Carlos A García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | | | - Jean Soulier
- INSERM U944 and University de Paris, Hopital Saint-Louis, Paris, France
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
13
|
MCM family in gastrointestinal cancer and other malignancies: From functional characterization to clinical implication. Biochim Biophys Acta Rev Cancer 2020; 1874:188415. [PMID: 32822825 DOI: 10.1016/j.bbcan.2020.188415] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Despite the recent advances in cancer research and treatment, gastrointestinal (GI) cancers remain the most common deadly disease worldwide. The aberrant DNA replication serves as a major source of genomic instability and enhances cell proliferation that contributes to tumor initiation and progression. Minichromosome maintenance family (MCMs) is a well-recognized group of proteins responsible for DNA synthesis. Recent studies suggested that dysregulated MCMs lead to tumor initiation, progression, and chemoresistance via modulating cell cycle and DNA replication stress. Their underlying mechanisms in various cancer types have been gradually identified. Furthermore, multiple studies have investigated the association between MCMs expression and clinicopathological features of cancer patients, implying that MCMs might serve as prominent prognostic biomarkers for GI cancers. This review summarizes the current knowledge on the oncogenic role of MCM proteins and highlights their clinical implications in various malignancies, especially in GI cancers. Targeting MCMs might shed light on the potential for identifying novel therapeutic strategies.
Collapse
|
14
|
MCMs in Cancer: Prognostic Potential and Mechanisms. Anal Cell Pathol (Amst) 2020; 2020:3750294. [PMID: 32089988 PMCID: PMC7023756 DOI: 10.1155/2020/3750294] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Enabling replicative immortality and uncontrolled cell cycle are hallmarks of cancer cells. Minichromosome maintenance proteins (MCMs) exhibit helicase activity in replication initiation and play vital roles in controlling replication times within a cell cycle. Overexpressed MCMs are detected in various cancerous tissues and cancer cell lines. Previous studies have proposed MCMs as promising proliferation markers in cancers, while the prognostic values remain controversial and the underlying mechanisms remain unascertained. This review provides an overview of the significant findings regarding the cellular and tumorigenic functions of the MCM family. Besides, current evidence of the prognostic roles of MCMs is retrospectively reviewed. This work also offers insight into the mechanisms of MCMs prompting carcinogenesis and adverse prognosis, providing information for future research. Finally, MCMs in liver cancer are specifically discussed, and future perspectives are provided.
Collapse
|
15
|
Yin M, Baslan T, Walker RL, Zhu YJ, Freeland A, Matsukawa T, Sridharan S, Nussenzweig A, Pruitt SC, Lowe SW, Meltzer PS, Aplan PD. A unique mutator phenotype reveals complementary oncogenic lesions leading to acute leukemia. JCI Insight 2019; 4:131434. [PMID: 31622281 PMCID: PMC6962024 DOI: 10.1172/jci.insight.131434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mice homozygous for a hypomorphic allele of DNA replication factor minichromosome maintenance protein 2 (designated Mcm2cre/cre) develop precursor T cell lymphoblastic leukemia/lymphoma (pre-T LBL) with 4-32 small interstitial deletions per tumor. Mice that express a NUP98-HOXD13 (NHD13) transgene develop multiple types of leukemia, including myeloid and T and B lymphocyte. All Mcm2cre/cre NHD13+ mice develop pre-T LBL, and 26% develop an unrelated, concurrent B cell precursor acute lymphoblastic leukemia (BCP-ALL). Copy number alteration (CNA) analysis demonstrated that pre-T LBLs were characterized by homozygous deletions of Pten and Tcf3 and partial deletions of Notch1 leading to Notch1 activation. In contrast, BCP-ALLs were characterized by recurrent deletions involving Pax5 and Ptpn1 and copy number gain of Abl1 and Nup214 resulting in a Nup214-Abl1 fusion. We present a model in which Mcm2 deficiency leads to replicative stress, DNA double strand breaks (DSBs), and resultant CNAs due to errors in DNA DSB repair. CNAs that involve critical oncogenic pathways are then selected in vivo as malignant lymphoblasts because of a fitness advantage. Some CNAs, such as those involving Abl1 and Notch1, represent attractive targets for therapy.
Collapse
Affiliation(s)
- Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Steven C Pruitt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
17
|
Kucherlapati M. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes. BMC Cancer 2018; 18:818. [PMID: 30107825 PMCID: PMC6092802 DOI: 10.1186/s12885-018-4705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed. Methods Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test. Results Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation. Conclusion The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur NRB 160B, Boston, 02115, MA, USA.
| |
Collapse
|
18
|
Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell 2018; 174:1127-1142.e19. [PMID: 30078706 DOI: 10.1016/j.cell.2018.07.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.
Collapse
|
19
|
Castro W, Chelbi ST, Niogret C, Ramon-Barros C, Welten SPM, Osterheld K, Wang H, Rota G, Morgado L, Vivier E, Raeber ME, Boyman O, Delorenzi M, Barras D, Ho PC, Oxenius A, Guarda G. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat Immunol 2018; 19:809-820. [PMID: 29967452 DOI: 10.1038/s41590-018-0144-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
Regulatory factor X 7 (Rfx7) is an uncharacterized transcription factor belonging to a family involved in ciliogenesis and immunity. Here, we found that deletion of Rfx7 leads to a decrease in natural killer (NK) cell maintenance and immunity in vivo. Genomic approaches showed that Rfx7 coordinated a transcriptional network controlling cell metabolism. Rfx7-/- NK lymphocytes presented increased size, granularity, proliferation, and energetic state, whereas genetic reduction of mTOR activity mitigated those defects. Notably, Rfx7-deficient NK lymphocytes were rescued by interleukin 15 through engagement of the Janus kinase (Jak) pathway, thus revealing the importance of this signaling for maintenance of such spontaneously activated NK cells. Rfx7 therefore emerges as a novel transcriptional regulator of NK cell homeostasis and metabolic quiescence.
Collapse
Affiliation(s)
- Wilson Castro
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sonia T Chelbi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | - Kevin Osterheld
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Haiping Wang
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, Marseille, France
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Barras
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping-Chih Ho
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Greta Guarda
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland. .,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
20
|
DNA replication stress restricts ribosomal DNA copy number. PLoS Genet 2017; 13:e1007006. [PMID: 28915237 PMCID: PMC5617229 DOI: 10.1371/journal.pgen.1007006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/27/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. Eukaryotic genomes contain many copies of ribosomal DNA (rDNA) genes, usually far in excess of the requirement for cellular ribosome biogenesis. rDNA array size is highly variable, both within and across species. Although it is becoming increasingly evident that the rDNA locus serves extra-coding functions, and several pathways that contribute to maintenance of normal rDNA copy number have been discovered, the mechanisms that determine optimal rDNA array size in a cell remain unknown. Here we identify DNA replication stress as one factor that restricts rDNA copy number. We present evidence suggesting that DNA replication stress selects for cells with smaller rDNA arrays, and that contraction of the rDNA array provides a selective advantage to cells under conditions of DNA replication stress. Loss of rDNA copies may be a useful indicator of a history of replication stress, as observed in a mouse model for cancer.
Collapse
|
21
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
22
|
Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 2017. [PMID: 28640831 PMCID: PMC5480814 DOI: 10.1371/journal.pgen.1006771] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments. The ribosomal DNA encodes the RNAs needed to make ribosomes for protein synthesis and cellular proliferation. However, ribosomal DNA has been excluded from most mammalian genome-wide studies due to challenges associated with its analysis. We find that both the sequence and copy number of the ribosomal DNA can change in human cancer genomes. mTOR is a kinase that senses the nutritional environment and is often over-active in cancer. Given mutational evidence for mTOR activation in the human cancer genomes with loss of ribosomal DNA copies, we analyzed ribosomal DNA in hematopoietic stem cells derived from mice under conditions of mTOR activation. Like the human cancer genomes, the ribosomal DNA copy number contracts in mTOR activated hematopoietic stem cells relative to normal stem cells. Loss is associated with high rates of cellular proliferation, rRNA production, and protein synthesis, but compromised survival in the presence of DNA damage. Contractions are a recurrent feature in cancer genomes with overactive mTOR and may predict sensitivity to DNA damaging chemotherapeutics. Ribosomal DNA may be altered in other disease contexts.
Collapse
Affiliation(s)
- Baoshan Xu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - John M. Perry
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Vijay Pratap Singh
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Musinu Zakari
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William McDowell
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Linheng Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- University of Kansas School of Medicine, Department of Pathology and Laboratory Medicine, Kansas City, Kansas, United States of America
| | - Jennifer L. Gerton
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- University of Kansas School of Medicine, Department of Biochemistry and Molecular Biology, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Pruitt SC, Qin M, Wang J, Kunnev D, Freeland A. A Signature of Genomic Instability Resulting from Deficient Replication Licensing. PLoS Genet 2017; 13:e1006547. [PMID: 28045896 PMCID: PMC5242545 DOI: 10.1371/journal.pgen.1006547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/18/2017] [Accepted: 12/19/2016] [Indexed: 11/23/2022] Open
Abstract
Insufficient licensing of DNA replication origins has been shown to result in genome instability, stem cell deficiency, and cancers. However, it is unclear whether the DNA damage resulting from deficient replication licensing occurs generally or if specific sites are preferentially affected. To map locations of ongoing DNA damage in vivo, the DNAs present in red blood cell micronuclei were sequenced. Many micronuclei are the product of DNA breaks that leave acentromeric remnants that failed to segregate during mitosis and should reflect the locations of breaks. To validate the approach we show that micronuclear sequences identify known common fragile sites under conditions that induce breaks at these locations (hydroxyurea). In MCM2 deficient mice a different set of preferred breakage sites is identified that includes the tumor suppressor gene Tcf3, which is known to contribute to T-lymphocytic leukemias that arise in these mice, and the 45S rRNA gene repeats. Many RBC micronuclei result from double strand DNA breaks that give rise to acentromeric chromosomal fragments that fail to incorporate into nuclei during mitosis and consequently remain in the cell following enucleation. Here, RBC micronuclear DNA is sequenced (Mic-Seq) to define the locations of breaks genome-wide and this assay is used to study ongoing genome instability resulting from insufficient DNA replication origin licensing. Using a mouse model, we show that there is increased instability at discrete sites across the genome, which include genes that are recurrently deleted in the T-lymphocytic leukemias that eventually arise in these mice. Mic-Seq may provide an effective means of predicting locations that are susceptible to genetic damage and these predictions may have prognostic value.
Collapse
Affiliation(s)
- Steven C. Pruitt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| | - Maochun Qin
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Dimiter Kunnev
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| |
Collapse
|
24
|
Labonne JDJ, Lee KH, Iwase S, Kong IK, Diamond MP, Layman LC, Kim CH, Kim HG. An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. Hum Genet 2016; 135:757-71. [PMID: 27106595 DOI: 10.1007/s00439-016-1668-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022]
Abstract
Microdeletion syndromes are frequent causes of neuropsychiatric disorders leading to intellectual disability as well as autistic features accompanied by epilepsy and craniofacial anomalies. From comparative deletion mapping of the smallest microdeletion to date at 12q24.31, found in a patient with overlapping clinical features of 12q24.31 microdeletion syndrome, we narrowed the putative critical region to 445 kb containing seven genes, one microRNA, and one non-coding RNA. Zebrafish in situ hybridization and comprehensive transcript analysis of annotated genes in the panels of human organ and brain suggest that these are all candidates for neurological phenotypes excluding the gene HPD. This is also corroborated by synteny analysis revealing the conservation of the order of these six candidate genes between humans and zebrafish. Among them, we propose histone demethylase KDM2B and histone methyltransferase SETD1B as the two most plausible candidate genes involved in intellectual disability, autism, epilepsy, and craniofacial anomalies. These two chromatin modifiers located approximately 224 kb apart were both commonly deleted in six patients, while two additional patients had either KDM2B or SETD1B deleted. The four additional candidate genes (ORAI1, MORN3, TMEM120B, RHOF), a microRNA MIR548AQ, and a non-coding RNA LINC01089 are localized between KDM2B and SETD1B. The 12q24.31 microdeletion syndrome with syndromic intellectual disability extends the growing list of microdeletion syndromes and underscores the causative roles of chromatin modifiers in cognitive and craniofacial development.
Collapse
Affiliation(s)
- Jonathan D J Labonne
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Il-Keun Kong
- Division of Applied Life Science (BK21plus), Department of Animal Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea
| | - Michael P Diamond
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, 30912, USA
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, 30912, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
25
|
Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol 2016; 96:447-60. [DOI: 10.1111/ejh.12722] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Renato Bassan
- Unità Operativa Complessa di Ematologia; Ospedale dell'Angelo & Ospedale SS. Giovanni e Paolo; Mestre-Venezia Italy
| | - Elena Maino
- Unità Operativa Complessa di Ematologia; Ospedale dell'Angelo & Ospedale SS. Giovanni e Paolo; Mestre-Venezia Italy
| | | |
Collapse
|
26
|
PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Rep 2015; 13:1295-1303. [DOI: 10.1016/j.celrep.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
|
27
|
Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, Pruitt SC. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res 2015; 25:558-69. [PMID: 25762552 PMCID: PMC4381527 DOI: 10.1101/gr.176099.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 01/26/2015] [Indexed: 12/27/2022]
Abstract
Minichromosome maintenance (MCM) proteins are loaded onto chromatin during G1-phase and define potential locations of DNA replication initiation. MCM protein deficiency results in genome instability and high rates of cancer in mouse models. Here we develop a method of nascent strand capture and release and show that MCM2 deficiency reduces DNA replication initiation in gene-rich regions of the genome. DNA structural properties are shown to correlate with sequence motifs associated with replication origins and with locations that are preferentially affected by MCM2 deficiency. Reduced nascent strand density correlates with sites of recurrent focal CNVs in tumors arising in MCM2-deficient mice, consistent with a direct relationship between sites of reduced DNA replication initiation and genetic damage. Between 10% and 90% of human tumors, depending on type, carry heterozygous loss or mutation of one or more MCM2-7 genes, which is expected to compromise DNA replication origin licensing and result in elevated rates of genome damage at a subset of gene-rich locations.
Collapse
Affiliation(s)
| | | | - Maochun Qin
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Robert W Leach
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
28
|
Zheng J. Diagnostic value of MCM2 immunocytochemical staining in cervical lesions and its relationship with HPV infection. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:875-880. [PMID: 25755789 PMCID: PMC4348922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Cervical cancer remains the fourth most common cause of cancer-related deaths in women worldwide, and human papillomavirus infection represents the most important risk factor for the development of cervical cancer. Minichromosome maintenance protein-2 has been previously identified by DNA microarray and transcriptional profiling as genes that is overexpressed in cervical carcinomas. 183 cases were enrolled and tested with thin prep liquid-based cytology test. The expressions of human papillomavirus were detected and minichromosome maintenance protein-2 immuncytochemical test was performed on liquid-based pap smears from the samples. Those results were compared with the cervical histopathology results. The positive expression rates of minichromosome maintenance protein-2 and high-risk type human papillomavirus increased with the severity of cervical lesions. The expression level of MCM2 was positively correlated with high-risk types of human papillomavirus. In cervical carcinoma and precancerous lesions, minichromosome maintenance protein-2 was overexpressed and positively correlated with the high risk types of human papillomavirus. As minichromosome maintenance protein-2 immuncytochemical detection was better than genotyping of human papillomavirus, minichromosome maintenance protein-2 may serve as a useful marker in the screening of cervical carcinoma and precancerous lesions and improve the diagnosis of atypical squamous cell of undetermined significance. The joint application can improve the sensitivity and specificity of diagnosis.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Inner Mongolia Medical University 1 Channel North Road, Huimin District, Hohhot City, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
29
|
MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014; 2014:574850. [PMID: 25386362 PMCID: PMC4217321 DOI: 10.1155/2014/574850] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 12/03/2022] Open
Abstract
As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.
Collapse
|
30
|
Jia X, Miao Z, Li W, Zhang L, Feng C, He Y, Bi X, Wang L, Du Y, Hou M, Hao D, Xiao Y, Chen L, Li K. Cancer-risk module identification and module-based disease risk evaluation: a case study on lung cancer. PLoS One 2014; 9:e92395. [PMID: 24643254 PMCID: PMC3958511 DOI: 10.1371/journal.pone.0092395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Gene expression profiles have drawn broad attention in deciphering the pathogenesis of human cancers. Cancer-related gene modules could be identified in co-expression networks and be applied to facilitate cancer research and clinical diagnosis. In this paper, a new method was proposed to identify lung cancer-risk modules and evaluate the module-based disease risks of samples. The results showed that thirty one cancer-risk modules were closely related to the lung cancer genes at the functional level and interactional level, indicating that these modules and genes might synergistically lead to the occurrence of lung cancer. Our method was proved to have good robustness by evaluating the disease risk of samples in eight cancer expression profiles (four for lung cancer and four for other cancers), and had better performance than the WGCNA method. This method could provide assistance to the diagnosis and treatment of cancers and a new clue for explaining cancer mechanisms.
Collapse
Affiliation(s)
- Xu Jia
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Liangcai Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Chenchen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Xiaoman Bi
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Youwen Du
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Min Hou
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Dapeng Hao
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
- * E-mail: (LC); (KL)
| | - Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University,Harbin,Hei Longjiang Province, China
- * E-mail: (LC); (KL)
| |
Collapse
|
31
|
Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc Natl Acad Sci U S A 2014; 111:E672-81. [PMID: 24469795 DOI: 10.1073/pnas.1313580111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.
Collapse
|
32
|
Bagley BN, Keane TM, Maklakova VI, Marshall JG, Lester RA, Cancel MM, Paulsen AR, Bendzick LE, Been RA, Kogan SC, Cormier RT, Kendziorski C, Adams DJ, Collier LS. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis. PLoS Genet 2012; 8:e1003034. [PMID: 23133403 PMCID: PMC3486839 DOI: 10.1371/journal.pgen.1003034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022] Open
Abstract
Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.
Collapse
Affiliation(s)
- Bruce N. Bagley
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Thomas M. Keane
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Vilena I. Maklakova
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Jonathon G. Marshall
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Rachael A. Lester
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Michelle M. Cancel
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alex R. Paulsen
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Laura E. Bendzick
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Raha A. Been
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Scott C. Kogan
- Department of Laboratory Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Lara S. Collier
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| |
Collapse
|