1
|
Erichsen L, Kloss LDF, Thimm C, Bohndorf M, Schichel K, Wruck W, Adjaye J. Derivation of the Immortalized Cell Line UM51-PrePodo-hTERT and Its Responsiveness to Angiotensin II and Activation of the RAAS Pathway. Cells 2023; 12:342. [PMID: 36766685 PMCID: PMC9913089 DOI: 10.3390/cells12030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Recent demographic studies predict there will be a considerable increase in the number of elderly people within the next few decades. Aging has been recognized as one of the main risk factors for the world's most prevalent diseases such as neurodegenerative disorders, cancer, cardiovascular disease, and metabolic diseases. During the process of aging, a gradual loss of tissue volume and organ function is observed, which is partially caused by replicative senescence. The capacity of cellular proliferation and replicative senescence is tightly regulated by their telomere length. When telomere length is critically shortened with progressive cell division, cells become proliferatively arrested, and DNA damage response and cellular senescence are triggered, whereupon the "Hayflick limit" is attained at this stage. Podocytes are a cell type found in the kidney glomerulus where they have major roles in blood filtration. Mature podocytes are terminal differentiated cells that are unable to undergo cell division in vivo. For this reason, the establishment of primary podocyte cell cultures has been very challenging. In our present study, we present the successful immortalization of a human podocyte progenitor cell line, of which the primary cells were isolated directly from the urine of a 51-year-old male. The immortalized cell line was cultured over the course of one year (~100 passages) with high proliferation capacity, endowed with contact inhibition and P53 expression. Furthermore, by immunofluorescence-based expression and quantitative real-time PCR for the podocyte markers CD2AP, LMX1B, NPHS1, SYNPO and WT1, we confirmed the differentiation capacity of the immortalized cells. Finally, we evaluated and confirmed the responsiveness of the immortalized cells on the main mediator angiotensin II (ANGII) of the renin-angiotensin system (RAAS). In conclusion, we have shown that it is possible to bypass cellular replicative senescence (Hayflick limit) by TERT-driven immortalization of human urine-derived pre-podocyte cells from a 51-year-old African male.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Lea Doris Friedel Kloss
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Kira Schichel
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
- EGA Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
2
|
Pereiro X, Beriain S, Rodriguez L, Roiz-Valle D, Ruzafa N, Vecino E. Characteristics of Whale Müller Glia in Primary and Immortalized Cultures. Front Neurosci 2022; 16:854278. [PMID: 35360150 PMCID: PMC8964101 DOI: 10.3389/fnins.2022.854278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Müller cells are the principal glial cells in the retina and they assume many of the functions carried out by astrocytes, oligodendrocytes and ependymal cells in other regions of the central nervous system. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could fulfill important roles in preventing excitotoxic damage to retinal neurons. Vertebrate Müller cells are well-defined cells, characterized by a common set of features throughout the phylum. Nevertheless, several major differences have been observed among the Müller cells in distinct vertebrates, such as neurogenesis, the capacity to reprogram fish Müller glia to neurons. Here, the Müller glia of the largest adult mammal in the world, the whale, have been analyzed, and given the difficulties in obtaining cetacean cells for study, these whale glia were analyzed both in primary cultures and as immortalized whale Müller cells. After isolating the retina from the eye of a beached sei whale (Balaenoptera borealis), primary Müller cell cultures were established and once the cultures reached confluence, half of the cultures were immortalized with the simian virus 40 (SV40) large T-antigen commonly used to immortalize human cell lines. The primary cell cultures were grown until cells reached senescence. Expression of the principal molecular markers of Müller cells (GFAP, Vimentin and Glutamine synthetase) was studied in both primary and immortalized cells at each culture passage. Proliferation kinetics of the cells were analyzed by time-lapse microscopy: the time between divisions, the time that cells take to divide, and the proportion of dividing cells in the same field. The karyotypes of the primary and immortalized whale Müller cells were also characterized. Our results shown that W21M proliferate more rapidly and they have a stable karyotype. W21M cells display a heterogeneous cell morphology, less motility and a distinctive expression of some typical molecular markers of Müller cells, with an increase in dedifferentiation markers like α-SMA and β-III tubulin, while they preserve their GS expression depending on the culture passage. Here we also discuss the possible influence of the animal's age and size on these cells, and on their senescence.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Sandra Beriain
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Lara Rodriguez
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - David Roiz-Valle
- Department of Biochemistry and Molecular Biology, University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
3
|
Acute ischemic stroke triggers a cellular senescence-associated secretory phenotype. Sci Rep 2021; 11:15752. [PMID: 34344977 PMCID: PMC8333348 DOI: 10.1038/s41598-021-95344-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Senescent cells are capable of expressing a myriad of inflammatory cytokines and this pro-inflammatory phenomenon is known as senescence-associated secretory phenotype (SASP). The contribution of this phenomenon in brain ischemia was scarce. A mouse model of transient focal cerebral ischemia by compressing the distal middle cerebral artery (tMCAo) for 60 min was used. SASP, pro-inflammatory cytokines and cell cycle mRNAs levels were quantified at 30-min and 72 h post-surgery. Immunohistochemistry in paraffin embedded human brain slides and mouse brain tissue was performed. Our results showed an increase of both p16 and p21 mRNA restricted to the infarct area in the tMCAo brain. Moreover, there was an induction of Il6, Tnfa, Cxc11, and its receptor Cxcr2 mRNA pro-inflammatory cytokines with a high positive correlation with p16/p21 mRNA levels. The p16 was mainly shown in cytoplasm of neurons and cytoplasm/membrane of microglial cells. The p21 was observed in membrane of neurons and also it showed a mixed cytoplasmic and membranous pattern in the microglial cells. In a human stroke patient, an increase of P16 in the perimeter of the MCA infarct area was observed. These suggest a role of SASP in tMCAo mouse model and in human brain tissue. SASP potentially has a physiological role in acute ischemic stroke and neurological function loss.
Collapse
|
4
|
Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16 high Cells In Vivo. Cell Metab 2020; 32:814-828.e6. [PMID: 32949498 DOI: 10.1016/j.cmet.2020.09.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.
Collapse
|
5
|
Machado I, Giner F, Lavernia J, Cruz J, Traves V, Requena C, Llombart B, López-Guerrero JA, Llombart-Bosch A. Angiosarcomas: histology, immunohistochemistry and molecular insights with implications for differential diagnosis. Histol Histopathol 2020; 36:3-18. [PMID: 32885407 DOI: 10.14670/hh-18-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiosarcomas (AS) represent a heterogenous group of tumors with variable clinical presentation. AS share an important morphologic and immunohistochemical overlap with other sarcomas, hence the differential diagnosis is challenging, especially in poorly-differentiated tumors. Although molecular studies provide significant clues, especially in the differential diagnosis with other vascular neoplasms, a thorough hematoxylin and eosin analysis remains an essential tool in AS diagnosis. In this review, we discuss pathological and molecular insights with emphasis on implications for differential diagnosis in cutaneous, breast, soft tissue and visceral AS.
Collapse
Affiliation(s)
- Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain.,Pathology Department, Hospital Quirón, Valencia, Spain.
| | - Francisco Giner
- Pathology Department, University Hospital La Fe, Valencia, Spain
| | - Javier Lavernia
- Department of Oncology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Julia Cruz
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Víctor Traves
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Celia Requena
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - Beatriz Llombart
- Dermatology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, Valencia, Spain.,IVO-CIPF Joint Research Unit of Cancer, Príncipe Felipe Research Center (CIPF), Valencia, Spain.,Department of Pathology, School of Medicine, Catholic University of Valencia 'San Vicente Mártir', Valencia, Spain
| | | |
Collapse
|
6
|
Lee KB, Lee KS, Lee HS. Tumor-Associated Protein Profiles in Kaposi Sarcoma and Mimicking Vascular Tumors, and Their Pathological Implications. Int J Mol Sci 2019; 20:ijms20133142. [PMID: 31252633 PMCID: PMC6651042 DOI: 10.3390/ijms20133142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated protein profiles specific to vascular lesions mimicking Kaposi sarcoma (KS), based on stepwise morphogenesis progression of KS. We surveyed 26 tumor-associated proteins in 130 cases, comprising 39 benign vascular lesions (BG), 14 hemangioendotheliomas (HE), 37 KS, and 40 angiosarcomas (AS), by immunohistochemistry. The dominant proteins in KS were HHV8, lymphatic markers, Rb, phosphorylated Rb, VEGF, and galectin-3. Aberrant expression of p53, inactivation of cell cycle inhibitors, loss of beta-catenin, and increased VEGFR1 were more frequent in AS. HE had the lowest Ki-67 index, and the inactivation rates of cell cycle inhibitors in HE were between those of AS and BG/KS. Protein expression patterns in BG and KS were similar. Clustering analysis showed that the 130 cases were divided into three clusters: AS-rich, BG-rich, and KS-rich clusters. The AS-rich cluster was characterized by high caveolin-1 positivity, abnormal p53, high Ki-67 index, and inactivated p27. The KS-rich cluster shared the features of KS, and the BG-rich group had high positive expression rates of galectin-3 and low bcl2 expression. In conclusion, although the rate was different, AS and HE tended to have less cell cycle marker expression than KS, and features of BG and activated KS cell signaling were similar.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Child
- Child, Preschool
- Diagnosis, Differential
- Female
- Galectin 3/blood
- Galectin 3/genetics
- Galectin 3/metabolism
- Gene Expression Regulation, Neoplastic
- Hemangioma/blood
- Hemangioma/genetics
- Hemangioma/pathology
- Humans
- Male
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/blood
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sarcoma, Kaposi/blood
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/pathology
Collapse
Affiliation(s)
- Kyoung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul 110-799, Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
7
|
Weidema M, Versleijen-Jonkers Y, Flucke U, Desar I, van der Graaf W. Targeting angiosarcomas of the soft tissues: A challenging effort in a heterogeneous and rare disease. Crit Rev Oncol Hematol 2019; 138:120-131. [DOI: 10.1016/j.critrevonc.2019.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
|
8
|
Hang S, Tiwari AFY, Ngan HYS, Yip YL, Cheung ALM, Tsao SW, Deng W. Extremely stringent activation of p16INK4a prevents immortalization of uterine cervical epithelial cells without human papillomavirus oncogene expression. Oncotarget 2016; 7:45656-45670. [PMID: 27344169 PMCID: PMC5216750 DOI: 10.18632/oncotarget.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022] Open
Abstract
Cervical epithelial cell immortalization with defined genetic factors without viral oncogenes has never been reported. Here we report that HPV-negative cervical epithelial cells failed to be immortalized by telomerase activation or the combination of p53 knockdown and telomerase activation. Under those conditions, p16INK4a expression was always elevated during the late stage of limited cell lifespan, suggesting that cervical epithelial cells possess an intrinsic property of uniquely stringent activation of p16INK4a, which may offer an explanation for the rarity of HPV-negative cervical cancer. Combining p16INK4a knockdown with telomerase activation resulted in efficient immortalization of HPV-negative cervical epithelial cells under ordinary culture conditions. Compared with the HPV16-E6E7-immortalized cell lines derived from the same primary cell sources, the novel HPV-negative immortalized cell lines had lower degrees of chromosomal instability, maintained more sensitive p53/p21 response to DNA damage, exhibited more stringent G2 checkpoint function, and were more resistant to replication-stress-induced genomic instability. The newly immortalized HPV-negative cervical epithelial cell lines were non-tumorigenic in nude mice. The cell lines can be used not only as much-needed HPV-negative non-malignant cell models but also as starting models that can be genetically manipulated in a stepwise fashion to investigate the roles of defined genetic alterations in the development of HPV-negative cervical cancer.
Collapse
Affiliation(s)
- Su Hang
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,College of Forensic Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi Province, P.R. China
| | - Agnes F Y Tiwari
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yim-Ling Yip
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wen Deng
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
9
|
Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J Proteomics 2015; 126:12-23. [DOI: 10.1016/j.jprot.2015.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022]
|
10
|
Qin Y, Guo H, Tang B, Yang SM. The non-reverse transcriptase activity of the human telomerase reverse transcriptase promotes tumor progression (review). Int J Oncol 2014; 45:525-31. [PMID: 24888567 DOI: 10.3892/ijo.2014.2470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/17/2014] [Indexed: 11/05/2022] Open
Abstract
In human cancer, high expression of telomerase is correlated with tumor aggressiveness and metastatic potential. Human telomerase reverse transcriptase (hTERT), which regulates telomere length, can promote tumor development. Most research on hTERT has been focused on its crucial function of telomere maintenance. However, there are many phenomena that cannot be explained by its reverse transcriptase activity. Accumulating evidence suggests that hTERT has functions independent of its protective function at the telomere ends, such as increasing the anti-apoptotic capacity of cells, enhancing DNA repair, maintaining stem cells and regulating gene expression. This review will provide an update on the non-reverse transcriptase activity of hTERT and its contribution to tumor formation, metastasis and cancer stem cell maintenance. Repression of the non-reverse transcriptase activity of hTERT may be a new strategy for tumor therapy.
Collapse
Affiliation(s)
- Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
11
|
Wen VW, MacKenzie KL. Modeling human endothelial cell transformation in vascular neoplasias. Dis Model Mech 2014; 6:1066-79. [PMID: 24046386 PMCID: PMC3759327 DOI: 10.1242/dmm.012674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia.
Collapse
Affiliation(s)
- Victoria W Wen
- Cancer Cell Development Group, Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW, Australia
| | | |
Collapse
|
12
|
Abstract
Cell culture has greatly enhanced our ability to assess individual populations of cells under myriad culture conditions. While immortalized cell lines offer significant advantages for their ease of use, these cell lines are unavailable for all potential cell types. By isolating primary cells from a specific region of interest, particularly from a transgenic mouse, more nuanced studies can be performed. The basic technique involves dissecting the organ or partial organ of interest (e.g. the heart or a specific region of the heart) and dissociating the organ to single cells. These cells are then incubated with magnetic beads conjugated to an antibody that recognizes the cell type of interest. The cells of interest can then be isolated with the use of a magnet, with a short trypsin incubation dissociating the cells from the beads. These isolated cells can then be cultured and analyzed as desired. This technique was originally designed for adult mouse organs but can be easily scaled down for use with embryonic organs, as demonstrated herein. Because our interest is in the developing coronary vasculature, we wanted to study this population of cells during specific embryonic stages. Thus, the original protocol had to be modified to be compatible with the small size of the embryonic ventricles and the low potential yield of endothelial cells at these developmental stages. Utilizing this scaled-down approach, we have assessed coronary plexus remodeling in transgenic embryonic ventricular endothelial cells.
Collapse
Affiliation(s)
- Laura A Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Kan CY, Petti C, Bracken L, Maritz M, Xu N, O'Brien R, Yang C, Liu T, Yuan J, Lock RB, MacKenzie KL. Up-regulation of survivin during immortalization of human myofibroblasts is linked to repression of tumor suppressor p16(INK4a) protein and confers resistance to oxidative stress. J Biol Chem 2013; 288:12032-41. [PMID: 23449974 DOI: 10.1074/jbc.m112.447821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Survivin is an essential component of the chromosomal passenger complex and a member of the inhibitor of apoptosis family. It is expressed at high levels in a large variety of malignancies, where it has been implicated in drug resistance. It was also shown previously that survivin is up-regulated during telomerase-mediated immortalization, which occurs at a relatively early stage during carcinogenesis. This study shows that up-regulation of survivin during immortalization of human myofibroblasts is an indirect consequence of the repression of p16(INK4a). Survivin and p16(INK4a) were functionally linked by assays that showed that either the up-regulation of survivin or repression of p16(INK4a) rendered telomerase-transduced MRC-5 myofibroblasts resistant to oxidative stress. Conversely, siRNA-mediated down-regulation of survivin activated caspases and enhanced the sensitivity of immortal MRC-5 cells to oxidative stress. The E2F1 transcription factor, which is negatively regulated by the pRB/p16(INK4a) tumor suppressor pathway, was implicated in the up-regulation of survivin. Using the ChIP assay, it was shown that E2F1 directly interacted with the survivin gene (BIRC5) promoter in cells that spontaneously silenced p16(INK4a) during telomerase-mediated immortalization. E2F1 binding to the BIRC5 was also enhanced in telomerase-transduced cells subjected to shRNA-mediated repression of p16(INK4a). Together, these data show that repression of p16(INK4a) contributes to the up-regulation of survivin and thereby provides a survival advantage to cells exposed to oxidative stress during immortalization. The up-regulation of survivin during immortalization likely contributes to the vulnerability of immortal cells to transformation by oncogenes that alter intracellular redox state.
Collapse
Affiliation(s)
- Chin-Yi Kan
- Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|