1
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Shao WQ, Li YT, Zhou X, Zhang SG, Fan MH, Zhang D, Chen ZM, Yi CH, Wang SH, Zhu WW, Lu M, Chen JS, Lin J, Zhou Y. Cholesterol suppresses AMFR-mediated PDL1 ubiquitination and degradation in HCC. Mol Cell Biochem 2024:10.1007/s11010-024-05106-w. [PMID: 39231894 DOI: 10.1007/s11010-024-05106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Yi-Tong Li
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Guo Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Ming-Hao Fan
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Dong Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhen-Mei Chen
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen-He Yi
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Hao Wang
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Song Chen
- Depatment of Hepatobiliary Surgery, Taizhou Fourth People's Hospital, Jiangsu, 214527, China
| | - Jing Lin
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Yu Zhou
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
| |
Collapse
|
3
|
Kim NY, Park HM, Lee HP, Hong JT, Yoon DY. (E)-2-Methoxy-4-(3-(4-Methoxyphenyl) Prop-1-en-1-yl) Phenol Suppresses Breast Cancer Progression by Dual-Regulating VEGFR2 and PPARγ. J Microbiol Biotechnol 2024; 34:240-248. [PMID: 37942548 PMCID: PMC10940741 DOI: 10.4014/jmb.2309.09019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.
Collapse
Affiliation(s)
- Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
5
|
Liu R, Zhang X, Nie L, Sun S, Liu J, Chen H. Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism. Ann Hematol 2023; 102:1323-1332. [PMID: 37046065 DOI: 10.1007/s00277-023-05193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Heme oxygenase 1 (HO-1), encoded by the HMOX-1 gene, is the main heme oxygenase that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. HMOX-1 gene expression is stimulated by oxidative stress and regulated at transcriptional and post-transcriptional levels. After translation, subcellular location and protein stability of HO-1 are also altered by different extracellular and intracellular stimuli. HO-1 plays a key role in regulating iron homeostasis and cell protection and has become a new target for disease treatment. Erythropoiesis is a tightly controlled, iron-dependent process that begins with hematopoietic stem cells and maturates to red blood cells. HO-1 is expressed in hematopoietic stem/progenitor cells, hematopoietic niche cells, erythroblasts, and especially erythroblastic island and phagocytic macrophages. HO-1 functions importantly in the entire erythroid development process by influencing hematopoietic stem cell proliferation, erythroid lineage engagement, terminal erythroid differentiation, and even senescent RBC erythrophagocytosis. HO-1 is also related to stress erythropoiesis and certain red blood cell diseases. Elucidation of HO-1 regulation and function in erythropoiesis will be of great significance for the treatment of related diseases.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Xuzhi Zhang
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, People's Republic of China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Huiyong Chen
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China.
| |
Collapse
|
6
|
Xu J, Zhu K, Wang Y, Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 2023; 149:483-501. [PMID: 36310300 DOI: 10.1007/s00432-022-04447-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop. MATERIALS AND METHODS Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression. CONCLUSION This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.
Collapse
Affiliation(s)
- Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | | | - Yali Wang
- Jiangsu Huai'an Maternity and Children Hospital, Huai'an, 223001, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China. .,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Meng Y, Sun H, Li Y, Zhao S, Su J, Zeng F, Deng G, Chen X. Targeting Ferroptosis by Ubiquitin System Enzymes: A Potential Therapeutic Strategy in Cancer. Int J Biol Sci 2022; 18:5475-5488. [PMID: 36147464 PMCID: PMC9461661 DOI: 10.7150/ijbs.73790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by the excessive accumulation of iron-dependent lipid peroxidation. Therapy-resistant tumor cells, particularly those in the mesenchymal-like state and prone to metastasis, are highly susceptible to ferroptosis, suggesting that induction of ferroptosis in tumor cells is a promising strategy for cancer therapy. Although ferroptosis is regulated at various levels, ubiquitination is key to post-translational regulation of ferroptotic cell death. E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are the most remarkable ubiquitin system enzymes, whose dysregulation accounts for the progression of multiple cancers. E3s are involved in the attachment of ubiquitin to substrates for their degradation, and this process is reversed by DUBs. Accumulating evidence has highlighted the important role of ubiquitin system enzymes in regulating the sensitivity of ferroptosis. Herein, we will portray the regulatory networks of ferroptosis mediated by E3s or DUBs and discuss opportunities and challenges for incorporating this regulation into cancer therapy.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyan Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yayun Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Furong Zeng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang X, Xu Z, Ren X, Chen X, Yi Q, Zeng S, Thakur A, Gong Z, Yan Y. MTHFR inhibits TRC8-mediated HMOX1 ubiquitination and regulates ferroptosis in ovarian cancer. Clin Transl Med 2022; 12:e1013. [PMID: 36149747 PMCID: PMC9505752 DOI: 10.1002/ctm2.1013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ, Kim SJ. Non-canonical vs. Canonical Functions of Heme Oxygenase-1 in Cancer. J Cancer Prev 2022; 27:7-15. [PMID: 35419301 PMCID: PMC8984652 DOI: 10.15430/jcp.2022.27.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yanymee N. Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ, Kim SJ. Non-canonical vs. Canonical Functions of Heme Oxygenase-1 in Cancer. J Cancer Prev 2022. [PMID: 35419301 DOI: 10.15430/jcp.2022.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Ye W, Liu Z, Liu F, Luo C. Heme Oxygenase-1 Predicts Risk Stratification and Immunotherapy Efficacy in Lower Grade Gliomas. Front Cell Dev Biol 2021; 9:760800. [PMID: 34858984 PMCID: PMC8631111 DOI: 10.3389/fcell.2021.760800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Gliomas are the most common tumors in human brains with unpleasing outcomes. Heme oxygenase-1 (HMOX1, HO-1) was a potential target for human cancers. However, their relationship remains incompletely discussed. Methods: We employed a total of 952 lower grade glioma (LGG) patients from TCGA and CGGA databases, and 29 samples in our hospital for subsequent analyses. Expression, mutational, survival, and immune profiles of HMOX1 were comprehensively evaluated. We constructed a risk signature using the LASSO Cox regression model, and further generated a nomogram model to predict survival of LGG patients. Single-cell transcriptomic sequencing data were also employed to investigated the role of HMOX1 in cancer cells. Results: We found that HMOX1 was overexpressed and was related to poorer survival in gliomas. HMOX1-related genes (HRGs) were involved in immune-related pathways. Patients in the high-risk group exhibited significantly poorer overall survival. The risk score was positively correlated with the abundance of resting memory CD4+ T cells, M1, M2 macrophages, and activated dendritic cells. Additionally, immunotherapy showed potent efficacy in low-risk group. And patients with lower HMOX1 expression were predicted to have better response to immunotherapies, suggesting that immunotherapies combined with HMOX1 inhibition may execute good responses. Moreover, significant correlations were found between HMOX1 expression and single-cell functional states including angiogenesis, hypoxia, and metastasis. Finally, we constructed a nomogram which could predict 1-, 3-, and 5-year survival in LGG patients. Conclusion: HMOX1 is involved in immune infiltration and predicts poor survival in patients with lower grade glioma. Importantly, HMOX1 were related to oncological functional states including angiogenesis, hypoxia, and metastasis. A nomogram integrated with the risk signature was obtained to robustly predict glioma patient outcomes, with the potential to guide clinical decision-making.
Collapse
Affiliation(s)
- Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Cong Luo
- Department of Urology, Xiangya Hospital, Central South University (CSU), Changsha, China
| |
Collapse
|
12
|
The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021; 10:cells10092401. [PMID: 34572050 PMCID: PMC8471703 DOI: 10.3390/cells10092401] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.
Collapse
|
13
|
An E3 Ubiquitin Ligase RNF139 Serves as a Tumor-Suppressor in Glioma. J Mol Neurosci 2021; 71:1664-1673. [PMID: 34106407 PMCID: PMC8349318 DOI: 10.1007/s12031-021-01860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Glioma is highly lethal because of its high malignancy. Ubiquitination, a type of ubiquitin-dependent protein modification, has been reported to play an oncogenic or tumor-suppressive role in glioma development, depending on the targets. Ring finger protein 139 (RNF139) is a membrane-bound E3 ubiquitin ligase serving as a tumor suppressor by ubiquitylation-dependently suppressing cell growth. Herein, we firstly confirmed the abnormal downregulation of RNF139 in glioma tissues and cell lines. In glioma cells, ectopic RNF139 overexpression could inhibit, whereas RNF139 knockdown could aggravate the aggressive behaviors of glioma cells, including hyperproliferation, migration, and invasion. Moreover, in two glioma cell lines, RNF139 overexpression inhibited, whereas RNF139 knockdown enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT serine/threonine kinase 1 (AKT). In a word, we demonstrate the aberration in RNF139 expression in glioma tissue samples and cell lines. RNF139 serves as a tumor-suppressor in glioma by inhibiting glioma cell proliferation, migration, and invasion and promoting glioma cell apoptosis through regulating PI3K/AKT signaling.
Collapse
|
14
|
Li K, Yang P, Zhang Y, Zhang Y, Cao H, Liu P, Huang B, Xu S, Lai P, Lei G, Liu J, Tang Y, Bai X, Zou Z. DEPTOR Prevents Osteoarthritis Development Via Interplay With TRC8 to Reduce Endoplasmic Reticulum Stress in Chondrocytes. J Bone Miner Res 2021; 36:400-411. [PMID: 32916025 DOI: 10.1002/jbmr.4176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress has been shown to promote chondrocyte apoptosis and osteoarthritis (OA) progression, but the precise mechanisms via which ER stress is modulated in OA remain unclear. Here we report that DEP domain-containing mTOR-interacting protein (DEPTOR) negatively regulated ER stress and OA development independent of mTOR signaling. DEPTOR is ubiquitinated in articular chondrocytes and its expression is markedly reduced along with OA progression. Deletion of DEPTOR in chondrocytes significantly promoted destabilized medial meniscus (DMM) surgery-induced OA development, whereas intra-articular injection of lentivirus-expressing DEPTOR delayed OA progression in mice. Proteomics analysis revealed that DEPTOR interplayed with TRC8, which promoted TRC8 auto-ubiquitination and degraded by the ubiquitin-proteasome system (UPS) in chondrocytes. Loss of DEPTOR led to TRC8 accumulation and excessive ER stress, with subsequent chondrocyte apoptosis and OA progression. Importantly, an inhibitor of ER stress eliminated chondrocyte DEPTOR deletion-exacerbated OA in mice. Together, these findings establish a novel mechanism essential for OA pathogenesis, where decreasing DEPTOR in chondrocytes during OA progression relieves the auto-ubiquitination of TRC8, resulting in TRC8 accumulation, excessive ER stress, and OA progression. Targeting this pathway has promising therapeutic potential for OA treatment. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Panpan Yang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuwei Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Peilin Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Song Xu
- Department of Orthopedics and Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Nuclear Localization of Heme Oxygenase-1 in Pathophysiological Conditions: Does It Explain the Dual Role in Cancer? Antioxidants (Basel) 2021; 10:antiox10010087. [PMID: 33440611 PMCID: PMC7826503 DOI: 10.3390/antiox10010087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
Heme Oxygenase-1 (HO-1) is a type II detoxifying enzyme that catalyzes the rate-limiting step in heme degradation leading to the formation of equimolar quantities of carbon monoxide (CO), free iron and biliverdin. HO-1 was originally shown to localize at the smooth endoplasmic reticulum membrane (sER), although increasing evidence demonstrates that the protein translocates to other subcellular compartments including the nucleus. The nuclear translocation occurs after proteolytic cleavage by proteases including signal peptide peptidase and some cysteine proteases. In addition, nuclear translocation has been demonstrated to be involved in several cellular processes leading to cancer progression, including induction of resistance to therapy and enhanced metastatic activity. In this review, we focus on nuclear HO-1 implication in pathophysiological conditions with special emphasis on malignant processes. We provide a brief background on the current understanding of the mechanisms underlying how HO-1 leaves the sER membrane and migrates to the nucleus, the circumstances under which it does so and, maybe the most important and unknown aspect, what the function of HO-1 in the nucleus is.
Collapse
|
16
|
Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020; 33:850-868. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Philip Mannino
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Mark Hannink
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
Loreto C, Caltabiano R, Graziano ACE, Castorina S, Lombardo C, Filetti V, Vitale E, Rapisarda G, Cardile V, Ledda C, Rapisarda V. Defense and protection mechanisms in lung exposed to asbestiform fiber: the role of macrophage migration inhibitory factor and heme oxygenase-1. Eur J Histochem 2020; 64. [PMID: 32312030 PMCID: PMC7171426 DOI: 10.4081/ejh.2020.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.
Collapse
Affiliation(s)
- Carla Loreto
- Anatomy and Histology, Department of Biomedical and Biotechnologies Sciences, University of Catania.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Heme Oxygenase-1 is a Key Molecule Underlying Differential Response of TW-37-Induced Apoptosis in Human Mucoepidermoid Carcinoma Cells. Molecules 2019; 24:molecules24091700. [PMID: 31052354 PMCID: PMC6539960 DOI: 10.3390/molecules24091700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 12/25/2022] Open
Abstract
TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4’, 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.
Collapse
|
19
|
Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, Zhang X, Ge Q, Liu Q, Fan P, Zhang Z, Zhang B. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:3. [PMID: 30606233 PMCID: PMC6319010 DOI: 10.1186/s13046-018-1007-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Background Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. Methods Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14–3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14–3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14–3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14–3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14–3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. Results We identified 14–3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14–3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14–3-3ζ knockdown had opposite effects. The data indicated that 14–3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14–3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. Conclusions Collectively, these data show that 14–3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14–3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14–3-3ζ as potential therapeutic targets in hepatocellular carcinoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-1007-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China.
| |
Collapse
|
20
|
Tsai CF, Chen JH, Chang CN, Lu DY, Chang PC, Wang SL, Yeh WL. Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines. Food Chem Toxicol 2018; 120:528-535. [DOI: 10.1016/j.fct.2018.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
21
|
Yang PS, Hsu YC, Lee JJ, Chen MJ, Huang SY, Cheng SP. Heme Oxygenase-1 Inhibitors Induce Cell Cycle Arrest and Suppress Tumor Growth in Thyroid Cancer Cells. Int J Mol Sci 2018; 19:ijms19092502. [PMID: 30149527 PMCID: PMC6163304 DOI: 10.3390/ijms19092502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is induced by a variety of stimuli and plays a multifaceted role in cellular protection. We have shown that HO-1 is overexpressed in thyroid cancer and is associated with tumor aggressiveness. Therefore, we set out to assess the effects of HO-1 inhibitors on the biology of thyroid cancer cells. Two different classes of HO-1 inhibitors were used, including a metalloporphyrin, zinc protoporphyrin-IX (ZnPP), and an azole antifungal agent, ketoconazole. The viability and colony formation of thyroid cancer cells decreased in a concentration- and time-dependent fashion following treatment with HO-1 inhibitors. Cancer cells exhibited a higher sensitivity to HO-1 inhibitors than non-malignant cells. HO-1 inhibitors induced a G0/G1 arrest accompanied by decreased cyclin D1 and CDK4 expressions and an increase in levels of p21 and p27. HO-1 inhibitors significantly increased intracellular ROS levels and suppressed cell migration and invasion. Oxygen consumption rate and mitochondrial mass were increased with ZnPP treatment. Mice treated with ZnPP had a reduced xenograft growth and diminished cyclin D1 and Ki-67 staining in tumor sections. Taken together, HO-1 inhibitors might have therapeutic potential for inducing cell cycle arrest and promoting growth suppression of thyroid cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan.
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan.
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan.
| | - Shih-Yuan Huang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan.
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 10449, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
22
|
Heme oxygenase-1/carbon monoxide axis suppresses transforming growth factor-β1-induced growth inhibition by increasing ERK1/2-mediated phosphorylation of Smad3 at Thr-179 in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents. Eur J Med Chem 2017; 142:459-485. [DOI: 10.1016/j.ejmech.2017.08.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
|
24
|
Salerno L, Romeo G, Modica MN, Amata E, Sorrenti V, Barbagallo I, Pittalà V. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem 2017; 142:163-178. [DOI: 10.1016/j.ejmech.2017.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
25
|
Schaefer B, Moriishi K, Behrends S. Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase. PLoS One 2017; 12:e0188344. [PMID: 29155886 PMCID: PMC5695791 DOI: 10.1371/journal.pone.0188344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022] Open
Abstract
It has recently been shown that signal peptide peptidase (SPP) can catalyze the intramembrane cleavage of heme oxygenase-1 (HO-1) that leads to translocation of HO-1 into the cytosol and nucleus. While there is consensus that translocated HO-1 promotes tumor progression and drug resistance, the physiological signals leading to SPP-mediated intramembrane cleavage of HO-1 and the specificity of the process remain unclear. In this study, we used co-immunoprecipitation and confocal laser scanning microscopy to investigate the translocation mechanism of HO-1 and its regulation by SPP. We show that HO-1 and the closely related HO-2 isoenzyme bind to SPP under normoxic conditions. Under hypoxic conditions SPP mediates intramembrane cleavage of HO-1, but not HO-2. In experiments with an inactive HO-1 mutant (H25A) we show that translocation is independent of the catalytic activity of HO-1. Studies with HO-1 / HO-2 chimeras indicate that the membrane anchor, the PEST-domain and the nuclear shuttle sequence of HO-1 are necessary for full cleavage and subsequent translocation under hypoxic conditions. In the presence of co-expressed exogenous SPP, the anchor and the PEST-domain are sufficient for translocation. Taken together, we identified the domains involved in HO-1 translocation and showed that SPP-mediated cleavage is isoform-specific and independent of HO-activity. A closer understanding of the translocation mechanism of HO-1 is of particular importance because nuclear HO-1 seems to lead to tumor progression and drug resistance.
Collapse
Affiliation(s)
- Bianca Schaefer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig—Institute of Technology, Braunschweig, Germany
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine Yamanashi University, Yamanashi, Japan
| | - Soenke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig—Institute of Technology, Braunschweig, Germany
| |
Collapse
|
26
|
Hsu FF, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene 2017; 36:6805-6814. [PMID: 28846111 DOI: 10.1038/onc.2017.294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
Overexpression of heme oxygenase-1 (HO-1), an endoplasmic reticulum-anchored enzyme, is observed in many cancers. HO-1 nuclear translocation has been shown to correlate with progression of several cancers. We recently reported that HO-1 is susceptible to intramembrane proteolysis and translocates to the nucleus to promote cancer growth and invasiveness without depending on its enzymatic activity. In the present study, we show that the HO-1 lacking C-terminal transmembrane segment (t-HO-1) was susceptible to acetylation by p300 and CREB-binding protein (CBP) histone acetyltransferase in the nucleus. Mass spectrometry analysis of HO-1 isolated from human embryonic kidney cells 293T (HEK293T) cells overexpressing CBP and t-HO-1 revealed two acetylation sites located at K243 and K256. Mutation of both lysine residues to arginine (R) abolished t-HO-1-enhanced tumor cell growth, migration and invasion. However, mutation of the lysine residues to glutamine (Q), a mimic of acetylated lysine, had no significant effect on t-HO-1-mediated tumorigenicity. Mechanistic studies demonstrated that transcriptional factor JunD interacted with wild-type (WT) t-HO-1 and mutant carrying K243/256Q but not K243/256 R mutation. Moreover, JunD-induced AP-1 transcriptional activity was significantly enhanced by coexpression with WT and acetylation-mimic but not acetylation-defective t-HO-1. Consistent with the in vitro observations, the implication of K243/256 acetylation in t-HO-1-enhanced tumorigenicity was also demonstrated in xenograft models. Immunohistochemistry performed with a specific antibody against acetyl-HO-1 showed the positive acetyl-HO-1 nuclear staining in human lung cancer tissues but not in the corresponding non-tumor tissues, supporting its clinical significance. Collectively, our findings highlight the importance of nuclear HO-1 post-translational modification in the induction of cancer progression.
Collapse
Affiliation(s)
- F-F Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M-T Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - F-A Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-T Yeh
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - W-H Lee
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - L-Y Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 2017; 87:783-807. [PMID: 28841344 DOI: 10.1146/annurev-biochem-062917-011852] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.
Collapse
Affiliation(s)
- Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| |
Collapse
|
28
|
Zhao Z, Xu Y, Lu J, Xue J, Liu P. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells. Clin Transl Oncol 2017; 20:491-499. [PMID: 28808929 DOI: 10.1007/s12094-017-1738-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE HO-1 has been proved to be associated with tumor aggressivity and poor prognosis in various cancers. Our study provides the first study to demonstrate the relationship of HO-1 expression and clinical characteristics in ovarian cancer patients. METHODS Immunohistochemistry and western blotting were used to examine the expression of HO-1 in tissue species and fresh tissues. CCK-8 was used to investigate cell viability. Transwell chamber was performed to estimate migration and invasion capacities in A2780 and Skov-3 cells. RESULTS Immunohistochemistry and western blotting showed that the expression of HO-1 was higher in ovarian cancer tissues than normal ovarian tissues. High expression of HO-1 was significantly associated with serous ovarian cancer, high FIGO stage, lymph node metastasis, and non-optimal debulking. Patients with high expression of HO-1 exhibited an unfavorable prognosis. In vitro inducing the expression of HO-1 promoted the proliferation and metastasis of A2780 and Skov-3 cells, with the increased expressions of mesenchymal marker (Vimentin), epithelial-mesenchymal transition-associated transcript factor (Zeb-1), anti-apoptotic protein (Bcl-2), and the decreased expressions of epithelial marker (Keratin) and pro-apoptotic protein (Bax). Meanwhile, after incubating A2780 and Skov-3 together with HO-1 inhibitor, above results could be reversed. CONCLUSION HO-1 might be a potential marker for prediction of ovarian cancer prognosis and a target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Z Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Y Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - J Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - J Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - P Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittalà V. Heme Oxygenase Database (HemeOxDB) and QSAR Analysis of Isoform 1 Inhibitors. ChemMedChem 2017; 12:1873-1881. [PMID: 28708269 DOI: 10.1002/cmdc.201700321] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/04/2017] [Indexed: 11/12/2022]
Abstract
Due to increasing interest in the field of heme oxygenases (HOs), we built a ligand database called HemeOxDB that includes the entire set of known HO-1 and HO-2 inhibitors, resulting in more than 400 compounds. The HemeOxDB is available online at http://www.researchdsf.unict.it/hemeoxdb/, and having a robust search engine allows end users to build complex queries, sort tabulated results, and generate color-coded two- and three-dimensional graphs. This database will grow to be a tool for the design of potent and selective HO-1 or HO-2 inhibitors. We were also interested in virtually searching for alternative inhibitors, and, for the first time in the field of HOs, a quantitative structure-activity relationship (QSAR) model was built using half-maximal inhibitory concentration (IC50 ) values of the whole set of known HO-1 inhibitors, taken from the HemeOxDB and employing the Monte Carlo technique. The statistical quality suggested that the model is robust and possesses desirable predictive potential. The screening of US Food and Drug Administration (FDA)-approved drugs, external to our dataset, suggested new predicted inhibitors, opening the way for replacing imidazole groups. The HemeOxDB and the QSAR model reported herein may help in prospectively identifying or repurposing new drugs with optimal structural attributes for HO enzyme inhibition.
Collapse
Affiliation(s)
- Emanuele Amata
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Nastasi
- Department of Mathematics and Computer Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
30
|
Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol 2017; 96:372-382. [DOI: 10.1016/j.ejcb.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022] Open
|
31
|
Wang L, Yin W, Shi C. E3 ubiquitin ligase, RNF139, inhibits the progression of tongue cancer. BMC Cancer 2017; 17:452. [PMID: 28662643 PMCID: PMC5493000 DOI: 10.1186/s12885-017-3438-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Background Tongue cancer is still one of the leading causes of mortality around the world. Recently, the ubiquitin system has been established as a critical modulator of tumors. In order to find the oral cancer related E3 ubiquitin ligases, we screened the human E3 ubiquitin ligase library and found that RING finger protein 139 (RNF139) regulated the biological behavior of tongue cancer cells. Methods MTT assay was used to analyze the cell viability changes of tongue cancer SCC9 and SCC25 cells caused by RNF139. The invasion ability of SCC9 and SCC25 cells with or without the knockdown of RNF139 was evaluated through transwell assay. The immunoblotting was recruited to determine the expression level of RNF139 in human tongue cancer tissues and para-carcinoma tissues. The effect of RNF139 on tumorigenicity of tongue cancer cells was analyzed by xenograft model on immunodeficient Balb/c nude mice. Results Overexpression of RNF139 inhibits the viability of tongue cancer cells since day 2. The colony formation ability of SCC9 and SCC25 cells was also decreased with the overexpression of RNF139. Knockdown of RNF139 significantly promoted the invasion ability of SCC9 and SCC25 cells. Furthermore, knockdown of RNF139 also induced the activation of AKT signaling pathway. While human tongue cancer tissues had low expression of RNF139. In nude mice, knockdown of RNF139 promoted the tumorigenicity of the SCC25 cells. Conclusions Our data establish a role for RNF139 in regulating the progression of tongue cancer.
Collapse
Affiliation(s)
- Lina Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu road, Wuhan, 430079, China.,Department of Endodontics, College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu road, Wuhan, 430079, China.
| | - Chun Shi
- Department of Endodontics, College of Stomatology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
32
|
Kovacsics CE, Gill AJ, Ambegaokar SS, Gelman BB, Kolson DL. Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: A potential interferon-γ-dependent mechanism contributing to HIV neuropathogenesis. Glia 2017; 65:1264-1277. [PMID: 28543773 DOI: 10.1002/glia.23160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
Induction of the detoxifying enzyme heme oxygenase-1 (HO-1) is a critical protective host response to cellular injury associated with inflammation and oxidative stress. We previously found that HO-1 protein expression is reduced in brains of HIV-infected individuals with HIV-associated neurocognitive disorders (HAND) and in HIV-infected macrophages, where this reduction associates with enhanced glutamate release and neurotoxicity. Because HIV-infected macrophages are a small component of the cellular content of the brain, the reduction of macrophage HO-1 expression likely accounts for a small portion of brain HO-1 loss in HIV infection. We therefore investigated the contribution of astrocytes, the major pool of brain HO-1. We identified immunoproteasome-mediated HO-1 degradation in astrocytes as a second possible mechanism of brain HO-1 loss in HIV infection. We demonstrate that prolonged exposure of human fetal astrocytes to interferon-gamma (IFNγ), an HIV-associated CNS immune activator, selectively reduces expression of HO-1 protein without a concomitant reduction in HO-1 RNA, increases expression of immunoproteasome subunits, and decreases expression of constitutive proteasome subunits, consistent with a shift towards increased immunoproteasome activity. In HIV-infected brain HO-1 protein reduction also associates with increased HO-1 RNA expression and increased immunoproteasome expression. Finally, we show that IFNγ treatment of astrocytic cells reduces HO-1 protein half-life in a proteasome-dependent manner. Our data thus suggest unique causal links among HIV infection, IFNγ-mediated immunoproteasome induction, and enhanced HO-1 degradation, which likely contribute to neurocognitive impairment in HAND. Such IFNγ-mediated HO-1 degradation should be further investigated for a role in neurodegeneration in inflammatory brain conditions. BRIEF SUMMARY Kovacsics et al. identify immunoproteasome degradation of heme oxygenase-1 (HO-1) in interferon gamma-stimulated astrocytes as a plausible mechanism for the observed loss of HO-1 protein expression in the brains of HIV-infected individuals, which likely contributes to the neurocognitive impairment in HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Colleen E Kovacsics
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Alexander J Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Surendra S Ambegaokar
- Department of Botany & Microbiology, Robbins Program in Neuroscience, Ohio Wesleyan University, Delaware, Ohio, 43015
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104
| |
Collapse
|
33
|
Hantouche C, Williamson B, Valinsky WC, Solomon J, Shrier A, Young JC. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels. J Biol Chem 2016; 292:2287-2300. [PMID: 27998983 DOI: 10.1074/jbc.m116.752618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG.
Collapse
Affiliation(s)
- Christine Hantouche
- From the Departments of Physiology and.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Brittany Williamson
- Biochemistry and.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - William C Valinsky
- From the Departments of Physiology and.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joshua Solomon
- From the Departments of Physiology and.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Alvin Shrier
- From the Departments of Physiology and .,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Jason C Young
- Biochemistry and .,Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
34
|
van de Weijer ML, van Muijlwijk GH, Visser LJ, Costa AI, Wiertz EJHJ, Lebbink RJ. The E3 Ubiquitin Ligase TMEM129 Is a Tri-Spanning Transmembrane Protein. Viruses 2016; 8:v8110309. [PMID: 27854284 PMCID: PMC5127023 DOI: 10.3390/v8110309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Misfolded proteins from the endoplasmic reticulum (ER) are transported back into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 hijacks this ER-associated protein degradation (ERAD) pathway to downregulate human leukocyte antigen (HLA) class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. Recently, we identified the E3 ubiquitin ligase transmembrane protein 129 (TMEM129) as a key player in this process, where interference with TMEM129 activity in human cells completely abrogates US11-mediated class I degradation. Here, we set out to further characterize TMEM129. We show that TMEM129 is a non-glycosylated protein containing a non-cleaved signal anchor sequence. By glycosylation scanning mutagenesis, we show that TMEM129 is a tri-spanning ER-membrane protein that adopts an Nexo–Ccyto orientation. This insertion in the ER membrane positions the C-terminal really interesting new gene (RING) domain of TMEM129 in the cytosol, making it available to catalyze ubiquitination reactions that are required for cytosolic degradation of secretory proteins.
Collapse
Affiliation(s)
| | - Guus H van Muijlwijk
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Linda J Visser
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Ana I Costa
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
35
|
TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nat Commun 2016; 7:11379. [PMID: 27142248 PMCID: PMC4857398 DOI: 10.1038/ncomms11379] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/21/2016] [Indexed: 01/07/2023] Open
Abstract
Signal-peptide peptidase (SPP) is an intramembrane protease that participates in the production of the mature core protein of hepatitis C virus (HCV). Here we show that SPP inhibition reduces the production of infectious HCV particles and pathogenesis. The immature core protein produced in SPP-knockout cells or by treatment with an SPP inhibitor is quickly degraded by the ubiquitin–proteasome pathway. Oral administration of the SPP inhibitor to transgenic mice expressing HCV core protein (CoreTg) reduces the expression of core protein and ameliorates insulin resistance and liver steatosis. Moreover, the haploinsufficiency of SPP in CoreTg has similar effects. TRC8, an E3 ubiquitin ligase, is required for the degradation of the immature core protein. The expression of the HCV core protein alters endoplasmic reticulum (ER) distribution and induces ER stress in SPP/TRC8 double-knockout cells. These data suggest that HCV utilizes SPP cleavage to circumvent the induction of ER stress in host cells. A cellular protease, SPP, participates in production of the mature core protein of hepatitis C virus (HCV). Here, the authors show in mouse models that SPP inhibition reduces viral propagation and pathogenesis via proteasomal degradation of the immature core protein mediated by the E3 ubiquitin ligase TRC8.
Collapse
|
36
|
Ren QG, Yang SL, Hu JL, Li PD, Chen YS, Wang QS. Evaluation of HO-1 expression, cellular ROS production, cellular proliferation and cellular apoptosis in human esophageal squamous cell carcinoma tumors and cell lines. Oncol Rep 2016; 35:2270-6. [PMID: 26780849 DOI: 10.3892/or.2016.4556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Patients with esophageal squamous cell carcinoma (ESCC) have a poor prognosis. However, the related mechanisms are unclear, thus we investigated the expression of HO-1 in ESCC tissue and explored possible mechanisms of tumor progression. Expression of HO-1 was examined by immunohistochemistry in 143 ESCC tumors. The correlation of HO-1 with clinicopathological characteristics was also examined. Two human ESCC cell lines, TE-13 and Eca109 were studied. Silencing of cell line HO-1 by specific small interfering RNA (siRNA) was evaluated using real-time quantitative PCR. Cell line viability, apoptosis and intracellular levels of reactive oxygen species (ROS) after transfection were determined using MTT and flow cytometry, respectively. HO-1, Bax, Bcl-2 and A-caspase-3/-9 expression was evaluated using western blot analyses. We found that HO-1 was expressed in 58 of 143 ESCC tumors, mainly in the cytoplasm. There was a significant association between HO-1 expression and tumor grade (P<0.001). Knockdown of HO-1 expression in cell lines was associated with significantly decreased cellular proliferation (P<0.05) and a higher rate of apoptosis (P<0.001) 48 h after treatment. Treatment of the cell lines with the ROS inhibitor N-acetylcysteine abrogated this effect. Knockdown of HO-1 was associated with increased A-caspase-3 and -9 expression, but no change in Bax or Bcl-2 expression or Bax/Bcl-2 ratio was observed. Thus, the present study identified that ESCC tumors frequently expressed HO-1. Knockdown of HO-1 promoted apoptosis through activation of a ROS-mediated caspase apoptosis pathway.
Collapse
Affiliation(s)
- Quan-Guang Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| | - Pin-Dong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| | - Ye-Shan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| | - Qiu-Shuang Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jianghan, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
37
|
Beckner ME, Pollack IF, Nordberg ML, Hamilton RL. Glioblastomas with copy number gains in EGFR and RNF139 show increased expressions of carbonic anhydrase genes transformed by ENO1. BBA CLINICAL 2015; 5:1-15. [PMID: 27051584 PMCID: PMC4802406 DOI: 10.1016/j.bbacli.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022]
Abstract
Background Prominence of glycolysis in glioblastomas may be non-specific or a feature of oncogene-related subgroups (i.e. amplified EGFR, etc.). Relationships between amplified oncogenes and expressions of metabolic genes associated with glycolysis, directly or indirectly via pH, were therefore investigated. Methods Using multiplex ligation-dependent probe amplification, copy numbers (CN) of 78 oncogenes were quantified in 24 glioblastomas. Related expressions of metabolic genes encoding lactate dehydrogenases (LDHA, LDHC), carbonic anhydrases (CA3, CA12), monocarboxylate transporters (SLC16A3 or MCT4, SLC16A4 or MCT5), ATP citrate lyase (ACLY), glycogen synthase1 (GYS1), hypoxia inducible factor-1A (HIF1A), and enolase1 (ENO1) were determined in 22 by RT-qPCR. To obtain supra-glycolytic levels and adjust for heterogeneity, concurrent ENO1 expression was used to mathematically transform the expression levels of metabolic genes already normalized with delta-delta crossing threshold methodology. Results Positive correlations with EGFR occurred for all metabolic genes. Significant differences (Wilcoxon Rank Sum) for oncogene CN gains in tumors of at least 2.00-fold versus less than 2.00-fold occurred for EGFR with CA3's expression (p < 0.03) and for RNF139 with CA12 (p < 0.004). Increased CN of XIAP associated negatively. Tumors with less than 2.00-fold CN gains differed from those with gains for XIAP with CA12 (p < 0.05). Male gender associated with CA12 (p < 0.05). Conclusions Glioblastomas with CN increases in EGFR had elevated CA3 expression. Similarly, tumors with RNF149 CN gains had elevated CA12 expression. General significance In larger studies, subgroups of glioblastomas may emerge according to oncogene-related effects on glycolysis, such as control of pH via effects on carbonic anhydrases, with prognostic and treatment implications. PCR of glioblastomas show oncogene copy numbers relate to metabolic gene expressions. ENO1(ENOLASE1) transformations yielded “supra-glycolytic” metabolic gene expressions. EGFR, RNF139, and XIAP associated with expressions of two carbonic anhydrase genes. Male gender associated (+) with the transformed expression of carbonic anhydrase 12. Oncogene amplifications may aid control of pH to protect glycolysis in glioblastomas.
Collapse
Key Words
- Amplified oncogenes
- CN, copy number
- Carbonic anhydrase
- DAPI, diaminephylindole
- EGFR
- GB, glioblastoma
- GOI, gene of interest
- Glycolysis
- HKG, housekeeping gene
- IRES, internal ribosome entry site
- MLPA, multiplex ligation-dependent probe amplification
- MPNST, malignant peripheral nerve sheath tumor
- MTB/GF, metabolic/growth factor
- NB, normal brain
- REMBRANDT, Repository of Molecular Brain Neoplasia Database
- RNF139
- RT-qPCR, real time quantitative PCR
- SLC, solute carrier
- WHO, World Health Organization
- XIAP
- ddCt, delta-delta crossing threshold
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, RM. 3-438, 1501 Kings Highway, Shreveport, LA 71130, United States 1(former position)
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, United States; 4th Floor, Children's Hospital of Pittsburgh, UPMC, 4129 Penn Avenue, Pittsburgh, PA 15224, United States
| | - Mary L Nordberg
- Department of Medicine, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71130, United States; The Delta Pathology Group, One Saint Mary Place, Shreveport, LA 71101, United States
| | - Ronald L Hamilton
- Department of Pathology, Division of Neuropathology, S724.1, Scaife Hall, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
38
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
39
|
Chang PC, Tsai HW, Chiang MT, Huang PL, Shyue SK, Chau LY. TRC8 downregulation contributes to the development of non-alcoholic steatohepatitis by exacerbating hepatic endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2339-51. [PMID: 26319415 DOI: 10.1016/j.bbadis.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/23/2023]
Abstract
Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). TRC8 is an ER-resident E3 ligase with roles in modulating lipid and protein biosynthesis. In this study we showed that TRC8 expression was downregulated in steatotic livers of patients and mice fed with a high fat diet (HFD) or a methionine and choline deficient (MCD) diet. To investigate the impact of TRC8 downregulation on steatosis and the progression to non-alcoholic steatohepatitis (NASH), we placed TRC8 knockout (KO) mice and wild type (WT) controls on a HFD or MCD diet and the severities of steatosis and NASH developed were compared. We found that TRC8 deficiency did not significantly affect diet-induced steatosis. Nevertheless, MCD diet-induced NASH as characterized by hepatocyte death, inflammation and fibrosis were exacerbated in TRC8-KO mice. The hepatic ER stress response, as evidenced by increased eIF2α phosphorylation and expression of ATF4 and CHOP, and the level of activated caspase 3, an apoptosis indicator, were augmented by TRC8 deficiency. The hepatic ER stress and NASH induced in mice could be ameliorated by adenovirus-mediated hepatic TRC8 overexpression. Mechanistically, we found that TRC8 deficiency augmented lipotoxic-stress-induced unfolded protein response in hepatocytes by attenuating the arrest of protein translation and the misfolded protein degradation. These findings disclose a crucial role of TRC8 in the maintenance of ER protein homeostasis and its downregulation in steatotic liver contributes to the progression of NAFLD.
Collapse
Affiliation(s)
- Po-Chiao Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng-Kung University Hospital, Tainan, Taiwan.
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pei-Ling Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
40
|
Ge GZ, Xu TR, Chen C. Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:477-87. [PMID: 26040315 DOI: 10.1093/abbs/gmv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
Abstract
Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.
Collapse
Affiliation(s)
- Guang-Zhe Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
41
|
Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. mBio 2015; 6:e00668. [PMID: 26045540 PMCID: PMC4462627 DOI: 10.1128/mbio.00668-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.
Collapse
|
42
|
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme catalyzing oxidative degradation of cellular heme to liberate free iron, carbon monoxide (CO) and biliverdin in mammalian cells. In addition to its primary role in heme catabolism, HO-1 exhibits anti-oxidative and anti-inflammatory functions via the actions of biliverdin and CO, respectively. HO-1 is highly induced in various disease states, including cancer. Several lines of evidence have supported the implication of HO-1 in carcinogenesis and tumor progression. HO-1 deficiency in normal cells enhances DNA damage and carcinogenesis. Nevertheless, HO-1 overexpression in cancer cells promotes proliferation and survival. Moreover, HO-1 induces angiogenesis through modulating expression of angiogenic factors. Although HO-1 is an endoplasmic reticulum resident protein, HO-1 nuclear localization is evident in tumor cells of cancer tissues. It has been shown that HO-1 is susceptible to proteolytic cleavage and translocates to nucleus to facilitate tumor growth and invasion independent of its enzymatic activity. HO-1 also impacts cancer progression through modulating tumor microenvironment. This review summarizes the current understanding of the protumorigenic role of HO-1 and its potential as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
43
|
Boname JM, Bloor S, Wandel MP, Nathan JA, Antrobus R, Dingwell KS, Thurston TL, Smith DL, Smith JC, Randow F, Lehner PJ. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. ACTA ACUST UNITED AC 2014; 205:847-62. [PMID: 24958774 PMCID: PMC4068138 DOI: 10.1083/jcb.201312009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intramembrane proteolytic cleavage by signal peptide peptidase is required for the turnover of some ER-resident, tail-anchored membrane proteins. The regulated turnover of endoplasmic reticulum (ER)–resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture–based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover.
Collapse
Affiliation(s)
- Jessica M Boname
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Stuart Bloor
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Michal P Wandel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - James A Nathan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Kevin S Dingwell
- Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Teresa L Thurston
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Duncan L Smith
- Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4B, England, UK
| | - James C Smith
- Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Felix Randow
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, England, UK Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, England, UK
| |
Collapse
|
44
|
Liu YS, Li HS, Qi DF, Zhang J, Jiang XC, Shi K, Zhang XJ, Zhang XH. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J Gastroenterol 2014; 20:8572-8582. [PMID: 25024611 PMCID: PMC4093706 DOI: 10.3748/wjg.v20.i26.8572] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/16/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of zinc protoporphyrin IX on the response of hepatoma cells to cisplatin and the possible mechanism involved.
METHODS: Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was determined by a flow cytometric assay. Western blotting was used to measure protein expression. Heme oxygenase (HO)-1 activity was measured by determining the level of bilirubin generated in isolated microsomes. Reactive oxygen species (ROS) production was monitored by flow cytometry. Caspase-3 activity was measured with a colorimetric assay kit. Mice were inoculated with 1 × 107 tumor cells subcutaneously into the right flanks. All mice were sacrificed 6 wk after the first treatment and tumors were weighed and measured.
RESULTS: Overexpression of HO-1 in HepG2 cell line was associated with increased chemoresistance to cis-diaminedichloroplatinum (cisplatin; CDDP) compared to other cell lines in vitro. Inhibition of HO-1 expression or activity by zinc protoporphyrin IX (ZnPP IX) markedly augmented CDDP-mediated cytotoxicity towards all liver cancer cell lines in vitro and in vivo. In contrast, induction of HO-1 with hemin increased resistance of tumor cells to CDDP-mediated cytotoxicity in vitro and in vivo. Furthermore, cells treated with ZnPP IX plus CDDP exhibited marked production of intracellular ROS and caspase-3 activity, which paralleled the incidence of cell apoptosis, whereas hemin decreased cellular ROS and caspase-3 activity induced by CDDP.
CONCLUSION: ZnPP IX increases cellular sensitivity and susceptibility of liver cancer cell lines to CDDP and this may represent a mechanism of increasing ROS.
Collapse
|
45
|
Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, Li FA, Lee WH, Chau LY. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 2014; 34:2360-70. [PMID: 24931165 DOI: 10.1038/onc.2014.166] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/27/2022]
Abstract
Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.
Collapse
Affiliation(s)
- F-F Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-T Yeh
- 1] Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan [2] Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Y-J Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M-T Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-M Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - F-A Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - W-H Lee
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - L-Y Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R. New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 2014; 20:1723-42. [PMID: 24180287 PMCID: PMC3961787 DOI: 10.1089/ars.2013.5675] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/01/2013] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HMOX1) plays a critical role in the protection of cells, and the inducible enzyme is implicated in a spectrum of human diseases. The increasing prevalence of cardiovascular and metabolic morbidities, for which current treatment approaches are not optimal, emphasizes the necessity to better understand key players such as HMOX1 that may be therapeutic targets. RECENT ADVANCES HMOX1 is a dynamic protein that can undergo post-translational and structural modifications which modulate HMOX1 function. Moreover, trafficking from the endoplasmic reticulum to other cellular compartments, including the nucleus, highlights that HMOX1 may play roles other than the catabolism of heme. CRITICAL ISSUES The ability of HMOX1 to be induced by a variety of stressors, in an equally wide variety of tissues and cell types, represents an obstacle for the therapeutic exploitation of the enzyme. Any capacity to modulate HMOX1 in cardiovascular and metabolic diseases should be tempered with an appreciation that HMOX1 may have an impact on cancer. Moreover, the potential for heme catabolism end products, such as carbon monoxide, to amplify the HMOX1 stress response should be considered. FUTURE DIRECTIONS A more complete understanding of HMOX1 modifications and the properties that they impart is necessary. Delineating these parameters will provide a clearer picture of the opportunities to modulate HMOX1 in human disease.
Collapse
Affiliation(s)
- Louise L. Dunn
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | | | - Jun Ni
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hafizah A. Hamid
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Roland Stocker
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li CC, Chen HW. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 2013; 34:1843-51. [PMID: 23615401 DOI: 10.1093/carcin/bgt131] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a critical role in cancer metastasis. Andrographolide (AP) is a diterpene lactone in the leaves and stem of Andrographis paniculata (Burm. f) Ness that has been reported to possess anticancer activity. In this study, we investigated the effect of AP on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and invasion in MCF-7 breast cancer cells and the possible mechanisms involved. The results showed that AP dose-dependently inhibited TPA-induced MMP-9 protein expression, enzyme activity, migration and invasion. In addition, AP significantly induced heme oxygenase-1 (HO-1) messenger RNA (mRNA) and protein expression. Transfection with HO-1 small interfering RNA knocked down the HO-1 expression and reversed the inhibition of MMP-9 expression by AP. HO-1 end products, such as carbon monoxide, free iron and bilirubin, suppressed the TPA-induced MMP-9 mRNA and protein expression, enzyme activity, migration and invasion in MCF-7 cells. Furthermore, TPA-induced extracellular signal-regulated kinase (ERK) 1/2 and Akt phosphorylation and the DNA binding activity of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) were attenuated by pretreatment with AP and HO-1 end products. In conclusion, these results suggest that AP inhibits TPA-induced cell migration and invasion by reducing MMP-9 activation, which is mediated mainly by inhibition of the ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways and subsequent AP-1 and NF-κB transactivation. Additionally, induction of HO-1 expression is at least partially involved in the inhibition of TPA-induced MMP-9 activation and cell migration in MCF-7 cells by AP.
Collapse
Affiliation(s)
- Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | | | | | | | | | | | | |
Collapse
|