1
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Leibowitz BJ, Coffman LG, Wang H, Huq MS, Huang Z, Rogers CJ, Vlad AM, Greenberger JS, Mukherjee A. Genetically Engineered Probiotic Limosilactobacillus reuteri Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer. Cancers (Basel) 2024; 16:474. [PMID: 38339228 PMCID: PMC10854600 DOI: 10.3390/cancers16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | | | - Brian J. Leibowitz
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Lan G. Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | | | - Anda M. Vlad
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| |
Collapse
|
2
|
Zhang G, Zheng G, Zhang H, Qiu L. MUC1 induces the accumulation of Foxp3+ Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int Immunopharmacol 2023; 118:110091. [PMID: 37018979 DOI: 10.1016/j.intimp.2023.110091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the progression of cholangiocarcinoma. This study aims to explore whether Mucin 1 (MUC1) regulates Foxp3+ Treg cells in the TME of cholangiocarcinoma through the epidermal growth factor receptor (EGFR)/phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. High-throughput sequencing dataset in the GEO database combined with GeneCards and Phenolyzer databases was used to obtain key genes in cholangiocarcinoma, followed by downstream pathway prediction. The relationship among MUC1, EGFR, and PI3K/Akt signaling pathway was explored. CD4+ T cells extracted from peripheral blood were induced to differentiate into Treg cells, followed by co-culture with cholangiocarcinoma cells. A mouse model was constructed to detect the role of MUC1 in the accumulation of Foxp3+ Treg cells, malignant phenotypes of cholangiocarcinoma, and tumorigenesis in vivo. MUC1, highly expressed in cholangiocarcinoma, might be involved in cholangiocarcinoma development. MUC1 interacted with the EGFR to activate the EGFR/PI3K/Akt signaling pathway. MUC1 overexpression could activate the EGFR/PI3K/Akt signaling pathway, which promoted the accumulation of Foxp3+ Treg cells in the TME and the malignant phenotypes of cholangiocarcinoma cells both in vitro and in vivo and enhanced tumorigenesis in vivo. MUC1 may interact with EGFR to activate the EGFR/PI3K/Akt signaling pathway, which induces the accumulation of Foxp3+ Treg cells, enhancing the malignant phenotypes of cholangiocarcinoma cells and tumorigenesis in vivo and ultimately augmenting cholangiocarcinoma growth and metastasis.
Collapse
|
3
|
Xu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F, Cai Y, Dou J. Eliciting effective tumor immunity against ovarian cancer by cancer stem cell vaccination. Biomed Pharmacother 2023; 161:114547. [PMID: 36933377 DOI: 10.1016/j.biopha.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Advanced ovarian cancer (OC) patients have limited benefit from current relevant cytotoxic and targeted therapies following debulking surgery. Therefore, new therapeutic strategies are in urgent need. Immunotherapy has shown great potential in tumor treatment, especially in tumor vaccine development. The study objective was to evaluate the immune effects of cancer stem cells (CSCs) vaccines on OC. The CD44+CD117+CSCs were isolated from human OC HO8910 and SKOV3 cells using the magnetic cell sorting system; the cancer stem-like cells were selected from murine OC ID8 cell by no-serum formed sphere culture. The CSC vaccines were prepared by freezing and thawing these CSCs, which were then injected into mice followed by challenging the different OC cells. The in vivo antitumor efficacy of CSC immunization revealed the vaccines were capable of significantly provoking immune responses to autologous tumor antigens in vaccinated mice as the mice were found to have markedly inhibited tumor growth, prolonged survival, and decreased CSC counts in OC tissues when compared to mice without the CSC vaccination. The in vitro cytotoxicities of immunocytes toward SKOV3, HO8910 and ID8 cells indicated a significant killing efficacy compared with the controls. However, the antitumor efficacy was remarkably reduced whilst the mucin-1 expression in CSC vaccines was down-regulated by small interfering RNA. Overall, findings from this study provided the evidence that has deepened our understanding of CSC vaccine immunogenicity and anti-OC efficacy, particularly for the role of dominant antigen mucin-1. It is possible to turn the CSC vaccine into an immunotherapeutic approach against ovarian cancer.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China; Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Wu
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunxia Zhang
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yunlang Cai
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Hamade DF, Espinal A, Yu J, Leibowitz BJ, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Epperly MW, Vlad A, Coffman L, Wang H, Huq MS, Patel R, Huang J, Greenberger JS. Lactobacillus reuteri Releasing IL-22 (LR-IL-22) Facilitates Intestinal Radioprotection for Whole-Abdomen Irradiation (WAI) of Ovarian Cancer. Radiat Res 2022; 198:89-105. [PMID: 35446961 PMCID: PMC9278541 DOI: 10.1667/rade-21-00224.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
Oral administration (gavage) of a second-generation probiotic, Lactobacillus reuteri (L. reuteri), that releases interleukin-22 (LR-IL-22) at 24 h after total-body irradiation (TBI) mitigates damage to the intestine. We determined that LR-IL-22 also mitigates partial-body irradiation (PBI) and whole-abdomen irradiation (WAI). Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Strategies to mitigate toxicity are important and can revitalize this modality to treat ovarian cancer. In the present studies, we evaluated whether LR-IL-22 facilitates fractionated WAI in female C57BL/6 mice with disseminated ovarian cancer given a single fraction of either 15.75 Gy or 19.75 Gy or 4 daily fractions of 6 Gy or 6.5 Gy. Mice receiving single or multiple administrations of LR-IL-22 during WAI showed improved intestinal barrier integrity (P = 0.0167), reduced levels of radiation-induced intestinal cytokines including KC/CXCL1 (P = 0.002) and IFN-γ (P = 0.0024), and reduced levels of plasma, Eotaxin/CCL11 (P = 0.0088). LR-IL-22 significantly preserved the numbers of Lgr5+GFP+ intestinal stem cells (P = 0.0010) and improved survival (P < 0.0343). Female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer that received LR-IL-22 during 6.5 Gy WAI in 4 fractions had reduced tumor burden, less intestinal toxicity, and improved 30-day survival. Furthermore, LR-IL-22 facilitated WAI when added to Paclitaxel and Carboplatin chemotherapy and further increased survival. Oral administration (gavage) of LR-IL-22 is a potentially valuable intestinal radioprotector, which can facilitate therapeutic WAI for widespread intra-abdominal ovarian cancer.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Alexis Espinal
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | | | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Anda Vlad
- Department of OB/Gyn and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Ravi Patel
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Jason Huang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
5
|
Dai D, Liu L, Huang H, Chen S, Chen B, Cao J, Luo X, Wang F, Luo R, Liu J. Nomograms to Predict the Density of Tumor-Infiltrating Lymphocytes in Patients With High-Grade Serous Ovarian Cancer. Front Oncol 2021; 11:590414. [PMID: 33718143 PMCID: PMC7946970 DOI: 10.3389/fonc.2021.590414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) have important roles in predicting tumor therapeutic responses and progression, however, the method of evaluating TILs is complicated. We attempted to explore the association of TILs with clinicopathological characteristics and blood indicators, and to develop nomograms to predict the density of TILs in patients with high-grade serous ovarian cancer (HGSOC). Methods The clinical profiles of 197 consecutive postoperative HGSOC patients were retrospectively analyzed. Tumor tissues and matched normal fallopian tubes were immunostained for CD3+, CD8+, and CD4+ T cells on corresponding tissue microarrays and the numbers of TILs were counted using the NIH ImageJ software. The patients were classified into low- or high-density groups for each marker (CD3, CD4, CD8). The associations of the investigated TILs to clinicopathological characteristics and blood indicators were assessed and the related predictors for densities of TILs were used to develop nomograms; which were then further evaluated using the C-index, receiver operating characteristic (ROC) curves and calibration plots. Results Menopausal status, estrogen receptor (ER), Ki-67 index, white blood cell (WBC), platelets (PLT), lactate dehydrogenase (LDH), and carbohydrate antigen 153 (CA153) had significant association with densities of tumor-infiltrating CD3+, CD8+, or CD4+ T cells. The calibration curves of the CD3+ (C-index = 0.748), CD8+ (C-index = 0.683) and CD4+ TILs nomogram (C-index = 0.759) demonstrated excellent agreement between predictions and actual observations. ROC curves of internal validation indicated good discrimination for the CD8+ TILs nomogram [area under the curve (AUC) = 0.659, 95% CI 0.582–0.736] and encouraging performance for the CD3+ (AUC= 0.708, 95% CI 0.636–0.781) and CD4+ TILs nomogram (AUC = 0.730, 95% CI 0.659–0.801). Conclusion Menopausal status, ER, Ki-67 index, WBC, PLT, LDH, and CA153 could reflect the densities of T cells in the tumor microenvironment. Novel nomograms are conducive to monitor the immune status of patients with HGSOC and help doctors to formulate the appropriate treatment strategies.
Collapse
Affiliation(s)
- Danian Dai
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Liu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Shangqiu Chen
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junya Cao
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaolin Luo
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Feng Wang
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Rongzhen Luo
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jihong Liu
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.,Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Hartnett EG, Knight J, Radolec M, Buckanovich RJ, Edwards RP, Vlad AM. Immunotherapy Advances for Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123733. [PMID: 33322601 PMCID: PMC7764119 DOI: 10.3390/cancers12123733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The overall five-year survival rate in epithelial ovarian cancer is 44% and has only marginally improved in the past two decades. Despite an initial response to standard treatment consisting of chemotherapy and surgical removal of tumor, the lesions invariably recur, and patients ultimately die of chemotherapy resistant disease. New treatment modalities are needed in order to improve the prognosis of women diagnosed with ovarian cancer. One such modality is immunotherapy, which aims to boost the capacity of the patient’s immune system to recognize and attack the tumor cells. We performed a retrospective study to identify some of the most promising immune therapies for epithelial ovarian cancer. Special emphasis was given to immuno-oncology clinical trials. Abstract New treatment modalities are needed in order to improve the prognosis of women diagnosed with epithelial ovarian cancer (EOC), the most aggressive gynecologic cancer type. Most ovarian tumors are infiltrated by immune effector cells, providing the rationale for targeted approaches that boost the existing or trigger new anti-tumor immune mechanisms. The field of immuno-oncology has experienced remarkable progress in recent years, although the results seen with single agent immunotherapies in several categories of solid tumors have yet to extend to ovarian cancer. The challenge remains to determine what treatment combinations are most suitable for this disease and which patients are likely to benefit and to identify how immunotherapy should be incorporated into EOC standard of care. We review here some of the most promising immune therapies for EOC and focus on those currently tested in clinical trials.
Collapse
Affiliation(s)
- Erin G. Hartnett
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Julia Knight
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mackenzy Radolec
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Ronald J. Buckanovich
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Robert P. Edwards
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Magee-Womens Research Institute and Foundation and Magee-Womens Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (E.G.H.); (M.R.); (R.J.B.); (R.P.E.)
- Correspondence:
| |
Collapse
|
7
|
Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E1761. [PMID: 32630708 PMCID: PMC7409311 DOI: 10.3390/cancers12071761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.
Collapse
Affiliation(s)
- Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT), 31037 Toulouse, France
| | - Jean-Pierre Delord
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| |
Collapse
|
8
|
Zhou L, Wang W, Chen Y, Fan J, Tong C, Liu B. Aptamer-tagged silver nanoclusters for cell image and Mucin1 detection in vitro. Talanta 2019; 205:120075. [PMID: 31450473 DOI: 10.1016/j.talanta.2019.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023]
Abstract
Development of specific cell imaging technology for accurate tumor early diagnosis and evaluation of drug therapeutic efficiency is in great demand. In this study, a simple and sensitive fluorescence method for Mucin1 (MUC1) image in situ and quantitative assay in vitro has been established using APT-tagged silver nanoclusters (APT-Agnes) containing a recognition unit of MUC1 aptamer as the label-free fluorescence probe. The principle of the method is that specific recognition and binding of MUC1 with aptamer can result in the fluorescence quenching of APT-Agnes. The method for MUC1 assay showed a linear range from 0.1 to 100 NM with a limit of detection of 0.05 nM. Furthermore, the fluorescent probe of APT-AgNCs was successfully used for detection of MUC1 in serum and MCF-7 cell imaging. In our point, the above results demonstrated that the new simple method provided an alternative for direct quantitative assay of MUC1 in homogeneous solution and cell imaging, which is helpful for biomedical study and clinical diagnosis related with MUC1.
Collapse
Affiliation(s)
- Leiji Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Wenmiao Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - YunQing Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
9
|
Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Grabosch S, Bulatovic M, Zeng F, Ma T, Zhang L, Ross M, Brozick J, Fang Y, Tseng G, Kim E, Gambotto A, Elishaev E, P Edwards R, Vlad AM. Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene 2018; 38:2380-2393. [PMID: 30518877 PMCID: PMC6440870 DOI: 10.1038/s41388-018-0581-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022]
Abstract
The backbone of ovarian cancer treatment is platinum-based chemotherapy and aggressive surgical debulking. New therapeutic approaches using immunotherapy via immune checkpoint blockade, which have demonstrated clinical efficacy in other tumor types, have been less promising in ovarian cancer. To increase their clinical efficacy, checkpoint inhibitors are now being tested in clinical trials in combination with chemotherapy. Here, we evaluated the impact of cisplatin on tumor immunogenicity and its in vivo roles when used alone or in combination with anti-PD-L1, in two novel murine ovarian cancer cell models. The 2F8 and its platinum-resistant derivative 2F8cis model, display distinct inflammatory profiles and chemotherapy sensitivities, and mirror the primary and recurrent human disease, respectively. Acute and chronic exposure to cisplatin enhances tumor immunogenicity by increasing calreticulin, MHC class I, antigen presentation and T-cell infiltration. Cisplatin also upregulates PD-L1 expression in vitro and in vivo, demonstrating a dual, paradoxical immune modulatory effect and supporting the rationale for combination with immune checkpoint blockade. One of the pathways activated by cisplatin treatment is the cGAS/STING pathway. Chronic cisplatin treatment led to upregulation of cGAS and STING proteins in 2F8cis compared to parental 2F8 cells, while acute exposure to cisplatin further increases cGAS and STING levels in both 2F8 and 2F8cis cells. Overexpression of cGAS/STING modifies tumor immunogenicity by upregulating PD-L1, MHC I and calreticulin in tumor cells. Anti-PD-L1 alone in a platinum-sensitive model or with cisplatin in a platinum-resistant model increases survival. These studies have high translational potential in ovarian cancer.
Collapse
Affiliation(s)
- Shannon Grabosch
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Magee Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mirna Bulatovic
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feitianzhi Zeng
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Central South University Xiangya School of Medicine, Changsha, Hunan, People's Republic of China
| | - Tianzhou Ma
- Department of Biostatistics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA.,Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Pittsburgh, MD, USA
| | - Lixin Zhang
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Malcolm Ross
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Magee Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joan Brozick
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - YuSi Fang
- Department of Biostatistics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert P Edwards
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Magee Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anda M Vlad
- Magee Womens Research Institute, Pittsburgh, Pennsylvania, USA. .,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, Kalinski P. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc 2018; 13:335-357. [PMID: 29345636 DOI: 10.1038/nprot.2017.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol describes how to induce large numbers of tumor-specific cytotoxic T cells (CTLs) in the spleens and lymph nodes of mice receiving dendritic cell (DC) vaccines and how to modulate tumor microenvironments (TMEs) to ensure effective homing of the vaccination-induced CTLs to tumor tissues. We also describe how to evaluate the numbers of tumor-specific CTLs within tumors. The protocol contains detailed information describing how to generate a specialized DC vaccine with augmented ability to induce tumor-specific CTLs. We also describe methods to modulate the production of chemokines in the TME and show how to quantify tumor-specific CTLs in the lymphoid organs and tumor tissues of mice receiving different treatments. The combined experimental procedure, including tumor implantation, DC vaccine generation, chemokine-modulating (CKM) approaches, and the analyses of tumor-specific systemic and intratumoral immunity is performed over 30-40 d. The presented ELISpot-based ex vivo CTL assay takes 6 h to set up and 5 h to develop. In contrast to other methods of evaluating tumor-specific immunity in tumor tissues, our approach allows detection of intratumoral T-cell responses to nonmanipulated weakly immunogenic cancers. This detection method can be performed using basic laboratory skills, and facilitates the development and preclinical evaluation of new immunotherapies.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Urban
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Wieckowski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Qu A, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C. SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers. NANOSCALE 2017; 9:3865-3872. [PMID: 28252127 DOI: 10.1039/c6nr09114h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alpha-fetoprotein (AFP) and mucoprotein1 (mucin-1) are two important disease biomarkers. Self-assembled gold nanoparticles (AuNPs) and upconversion nanoparticle (Au-Au-UCNP) trimers based on aptamers were developed for the ultrasensitive detection of AFP and mucin-1. The Au-Au-UCNP trimers produced ideal optical signals, with prominent Raman enhancement and fluorescence quenching effects. The surface-enhanced Raman scattering (SERS) intensity decreased in the presence of mucin-1 and the luminescence intensity increased in the presence of AFP. A limit of detection (LOD) of 4.1 aM and a wide linear range of 0.01-10 fM for the detection of mucin-1 were obtained with this SERS-encoded sensing system. Using the luminescence-encoded sensing system, a LOD of 0.059 aM and a wide linear range of 1-100 aM for the detection of AFP were obtained. These LODs are the lowest values reported so far. This approach has the advantage of detecting two disease biomarkers simultaneously.
Collapse
Affiliation(s)
- Aihua Qu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
14
|
Zhang L, Ma T, Brozick J, Babalola K, Budiu R, Tseng G, Vlad AM. Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer. Oncogene 2016; 35:5010-20. [PMID: 26973247 PMCID: PMC5023457 DOI: 10.1038/onc.2016.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 02/01/2023]
Abstract
Mucin1 (MUC1) is an epithelial glycoprotein overexpressed in ovarian cancer and actively involved in tumor cell migration and metastasis. Using novel in vitro and in vivo MUC1-expressing conditional (Cre-loxP) ovarian tumor models, we focus here on MUC1 biology and the roles of Kras activation and Pten deletion during cell transformation and epithelial-to-mesenchymal transition (EMT). We generated several novel murine ovarian cancer cell lines derived from the ovarian surface epithelia (OSE) of mice with conditional mutations in Kras, Pten or both. In addition, we also generated several tumor-derived new cell lines that reproduce the original tumor phenotype in vivo and mirror late stage metastatic disease. Our results demonstrate that de novo activation of oncogenic Kras does not trigger increased proliferation, cellular transformation or EMT and prevents MUC1 upregulation. In contrast, Pten deletion accelerates cell proliferation, triggers cellular transformation in vitro and in vivo and stimulates MUC1 expression. Ovarian tumor-derived cell lines MKP-Liver and MKP-Lung cells reproduce in vivo EMT and represent the first immune competent mouse model for distant hematogenous spread. Whole genome microarray expression analysis using tumor and OSE-derived cell lines reveals a 121 gene signature associated with EMT and metastasis. When applied to n=542 cases from the ovarian cancer TCGA dataset, the gene signature identifies a patient subset with decreased survival (p=0.04). Using an extensive collection of novel murine cell lines we have identified distinct roles for Kras and Pten on MUC1 and EMT in vivo and in vitro. The data has implications for future design of combination therapies targeting Kras mutations, Pten deletions and MUC1 vaccines.
Collapse
Affiliation(s)
- L Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - T Ma
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - J Brozick
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - K Babalola
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - R Budiu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - G Tseng
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - A M Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.,Magee-Womens Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Kannan K, Kordestani GK, Galagoda A, Coarfa C, Yen L. Aberrant MUC1-TRIM46-KRTCAP2 Chimeric RNAs in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2015; 7:2083-93. [PMID: 26492273 PMCID: PMC4695878 DOI: 10.3390/cancers7040878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. By analyzing the mRNA-seq reads from The Cancer Genome Atlas (TCGA), we uncovered a novel cancer-enriched chimeric RNA as the result of splicing between MUC1, a highly glycosylated transmembrane mucin, TRIM46, a tripartite motif containing protein, and KRTCAP2, a keratinocyte associated protein. Experimental analyses by RT-PCR (reverse transcription PCR) and Sanger sequencing using an in-house cohort of 59 HGSC patient tumors revealed a total of six MUC1-TRIM46-KRTCAP2 isoforms joined by different annotated splice sites between these genes. These chimeric isoforms are not detected in non-cancerous ovaries, yet are present in three out of every four HGSC patient tumors, a significant frequency given the exceedingly heterogeneous nature of this disease. Transfection of the cDNA of MUC1-TRIM46-KRTCAP2 isoforms in mammalian cells led to the translation of mutant MUC1 fusion proteins that are unglycosylated and cytoplasmically localized as opposed to the cell membrane, a feature resembling the tumor-associated MUC1. Because the parental MUC1 is overexpressed in 90% of HGSC tumors and has been proposed as a clinical biomarker and therapeutic target, the chimeric MUC1-TRIM46-KRTCAP2 isoforms identified in this report could represent significantly better MUC1 variants for the same clinical utilities.
Collapse
Affiliation(s)
- Kalpana Kannan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gona Karimi Kordestani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Anika Galagoda
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Mony JT, Zhang L, Ma T, Grabosch S, Tirodkar TS, Brozick J, Tseng G, Elishaev E, Edwards RP, Huang X, Vlad AM. Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model. Cancer Immunol Immunother 2015; 64:1095-108. [PMID: 25998800 PMCID: PMC4545381 DOI: 10.1007/s00262-015-1712-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/06/2015] [Indexed: 01/23/2023]
Abstract
Monoclonal antibodies that block inhibitory immune checkpoint molecules and enhance anti-tumor responses show clinical promise in advanced solid tumors. Most of the preliminary evidence on therapeutic efficacy of immune checkpoint blockers comes from studies in melanoma, lung and renal cancer. To test the in vivo potential of programmed death-ligand 1 (PD-L1) blockade in ovarian cancer, we recently generated a new transplantable tumor model using human mucin 1 (MUC1)-expressing 2F8 cells. The MUC1 transgenic (MUC1.Tg) mice develop large number of intraperitoneal (IP) tumors following IP injection of 8 × 10(5) syngeneic 2F8 cells. The tumors are aggressive and display little T cell infiltration. Anti-PD-L1 antibody was administered IP every 2 weeks (200 μg/dose) for a total of three doses. Treatment was started 21 days post-tumor challenge, a time point which corresponds to late tumor stage. The anti-PD-L1 treatment led to substantial T cell infiltration within the tumor and significantly increased survival (p = 0.001) compared to isotype control-treated mice. When the same therapy was administered to wild-type mice challenged with 2F8 tumors, no survival benefit was observed, despite the presence of high titer anti-MUC1 antibodies. However, earlier treatment (day 11) and higher frequency of IP injections restored the T cell responses and led to prolonged survival. Splenocyte profiling via Nanostring using probes for 511 immune genes revealed a treatment-induced immune gene signature consistent with increased T cell-mediated immunity. These findings strongly support further preclinical and clinical strategies exploring PD-L1 blockade in ovarian cancer.
Collapse
Affiliation(s)
- Jyothi Thyagabhavan Mony
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Lixin Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Tianzhou Ma
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, 15213 PA USA
| | - Shannon Grabosch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Tejas S. Tirodkar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Joan Brozick
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, 15213 PA USA
| | - Esther Elishaev
- Department of Pathology, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, 15213 PA USA
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| | - Anda M. Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Ave, Pittsburgh, PA 15213 USA
- Magee-Womens Research Institute B403, 204 Craft Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
17
|
Li P, Xiao LY, Tan H. Muc-1 promotes migration and invasion of oral squamous cell carcinoma cells via PI3K-Akt signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10365-10374. [PMID: 26617744 PMCID: PMC4637559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/26/2015] [Indexed: 06/05/2023]
Abstract
Muc-1 is a member of the carbohydrate-binding protein family that contributes to neoplastic transformation, tumor survival, angiogenesis, and metastasis. The aim of this study is to investigate the role of muc-1 in human oral squamous cell carcinoma progression. In this study, we tested our hypothesis that muc-1 regulate oral squamous cell carcinoma cells (SCC-9) malignant biological behaviors, and silencing muc-1 reduced SCC-9 cellular colony forming ability, migration and invasion. Moreover, silenced cells present defects in phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (Akt) signaling, and reduced expression/activity of matrix metallopeptidase (MMP)-2/9. Furthermore, in muc-1 siRNA-transfected cells, we detected a decrease in signal transducer and activator of transcription 3 (STAT3) phosphorylation and nuclear translocation. In vivo, muc-1 siRNA cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and PI3K-Akt signaling inhibition. These results indicate that muc-1 is a key factor in SCC-9 tumor migration, invasion, and suggesting that muc-1 can be a novel therapeutic target in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ping Li
- Department of Stomatology, The Third Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Li Ying Xiao
- West China College of Stomatology, Sichuan UniversityChengdu, China
| | - Hong Tan
- West China College of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
18
|
Bobbs AS, Cole JM, Cowden Dahl KD. Emerging and Evolving Ovarian Cancer Animal Models. CANCER GROWTH AND METASTASIS 2015; 8:29-36. [PMID: 26380555 PMCID: PMC4558890 DOI: 10.4137/cgm.s21221] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect metastasis, response to therapy, and diverse genetics found in patients. Additionally, multiple genetically engineered mouse models have increased our understanding of possible tissues of origin for OC and what role individual mutations play in establishing ovarian tumors. Many of these models are used to test novel therapeutics. As no single model perfectly copies the human disease, we can use a variety of OC animal models in hypothesis testing that will lead to novel treatment options. The goal of this review is to provide an overview of the utility of different mouse models in the study of OC and their suitability for cancer research.
Collapse
Affiliation(s)
- Alexander S Bobbs
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA
| | - Jennifer M Cole
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA
| | - Karen D Cowden Dahl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN, USA. ; Harper Cancer Research Institute, South Bend, IN, USA. ; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. ; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
19
|
Halvorsen EC, Mahmoud SM, Bennewith KL. Emerging roles of regulatory T cells in tumour progression and metastasis. Cancer Metastasis Rev 2015; 33:1025-41. [PMID: 25359584 DOI: 10.1007/s10555-014-9529-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The metastasis of cancer is a complex and life-threatening process that is only partially understood. Immune suppressive cells are recognized as important contributors to tumour progression and may also promote the development and growth of tumour metastases. Specifically, regulatory T cells (Tregs) have been found to promote primary tumour progression, and emerging pre-clinical data suggests that Tregs may promote metastasis and metastatic tumour growth. While the precise role that Tregs play in metastatic progression is understudied, recent findings have indicated that by suppressing innate and adaptive anti-tumour immunity, Tregs may shield tumour cells from immune detection, and thereby allow tumour cells to survive, proliferate and acquire characteristics that facilitate dissemination. This review will highlight our current understanding of Tregs in metastasis, including an overview of pre-clinical findings and discussion of clinical data regarding Tregs and therapeutic outcome. Evolving strategies to directly ablate Tregs or to inhibit their function will also be discussed. Improving our understanding of how Tregs may influence tumour metastasis may lead to novel treatments for metastatic cancer.
Collapse
Affiliation(s)
- Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency, 9-202, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | |
Collapse
|
20
|
Edwards RP, Huang X, Vlad AM. Chronic inflammation in endometriosis and endometriosis-associated ovarian cancer: New roles for the "old" complement pathway. Oncoimmunology 2015; 4:e1002732. [PMID: 26155393 DOI: 10.1080/2162402x.2014.1002732] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 02/03/2023] Open
Abstract
Immune escape is consequential for cancer development. Identifying abnormalities of the immune microenvironment during early carcinogenesis can provide insight into disease pathogenesis and unravel new preventive or therapeutic targets. We recently conducted a comprehensive immune gene expression analysis in endometriosis and endometriosis-associated ovarian cancer and explored new mechanistic roles for the complement pathway.
Collapse
Affiliation(s)
- Robert P Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine and Magee Women's Research Institute (MWRI) ; Pittsburgh, PA USA ; Magee-Womens Hospital of University of Pittsburgh Medical Center ; Pittsburgh, PA USA
| | - Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine and Magee Women's Research Institute (MWRI) ; Pittsburgh, PA USA
| | - Anda M Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine and Magee Women's Research Institute (MWRI) ; Pittsburgh, PA USA
| |
Collapse
|
21
|
Abstract
The complexity and heterogeneity of ovarian cancer cases are difficult to reproduce in in vitro studies, which cannot adequately elucidate the molecular events involved in tumor initiation and disease metastasis. It has now become clear that, although the multiple histological subtypes of ovarian cancer are being treated with similar surgical and therapeutic approaches, they are in fact characterized by distinct phenotypes, cell of origin, and underlying key genetic and genomic alterations. Consequently, the development of more personalized treatment methodologies, which are aimed at improving patient care and prognosis, will greatly benefit from a better understanding of the key differences between various subtypes. To accomplish this, animal models of all histotypes need to be generated in order to provide accurate in vivo platforms for research and the testing of targeted treatments and immune therapies. Both genetically engineered mouse models (GEMMs) and xenograft models have the ability to further our understanding of key mechanisms facilitating tumorigenesis, and at the same time offer insight into enhanced imaging and treatment modalities. While genetic models may be better suited to examine oncogenic functions and interactions during tumorigenesis, patient-derived xenografts (PDXs) are likely a superior model to assess drug efficacy, especially in concurrent clinical trials, due to their similarity to the tumors from which they are derived. Genetic and avatar models possess great clinical utility and have both benefits and limitations. Additionally, the laying hen model, which spontaneously develops ovarian tumors, has inherent advantages for the study of epithelial ovarian cancer (EOC) and recent work champions this model especially when assessing chemoprevention strategies. While high-grade ovarian serous tumors are the most prevalent form of EOC, rarer ovarian cancer variants, such as small cell ovarian carcinoma of the hypercalcemic type and transitional cell carcinoma, or non-epithelial tumors, including germ cell tumors, will also benefit from the generation of improved models to advance our understanding of tumorigenic mechanisms and the development of selective therapeutic options.
Collapse
Affiliation(s)
- Noor Hasan
- Department of Pathology, Division of Women's and Perinatal Pathology, Eugene Braunwald Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anders W Ohman
- Department of Pathology, Division of Women's and Perinatal Pathology, Eugene Braunwald Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela M Dinulescu
- Department of Pathology, Division of Women's and Perinatal Pathology, Eugene Braunwald Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Ocak M, Gillman AG, Bresee J, Zhang L, Vlad AM, Müller C, Schibli R, Edwards WB, Anderson CJ, Gach HM. Folate receptor-targeted multimodality imaging of ovarian cancer in a novel syngeneic mouse model. Mol Pharm 2015; 12:542-53. [PMID: 25536192 PMCID: PMC4319688 DOI: 10.1021/mp500628g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A new
transplantable ovarian tumor model is presented using a novel
folate receptor (FR) positive, murine ovarian cancer cell line that
emulates the human disease and induces widespread intraperitoneal
(i.p.) tumors in immunocompetent mice within 4–8 weeks of implantation.
Tumor development was monitored using a new positron emission tomography
(PET) FR-targeting reporter with PET/computerized tomography (PET/CT)
and fluorescence molecular tomography (FMT) using a commercial FR-targeting
reporter. Conventional structural magnetic resonance imaging (MRI)
was also performed. Adult female C57BL/6 mice were injected i.p. with
6 × 106 MKP-L FR+ cells. Imaging was performed weekly
beginning 2 weeks after tumor induction. The albumin-binding, FR-targeting
ligand cm09 was radiolabeled with the positron emitter 68Ga and used to image the tumors with a small animal PET/CT. The FR-reporter
FolateRSense 680 (PerkinElmer) was used for FMT and flow cytometry.
Preclinical MRI (7 T) without FR-targeting was compared with the PET
and FMT molecular imaging. Tumors were visible by all three imaging
modalities. PET/CT had the highest imaging sensitivity at 3–3.5
h postadministration (mean %IA/g mean > 6) and visualized tumors
earlier
than the other two modalities with lower kidney uptake (mean %IA/g
mean < 17) than previously reported FR-targeting agents in late
stage disease. FMT showed relatively low FR-targeted agent in the
bladder and kidneys, but yielded the lowest anatomical image resolution.
MRI produced the highest resolution images, but it was difficult to
distinguish tumors from abdominal organs during early progression
since a FR-targeting MRI reporter was not used. Nevertheless, there
was good correlation of imaging biomarkers between the three modalities.
Tumors in the mouse ovarian cancer model could be detected using FR-targeted
imaging as early as 2 weeks post i.p. injection of tumor cells. An
imaging protocol should combine one or more of the modalities, e.g.,
PET/CT or PET/MRI for optimal tumor detection and delineation from
surrounding tissues.
Collapse
Affiliation(s)
- Meltem Ocak
- Department of Radiology, ‡Cancer Institute, §Department of Obstetrics, Gynecology & Reproductive Sciences, ∥Magee Womens Research Institute, ⊥Department of Pharmacology & Chemical Biology, #Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Suryawanshi S, Huang X, Elishaev E, Budiu RA, Zhang L, Kim S, Donnellan N, Mantia-Smaldone G, Ma T, Tseng G, Lee T, Mansuria S, Edwards RP, Vlad AM. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res 2014; 20:6163-74. [PMID: 25294912 DOI: 10.1158/1078-0432.ccr-14-1338] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Mechanisms of immune dysregulation associated with advanced tumors are relatively well understood. Much less is known about the role of immune effectors against cancer precursor lesions. Endometrioid and clear-cell ovarian tumors partly derive from endometriosis, a commonly diagnosed chronic inflammatory disease. We performed here a comprehensive immune gene expression analysis of pelvic inflammation in endometriosis and endometriosis-associated ovarian cancer (EAOC). EXPERIMENTAL DESIGN RNA was extracted from 120 paraffin tissue blocks comprising of normal endometrium (n = 32), benign endometriosis (n = 30), atypical endometriosis (n = 15), and EAOC (n = 43). Serous tumors (n = 15) were included as nonendometriosis-associated controls. The immune microenvironment was profiled using Nanostring and the nCounter GX Human Immunology Kit, comprising probes for a total of 511 immune genes. RESULTS One third of the patients with endometriosis revealed a tumor-like inflammation profile, suggesting that cancer-like immune signatures may develop earlier, in patients classified as clinically benign. Gene expression analyses revealed the complement pathway as most prominently involved in both endometriosis and EAOC. Complement proteins are abundantly present in epithelial cells in both benign and malignant lesions. Mechanistic studies in ovarian surface epithelial cells from mice with conditional (Cre-loxP) mutations show intrinsic production of complement in epithelia and demonstrate an early link between Kras- and Pten-driven pathways and complement upregulation. Downregulation of complement in these cells interferes with cell proliferation. CONCLUSIONS These findings reveal new characteristics of inflammation in precursor lesions and point to previously unknown roles of complement in endometriosis and EAOC.
Collapse
Affiliation(s)
- Swati Suryawanshi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Magee Women's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
| | - Raluca A Budiu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - Lixin Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania
| | - SungHwan Kim
- Department of Statistics University of Pittsburgh, Graduate School of Public Health, Pittsburgh Pennsylvania
| | - Nicole Donnellan
- Magee Women's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
| | - Gina Mantia-Smaldone
- Section of Gynecologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tianzhou Ma
- Department of Statistics University of Pittsburgh, Graduate School of Public Health, Pittsburgh Pennsylvania
| | - George Tseng
- Department of Statistics University of Pittsburgh, Graduate School of Public Health, Pittsburgh Pennsylvania
| | - Ted Lee
- Magee Women's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
| | - Suketu Mansuria
- Magee Women's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
| | - Robert P Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania. Magee Women's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh Pennsylvania
| | - Anda M Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Women's Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Tirodkar TS, Budiu RA, Elishaev E, Zhang L, Mony JT, Brozick J, Edwards RP, Vlad AM. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location. PLoS One 2014; 9:e102409. [PMID: 25078979 PMCID: PMC4117479 DOI: 10.1371/journal.pone.0102409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/18/2014] [Indexed: 01/26/2023] Open
Abstract
Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.
Collapse
Affiliation(s)
- Tejas S. Tirodkar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Raluca A. Budiu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Esther Elishaev
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, Magee-Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Lixin Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Jyothi T. Mony
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Joan Brozick
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Robert P. Edwards
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
- Magee-Women's Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Anda M. Vlad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Genetically engineered mouse models for epithelial ovarian cancer: are we there yet? Semin Cell Dev Biol 2014; 27:106-17. [PMID: 24685617 DOI: 10.1016/j.semcdb.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy.
Collapse
|
26
|
Iheagwara UK, Beatty PL, Van PT, Ross TM, Minden JS, Finn OJ. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor-associated antigens: a new view of cancer immunosurveillance. Cancer Immunol Res 2013; 2:263-73. [PMID: 24778322 DOI: 10.1158/2326-6066.cir-13-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAAs have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAAs; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells, and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-difference gel electrophoresis and mass spectrometry, we identified numerous molecules, some of which are known TAAs, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H4, HSP90, malate dehydrogenase 2, and annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Finally, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control.
Collapse
Affiliation(s)
- Uzoma K Iheagwara
- Authors' Affiliations: Departments of Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
27
|
The role of tumour-associated MUC1 in epithelial ovarian cancer metastasis and progression. Cancer Metastasis Rev 2013; 32:535-51. [DOI: 10.1007/s10555-013-9423-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|