1
|
Cinar M, Martinez-Medina L, Puvvula P, Arakelyan A, Vardarajan B, Anthony N, Nagaraju G, Park D, Feng L, Sheff F, Mosunjac M, Saxe D, Flygare S, Alese O, Kaufman J, Lonial S, Sarmiento J, Lossos I, Vertino P, Lopez J, El-Rayes B, Bernal-Mizrachi L. Transposon DNA sequences facilitate the tissue-specific gene transfer of circulating tumor DNA between human cells. Nucleic Acids Res 2024; 52:7539-7555. [PMID: 38783375 PMCID: PMC11260451 DOI: 10.1093/nar/gkae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.
Collapse
Affiliation(s)
- Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Arsen Arakelyan
- Bioinformatics group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Neil Anthony
- Integrated Cellular Imaging Core, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ganji P Nagaraju
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongkyoo Park
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Lei Feng
- Kodikaz Therapeutic Solutions, Inc, New York, NY, USA
| | - Faith Sheff
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Marina Mosunjac
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Debra Saxe
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Steven Flygare
- Department of Computational Biology/ Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology-Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Paula M Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jose A Lopez
- Bloodworks Northwest Research Institute, Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bassel El-Rayes
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
3
|
Hsiehchen D, Espinoza M, Gerber DE, Beg MS. Clinical and biological determinants of circulating tumor DNA detection and prognostication using a next-generation sequencing panel assay. Cancer Biol Ther 2021; 22:455-464. [PMID: 34392779 PMCID: PMC8489910 DOI: 10.1080/15384047.2021.1963166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is utilized for molecular profiling of cancers, and is under investigation for a growing number of applications based on the assumption that ctDNA levels faithfully reflect disease burden. Our objective was to investigate whether patient and tumor characteristics may impact ctDNA detection or levels and the prognostic significance of ctDNA levels or mutations. We performed a retrospective cohort analysis of a comprehensively annotated cohort of 561 patients at a National Cancer Institute-designated comprehensive cancer center with advanced solid cancers who underwent ctDNA testing using a commercial targeted next-generation sequencing assay. ctDNA detection in advanced cancers was associated with older age, non-obese body mass index, and diabetes, but not with tumor diameter, volume, lesion number, or other pathological features. Regression models indicate that no more than 14.3% of the variance in ctDNA levels between patients was explained by known clinical factors and disease burden. Even after adjusting for established prognostic factors and tumor burden, ctDNA levels were associated with worse survival among patients without prior systemic therapy, while ctDNA mutations were associated with survival among patients who previously received systemic treatment. These findings uncover clinical factors that affect ctDNA detection in patients with advanced cancers and challenge the convention that ctDNA is a surrogate for tumor burden. Our study also indicates that the prognostic value of ctDNA levels and mutations are independent of tumor burden and dependent on treatment context.
Collapse
Affiliation(s)
- David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - Magdalena Espinoza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - David E. Gerber
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - Muhammad S. Beg
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| |
Collapse
|
4
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
5
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 883] [Impact Index Per Article: 220.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
6
|
Ye F, Wang Y, He Q, Cui C, Yu H, Lu Y, Zhu S, Xu H, Zhao X, Yin H, Li D, Li H, Zhu Q. Exosomes Transmit Viral Genetic Information and Immune Signals may cause Immunosuppression and Immune Tolerance in ALV-J Infected HD11 cells. Int J Biol Sci 2020; 16:904-920. [PMID: 32140061 PMCID: PMC7053331 DOI: 10.7150/ijbs.35839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Avian leukosis virus (ALV) is oncogenic retrovirus that not only causes immunosuppression but also enhances the host's susceptibility to secondary infection. Exosomes play vital role in the signal transduction cascades that occur in response to viral infection. We want to explore the function of exosomes in the spread of ALV and the body's subsequent immunological response. RNA-sequencing and the isobaric tags for relative and absolute quantitation (iTRAQ) method were used to detect differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in exosomes secreted by macrophage cells in response to injection with ALV subgroup J (ALV-J). RNA-sequencing identified 513 DEGs in infected cells, with specific differential regulation in mRNA involved in tight junction signaling, TNF signaling, salmonella infection response, and immune response, among other important cellular processes. Differential regulation was observed in 843 lncRNAs, with particular enrichment in those lncRNA targets involved in Rap1 signaling, HTLV-I infection, tight junction signaling, and other signaling pathways. A total of 50 DEPs were identified in the infected cells by iTRAQ. The proteins enriched are involved in immune response, antigen processing, the formation of both MHC protein and myosin complexes, and transport. Combined analysis of the transcriptome and proteome revealed that there were 337 correlations between RNA and protein enrichment, five of which were significant. Pathways that were enriched on both the RNA and protein levels were involved in pathways in cancer, PI3K-Akt signaling pathway, Endocytosis, Epstein-Barr virus infection. These data show that exosomes are transmitters of intercellular signaling in response to viral infection. Exosomes can carry both viral nucleic acids and proteins, making it possible for exosomes to be involved in the viral infection of other cells and the transmission of immune signals between cells. Our sequencing results confirme previous studies on exosomes and further find exosomes may cause immunosuppression and immune tolerance.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Qijian He
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Can Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Heling Yu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yuxiang Lu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Shiliang Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hua Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| |
Collapse
|
7
|
Canale M, Pasini L, Bronte G, Delmonte A, Cravero P, Crinò L, Ulivi P. Role of liquid biopsy in oncogene-addicted non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:S265-S279. [PMID: 31857950 DOI: 10.21037/tlcr.2019.09.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of actionable oncogene in non-small cell lung cancer (NSCLC) allowed the identification of a subgroup of patients who benefit from targeted tyrosine kinase inhibitors more than others. Mutations in the epidermal growth factor receptor (EGFR), translocations in the anaplastic lymphoma kinase (ALK) and rearrangements in the ROS proto-oncogene 1 (ROS1) must be identified in tumor tissue to guide the proper treatment choice. Liquid biopsy is based on the analysis of tumor materials released in the circulation. Liquid biopsy can be complementary to tissue biopsy, both at baseline and at progression, especially in the detection of somatic gene alterations emerging during the treatment with tyrosine kinase inhibitors (TKIs). Particularly, circulating DNA is used to find mutations in driver oncogenes, while circulating tumor cells, extracellular vesicles (EVs) and cell-free microRNAs (cfmiRNAs) are still under investigation. To help the unbiased use of liquid biopsy in the choice of the appropriate therapy, some recommendations were delivered by expert panels. Currently, analysis of EGFR mutations in cell-free DNA (cfDNA) is recommended at baseline when tissue biopsy harbors scarce tumor cells, and at progression before performing tissue biopsy; liquid biopsy analysis for other oncogenic drivers is not indicated in the clinical practice.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Pasini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Cravero
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
8
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
9
|
Gruszka AM, Valli D, Restelli C, Alcalay M. Adhesion Deregulation in Acute Myeloid Leukaemia. Cells 2019; 8:E66. [PMID: 30658474 PMCID: PMC6356639 DOI: 10.3390/cells8010066] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion is a process through which cells interact with and attach to neighboring cells or matrix using specialized surface cell adhesion molecules (AMs). Adhesion plays an important role in normal haematopoiesis and in acute myeloid leukaemia (AML). AML blasts express many of the AMs identified on normal haematopoietic precursors. Differential expression of AMs between normal haematopoietic cells and leukaemic blasts has been documented to a variable extent, likely reflecting the heterogeneity of the disease. AMs govern a variety of processes within the bone marrow (BM), such as migration, homing, and quiescence. AML blasts home to the BM, as the AM-mediated interaction with the niche protects them from chemotherapeutic agents. On the contrary, they detach from the niches and move from the BM into the peripheral blood to colonize other sites, i.e., the spleen and liver, possibly in a process that is reminiscent of epithelial-to-mesenchymal-transition in metastatic solid cancers. The expression of AMs has a prognostic impact and there are ongoing efforts to therapeutically target adhesion in the fight against leukaemia.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Cecilia Restelli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy.
| |
Collapse
|
10
|
Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet 2018; 228-229:169-179. [PMID: 29625863 PMCID: PMC6598437 DOI: 10.1016/j.cancergen.2018.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain mutations corresponding to the patient's tumour, for instance specific TP53 alleles. Profiling of cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due to advances in the sensitivity of molecular biology techniques and development of next generation sequencing technologies, as this allows tumour mutations to be identified and tracked non-invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of analysis, and the potential clinical uses of these techniques, as well as the on-going clinical development of ctDNA assays.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana W Y Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Vymetalkova V, Cervena K, Bartu L, Vodicka P. Circulating Cell-Free DNA and Colorectal Cancer: A Systematic Review. Int J Mol Sci 2018; 19:ijms19113356. [PMID: 30373199 PMCID: PMC6274807 DOI: 10.3390/ijms19113356] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
There is a strong demand for the identification of new biomarkers in colorectal cancer (CRC) diagnosis. Among all liquid biopsy analysts, cell-free circulating DNA (cfDNA) is probably the most promising tool with respect to the identification of minimal residual diseases, assessment of treatment response and prognosis, and identification of resistance mechanisms. Circulating cell-free tumor DNA (ctDNA) maintains the same genomic signatures that are present in the matching tumor tissue allowing for the quantitative and qualitative evaluation of mutation burdens in body fluids. Thus, ctDNA-based research represents a non-invasive method for cancer detection. Among the numerous possible applications, the diagnostic, predictive, and/or prognostic utility of ctDNA in CRC has attracted intense research during the last few years. In the present review, we will describe the different aspects related to cfDNA research and evidence from studies supporting its potential use in CRC diagnoses and the improvement of therapy efficacy. We believe that ctDNA-based research should be considered as key towards the introduction of personalized medicine and patient benefits.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Klara Cervena
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
| | - Linda Bartu
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
12
|
Chennakrishnaiah S, Meehan B, D'Asti E, Montermini L, Lee TH, Karatzas N, Buchanan M, Tawil N, Choi D, Divangahi M, Basik M, Rak J. Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles. J Thromb Haemost 2018; 16:1800-1813. [PMID: 29971917 DOI: 10.1111/jth.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Essentials Tumor-bearing mice were employed to follow oncogenic HRAS sequences in plasma, and blood cells. Cancer DNA accumulated in leukocytes above levels detected in exosomes, platelets and plasma. Extracellular vesicles and nucleosomes are required for uptake of tumor DNA by leukocytes. Uptake of tumor-derived extracellular vesicles by leukocytes triggers coagulant phenotype. SUMMARY Background Tumor-derived extracellular vesicles (EVs) and free nucleosomes (NSs) carry into the circulation a wealth of cancer-specific, bioactive and poorly understood molecular cargoes, including genomic DNA (gDNA). Objective Here we investigated the distribution of extracellular oncogenic gDNA sequences (HRAS and HER2) in the circulation of tumor-bearing mice. Methods and Results Surprisingly, circulating leukocytes (WBCs), especially neutrophils, contained the highest levels of mutant gDNA, which exceeded the amount of this material recovered from soluble fractions of plasma, circulating EVs, platelets, red blood cells (RBCs) and peripheral organs, as quantified by digital droplet PCR (ddPCR). Tumor excision resulted in disappearance of the WBC-associated gDNA signal within 2-9 days, which is in line with the expected half-life of these cells. EVs and nucleosomes were essential for the uptake of tumor-derived extracellular DNA by neutrophil-like cells and impacted their phenotype. Indeed, the exposure of granulocytic HL-60 cells to EVs from HRAS-driven cancer cells resulted in a selective increase in tissue factor (TF) procoagulant activity and interleukin 8 (IL-8) production. The levels of circulating thrombin-antithrombin complexes (TAT) were markedly elevated in mice harboring HRAS-driven xenografts. Conclusions Myeloid cells may represent a hitherto unrecognized reservoir of cancer-derived, EV/NS-associated oncogenic gDNA in the circulation, and a possible novel platform for liquid biopsy in cancer. In addition, uptake of this material alters the phenotype of myeloid cells, induces procoagulant and proinflammatory activity and may contribute to systemic effects associated with cancer.
Collapse
Affiliation(s)
- S Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - B Meehan
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - E D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - L Montermini
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - T-H Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - N Karatzas
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - M Buchanan
- Department of Oncology and Surgery, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - N Tawil
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - D Choi
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| | - M Divangahi
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - M Basik
- Department of Oncology and Surgery, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - J Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 2017; 7:8202. [PMID: 28811610 PMCID: PMC5557920 DOI: 10.1038/s41598-017-08392-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023] Open
Abstract
Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes.
Collapse
|
14
|
Raghuram GV, Gupta D, Subramaniam S, Gaikwad A, Khare NK, Nobre M, Nair NK, Mittra I. Physical shearing imparts biological activity to DNA and ability to transmit itself horizontally across species and kingdom boundaries. BMC Mol Biol 2017; 18:21. [PMID: 28793862 PMCID: PMC5550992 DOI: 10.1186/s12867-017-0098-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background We have recently reported that cell-free DNA (cfDNA) fragments derived from dying cells that circulate in blood are biologically active molecules and can readily enter into healthy cells to activate DNA damage and apoptotic responses in the recipients. However, DNA is not conventionally known to spontaneously enter into cells or to have any intrinsic biological activity. We hypothesized that cellular entry and acquisition of biological properties are functions of the size of DNA. Results To test this hypothesis, we generated small DNA fragments by sonicating high molecular weight DNA (HMW DNA) to mimic circulating cfDNA. Sonication of HMW DNA isolated from cancerous and non-cancerous human cells, bacteria and plant generated fragments 300–3000 bp in size which are similar to that reported for circulating cfDNA. We show here that while HMW DNAs were incapable of entering into cells, sonicated DNA (sDNA) from different sources could do so indiscriminately without heed to species or kingdom boundaries. Thus, sDNA from human cells and those from bacteria and plant could enter into nuclei of mouse cells and sDNA from human, bacterial and plant sources could spontaneously enter into bacteria. The intracellular sDNA associated themselves with host cell chromosomes and integrated into their genomes. Furthermore, sDNA, but not HMW DNA, from all four sources could phosphorylate H2AX and activate the pro-inflammatory transcription factor NFκB in mouse cells, indicating that sDNAs had acquired biological activities. Conclusions Our results show that small fragments of DNA from different sources can indiscriminately enter into other cells across species and kingdom boundaries to integrate into their genomes and activate biological processes. This raises the possibility that fragmented DNA that are generated following organismal cell-death may have evolutionary implications by acting as mobile genetic elements that are involved in horizontal gene transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gorantla Venkata Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Deepika Gupta
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Siddharth Subramaniam
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Ashwini Gaikwad
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Malcolm Nobre
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Naveen Kumar Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai, 410210, India.
| |
Collapse
|
15
|
Saygin C, Papadantonakis N, Cassaday RD, Liedtke M, Fischer K, Dunn T, Patel BJ, Sobecks R, Kalaycio M, Sekeres MA, Mukherjee S, Gerds AT, Hamilton BK, Carraway HE, Advani AS. Prognostic impact of incomplete hematologic count recovery and minimal residual disease on outcome in adult acute lymphoblastic leukemia at the time of second complete response. Leuk Lymphoma 2017; 59:363-371. [DOI: 10.1080/10428194.2017.1344842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Caner Saygin
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikolaos Papadantonakis
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ryan D. Cassaday
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michaela Liedtke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrina Fischer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamara Dunn
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bhumika J. Patel
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matt Kalaycio
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mikkael A. Sekeres
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Mukherjee
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron T. Gerds
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty K. Hamilton
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E. Carraway
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anjali S. Advani
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
16
|
Saini L, Brandwein J, Szkotak A, Ghosh S, Sandhu I. Persistent cytogenetic abnormalities in patients undergoing intensive chemotherapy for acute myeloid leukemia. Leuk Lymphoma 2017; 59:121-128. [PMID: 28540755 DOI: 10.1080/10428194.2017.1326032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We evaluated the impact of bone marrow sample characteristics on the detection of persistent cytogenetic abnormalities (PCA) following induction chemotherapy for acute myeloid leukemia (AML). PCA's were identified in 20.4% of patients and were more common with complete remission without count recovery (CRi) vs. those with count recovery (CR, 45.8 vs. 13.5%, p = .001), with >2% blasts vs. ≤2% blasts (42 vs. 12%, p = .001) and with hypocellular trephine biopsies relative to those with normo/hypercellular biopsies (42.1 vs. 17.3%, p = .03), although in a multivariate analysis only CRi and blast count >2% were independently associated with a PCA. PCA's were not observed in patients with favorable risk karyotype. Amongst patients with intermediate and unfavorable risk karyotypes PCA were not associated with differences in overall or, amongst non-transplanted patients, relapse free survival. Thus, although PCAs are common post-induction it is unclear whether they provide any independent prognostic information beyond the diagnostic karyotype.
Collapse
Affiliation(s)
- Lalit Saini
- a Department of Medicine , University of Alberta , Edmonton , Canada
| | - Joseph Brandwein
- a Department of Medicine , University of Alberta , Edmonton , Canada
| | - Artur Szkotak
- b Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Canada
| | - Sunita Ghosh
- c Department of Medical Oncology , University of Alberta , Edmonton , Canada
| | - Irwindeep Sandhu
- a Department of Medicine , University of Alberta , Edmonton , Canada
| |
Collapse
|
17
|
Desbourdes L, Javary J, Charbonnier T, Ishac N, Bourgeais J, Iltis A, Chomel JC, Turhan A, Guilloton F, Tarte K, Demattei MV, Ducrocq E, Rouleux-Bonnin F, Gyan E, Hérault O, Domenech J. Alteration Analysis of Bone Marrow Mesenchymal Stromal Cells from De Novo Acute Myeloid Leukemia Patients at Diagnosis. Stem Cells Dev 2017; 26:709-722. [PMID: 28394200 DOI: 10.1089/scd.2016.0295] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bone marrow (BM)-derived mesenchymal stromal cells (MSCs) frequently display alterations in several hematologic disorders, such as acute lymphoid leukemia, acute myeloid leukemia (AML), and myelodysplastic syndromes. In acute leukemias, it is not clear whether MSC alterations contribute to the development of the malignant clone or whether they are simply the effect of tumor expansion on the microenvironment. We extensively investigated the characteristics of MSCs isolated from the BM of patients with de novo AML at diagnosis (L-MSCs) in terms of phenotype (gene and protein expression, apoptosis and senescence levels, DNA double-strand break formation) and functions (proliferation and clonogenic potentials, normal and leukemic hematopoiesis-supporting activity). We found that L-MSCs show reduced proliferation capacity and increased apoptosis levels compared with MSCs from healthy controls. Longer population doubling time in L-MSCs was not related to the AML characteristics at diagnosis (French-American-British type, cytogenetics, or tumor burden), but was related to patient age and independently associated with poorer patient outcome, as was cytogenetic prognostic feature. Analyzing, among others, the expression of 93 genes, we found that proliferative deficiency of L-MSCs was associated with a perivascular feature at the expense of the osteo-chondroblastic lineage with lower expression of several niche factors, such as KITLG, THPO, and ANGPT1 genes, the cell adhesion molecule VCAM1, and the developmental/embryonic genes, BMI1 and DICER1. L-MSC proliferative capacity was correlated positively with CXCL12, THPO, and ANGPT1 expression and negatively with JAG1 expression. Anyway, these changes did not affect their in vitro capacity to support normal hematopoiesis and to modify leukemic cell behavior (protection from apoptosis and quiescence induction). Our findings indicate that BM-derived MSCs from patients with newly diagnosed AML display phenotypic and functional alterations such as proliferative deficiency that could be attributed to tumor progression, but does not seem to play a special role in the leukemic process.
Collapse
Affiliation(s)
- Laura Desbourdes
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Joaquim Javary
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Thomas Charbonnier
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France
| | - Nicole Ishac
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Jerome Bourgeais
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | - Aurore Iltis
- 2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Jean-Claude Chomel
- 4 INSERM U935, University of Poitiers , Poitiers, France .,5 Department of Biological Oncology, University Hospital of Poitiers , Poitiers, France
| | - Ali Turhan
- 6 INSERM U935, University of Paris-Sud 11 , Paris, France .,7 Department of Hematology, University Hospitals of Paris-Sud , Le Kremlin Bicêtre, France
| | | | - Karin Tarte
- 8 INSERM U917, University of Rennes 1 , Rennes, France .,9 Department of Immunology, Cellular Therapy and Hematopoiesis, University Hospital of Rennes , Rennes, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Marie-Veronique Demattei
- 11 CNRS UMR 7292, Telomeres and Genome Stability Team, François Rabelais University , Tours, France
| | - Elfi Ducrocq
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France
| | | | - Emmanuel Gyan
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,3 Department of Hematology and Cell Therapy, University Hospital of Tours , Tours, France
| | - Olivier Hérault
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| | - Jorge Domenech
- 1 CNRS UMR 7292, LNOx Team, François Rabelais University , Tours, France .,2 Department of Biological Hematology, University Hospital of Tours , Tours, France .,10 CNRS GDR 3697, MicroNiT National Network, Tours , France
| |
Collapse
|
18
|
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17:223-238. [PMID: 28233803 DOI: 10.1038/nrc.2017.7] [Citation(s) in RCA: 1576] [Impact Index Per Article: 225.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.
Collapse
Affiliation(s)
- Jonathan C M Wan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Charles Massie
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Javier Garcia-Corbacho
- Clinical Trials Unit, Clinic Institute of Haematological and Oncological Diseases, Hospital Clinic de Barcelona, IDIBAPs, Carrer de Villarroel, 170 Barcelona 08036, Spain
| | - Florent Mouliere
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - James D Brenton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Simon Pacey
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Richard Baird
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
19
|
Mittra I, Samant U, Sharma S, Raghuram GV, Saha T, Tidke P, Pancholi N, Gupta D, Prasannan P, Gaikwad A, Gardi N, Chaubal R, Upadhyay P, Pal K, Rane B, Shaikh A, Salunkhe S, Dutt S, Mishra PK, Khare NK, Nair NK, Dutt A. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation. Cell Death Discov 2017; 3:17015. [PMID: 28580170 PMCID: PMC5447133 DOI: 10.1038/cddiscovery.2017.15] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 02/05/2017] [Indexed: 02/08/2023] Open
Abstract
Bystander cells of the tumor microenvironment show evidence of DNA damage and inflammation that can lead to their oncogenic transformation. Mediator(s) of cell-cell communication that brings about these pro-oncogenic pathologies has not been identified. We show here that cell-free chromatin (cfCh) released from dying cancer cells are the key mediators that trigger both DNA damage and inflammation in the surrounding healthy cells. When dying human cancer cells were cultured along with NIH3T3 mouse fibroblast cells, numerous cfCh emerged from them and rapidly entered into nuclei of bystander NIH3T3 cells to integrate into their genomes. This led to activation of H2AX and inflammatory cytokines NFκB, IL-6, TNFα and IFNγ. Genomic integration of cfCh triggered global deregulation of transcription and upregulation of pathways related to phagocytosis, DNA damage and inflammation. None of these activities were observed when living cancer cells were co-cultivated with NIH3T3 cells. However, upon intravenous injection into mice, both dead and live cells were found to be active. Living cancer cells are known to undergo extensive cell death when injected intravenously, and we observed that cfCh emerging from both types of cells integrated into genomes of cells of distant organs and induced DNA damage and inflammation. γH2AX and NFκB were frequently co-expressed in the same cells suggesting that DNA damage and inflammation are closely linked pathologies. As concurrent DNA damage and inflammation is a potent stimulus for oncogenic transformation, our results suggest that cfCh from dying cancer cells can transform cells of the microenvironment both locally and in distant organs providing a novel mechanism of tumor invasion and metastasis. The afore-described pro-oncogenic pathologies could be abrogated by concurrent treatment with chromatin neutralizing/degrading agents suggesting therapeutic possibilities.
Collapse
Affiliation(s)
- Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
- Division of Laboratory Medicine, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
- ()
| | - Urmila Samant
- Division of Laboratory Medicine, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Suvarna Sharma
- Division of Laboratory Medicine, Tata Memorial Hospital, Tata Memorial Centre, Mumbai 400012, India
| | - Gorantla V Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Tannistha Saha
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Pritishkumar Tidke
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Namrata Pancholi
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Deepika Gupta
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Preeti Prasannan
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Ashwini Gaikwad
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Nilesh Gardi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
| | - Rohan Chaubal
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
| | - Kavita Pal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Bhagyeshri Rane
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Alfina Shaikh
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Sameer Salunkhe
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
- DNA Repair and Chromatin Biology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Shilpee Dutt
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
- DNA Repair and Chromatin Biology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Pradyumna K Mishra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Naveen K Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Naveen K Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
| | - Amit Dutt
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 410210, India
| |
Collapse
|
20
|
Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, Grundhoff A, Brunswig-Spickenheier B, Alawi M, Lange C. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. PLoS One 2016; 11:e0163665. [PMID: 27684368 PMCID: PMC5042424 DOI: 10.1371/journal.pone.0163665] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.
Collapse
Affiliation(s)
- Stefanie Fischer
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Speiseder
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Anita Badbaran
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolph Reimer
- Dept. Electron Microscopy, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Bärbel Brunswig-Spickenheier
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatic Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Lange
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Bernasconi P, Farina M, Boni M, Dambruoso I, Calvello C. Therapeutically targeting SELF-reinforcing leukemic niches in acute myeloid leukemia: A worthy endeavor? Am J Hematol 2016; 91:507-17. [PMID: 26822317 DOI: 10.1002/ajh.24312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
A tight relationship between the acute myeloid leukemia (AML) population and the bone marrow (BM) microenvironment has been convincingly established. The AML clone contains leukemic stem cells (LSCs) that compete with normal hematopoietic stem cells (HSCs) for niche occupancy and remodel the niche; whereas, the BM microenvironment might promote AML development and progression not only through hypoxia and homing/adhesion molecules, but also through genetic defects. Although it is still unknown whether the niche influences treatment results or contains any potential target for treatment, this dynamic AML-niche interaction might be a promising therapeutic objective to significantly improve the AML cure rate.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Mirko Farina
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Marina Boni
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Irene Dambruoso
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| | - Celeste Calvello
- Division of Hematology; Fondazione IRCCS Policlinico San Matteo, University of Pavia; Pavia Italy
| |
Collapse
|
22
|
Delgado JF, Alonso-Pulpón L, Mirabet S, Almenar L, Villa FP, González-Vílchez F, Palomo J, Blasco T, Dolores García-Cosio M, González-Costello J, de la Fuente L, Rábago G, Lage E, Pascual D, Molina BD, Arizón JM, Muñiz J, Crespo-Leiro MG. Cancer Incidence in Heart Transplant Recipients With Previous Neoplasia History. Am J Transplant 2016; 16:1569-78. [PMID: 26613555 DOI: 10.1111/ajt.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/14/2015] [Accepted: 11/15/2015] [Indexed: 01/25/2023]
Abstract
Neoplasm history increases morbidity and mortality after solid organ transplantation and has disqualified patients from transplantation. Studies are needed to identify factors to be considered when deciding on the suitability of a patient with previous tumor for heart transplantation. A retrospective epidemiological study was conducted in heart transplant (HT) recipients (Spanish Post-Heart Transplant Tumor Registry) comparing the epidemiological data, immu-nosuppressive treatments and incidence of post-HT tumors between patients with previous malignant noncardiac tumor and with no previous tumor (NPT). The impact of previous tumor (PT) on overall survival (OS) was also assessed. A total of 4561 patients, 77 PT and 4484 NPT, were evaluated. The NPT group had a higher proportion of men than the PT group (p < 0.001). The incidence of post-HT tumors was 1.8 times greater in the PT group (95% confidence interval [CI] 1.2-2.6; p < 0.001), mainly due to the increased risk in patients with a previous hematologic tumor (rate ratio 2.3, 95% CI 1.3-4.0, p < 0.004). OS during the 10-year posttransplant period was significantly lower in the PT than the NPT group (p = 0.048) but similar when the analysis was conducted after a first post-HT tumor was diagnosed. In conclusion, a history of PT increases the incidence of post-HT tumors and should be taken into account when considering a patient for HT.
Collapse
Affiliation(s)
- J F Delgado
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - S Mirabet
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - L Almenar
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - F P Villa
- Hospital Clínic i Provincial, Barcelona, Spain
| | | | - J Palomo
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - T Blasco
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | | - L de la Fuente
- Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - G Rábago
- Clínica Universidad de Navarra, Pamplona, Spain
| | - E Lage
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - D Pascual
- Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - B D Molina
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J M Arizón
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Muñiz
- Instituto Universitario de Ciencias de la Salud, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, La Coruña, Spain
| | | |
Collapse
|
23
|
Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS, Sandhu VK, Abkowitz JL, Appelbaum FR, Estey EH. Relation of Clinical Response and Minimal Residual Disease and Their Prognostic Impact on Outcome in Acute Myeloid Leukemia. J Clin Oncol 2015; 33:1258-64. [DOI: 10.1200/jco.2014.58.3518] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Both presence of minimal residual disease (MRD) and achievement of complete remission (CR) with incomplete platelet recovery (CRp) rather than CR after induction therapy predict relapse in acute myeloid leukemia (AML). These results suggest a correlation between response (peripheral count recovery) and MRD at the time of morphologic remission. Here we examine this hypothesis and whether MRD and response provide independent prognostic information after accounting for other relevant covariates. Patients and Methods We retrospectively analyzed data from 245 adults with AML who achieved CR, CRp, or CR with incomplete blood count recovery (CRi) after induction therapy. Bone marrow samples were collected on or closest to the first date of blood count recovery, and MRD was determined by 10-color multiparameter flow cytometry. Results The 71.0% of patients who achieved CR had MRD less frequently and had lower levels of MRD than the 19.6% of patients achieving CRp and 9.4% achieving CRi. Although pretreatment covariates such as cytogenetics, monosomal karyotype, relapsed or refractory rather than newly diagnosed AML, and FLT3 internal tandem duplication were associated with relapse, their prognostic effect was much lower once MRD and response were taken into account, the univariable statistical effect of which was not materially affected by inclusion of pretreatment covariates. Conclusion Our data indicate that post-therapy parameters including MRD status and response are important independent prognostic factors for outcome in patients with AML achieving remission. MRD status and type of response (CR v CRp or CRi) should play important, and perhaps dominant, roles in planning postinduction therapy.
Collapse
Affiliation(s)
- Xueyan Chen
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hu Xie
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Brent L. Wood
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Roland B. Walter
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - John M. Pagel
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Pamela S. Becker
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Vicky K. Sandhu
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Janis L. Abkowitz
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Frederick R. Appelbaum
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Elihu H. Estey
- Xueyan Chen, Brent L. Wood, Roland B. Walter, Pamela S. Becker, Janis L. Abkowitz, and Elihu H. Estey, University of Washington; and Hu Xie, Roland B. Walter, John M. Pagel, Pamela S. Becker, Vicky K. Sandhu, Frederick R. Appelbaum, and Elihu H. Estey, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
24
|
Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A 2015; 112:3178-9. [PMID: 25733911 PMCID: PMC4371901 DOI: 10.1073/pnas.1501321112] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Florent Mouliere
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
25
|
Mittra I, Khare NK, Raghuram GV, Chaubal R, Khambatti F, Gupta D, Gaikwad A, Prasannan P, Singh A, Iyer A, Singh A, Upadhyay P, Nair NK, Mishra PK, Dutt A. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci 2015; 40:91-111. [PMID: 25740145 PMCID: PMC5779614 DOI: 10.1007/s12038-015-9508-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Whether nucleic acids that circulate in blood have any patho-physiological functions in the host have not been explored.We report here that far from being inert molecules, circulating nucleic acids have significant biological activities of their own that are deleterious to healthy cells of the body. Fragmented DNA and chromatin (DNAfs and Cfs) isolated from blood of cancer patients and healthy volunteers are readily taken up by a variety of cells in culture to be localized in their nuclei within a few minutes. The intra-nuclear DNAfs and Cfs associate themselves with host cell chromosomes to evoke a cellular DNA-damage-repair-response (DDR) followed by their incorporation into the host cell genomes. Whole genome sequencing detected the presence of tens of thousands of human sequence reads in the recipient mouse cells. Genomic incorporation of DNAfs and Cfs leads to dsDNA breaks and activation of apoptotic pathways in the treated cells. When injected intravenously into Balb/C mice, DNAfs and Cfs undergo genomic integration into cells of their vital organs resulting in activation of DDR and apoptotic proteins in the recipient cells. Cfs have significantly greater activity than DNAfs with respect to all parameters examined, while both DNAfs and Cfs isolated from cancer patients are more active than those from normal volunteers. All the above pathological actions of DNAfs and Cfs described above can be abrogated by concurrent treatment with DNase I and/or anti-histone antibody complexed nanoparticles both in vitro and in vivo. Taken together, our results suggest that circulating DNAfs and Cfs are physiological, continuously arising, endogenous DNA damaging agents with implications to ageing and a multitude of human pathologies including initiation of cancer.
Collapse
Affiliation(s)
- Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee TH, Chennakrishnaiah S, Audemard E, Montermini L, Meehan B, Rak J. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun 2014; 451:295-301. [PMID: 25086355 DOI: 10.1016/j.bbrc.2014.07.109] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
Abstract
Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Montreal Children's Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Shilpa Chennakrishnaiah
- Montreal Children's Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Eric Audemard
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Laura Montermini
- Montreal Children's Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Brian Meehan
- Montreal Children's Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- Montreal Children's Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol 2014; 4:127. [PMID: 24904836 PMCID: PMC4034415 DOI: 10.3389/fonc.2014.00127] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
The role of exosomes in cancer development has become the focus of much research, due to the many emerging roles possessed by exosomes. These micro-vesicles that are ubiquitously released in to the extracellular milieu, have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissue, exosomes are able to generate a pro-tumor environment that is essential for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to tumorigenesis, as well as their role in chemotherapeutic resistance and the development of novel cancer treatments and the identification of cancer biomarkers.
Collapse
Affiliation(s)
- Jacob A Tickner
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Aaron J Urquhart
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Sally-Anne Stephenson
- Eph Receptor Biology Group, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Derek J Richard
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| |
Collapse
|
28
|
|
29
|
DNA: leukemia's secret weapon of bone mass destruction. Oncogene 2013; 32:5199-200. [PMID: 23353820 DOI: 10.1038/onc.2012.639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/18/2012] [Indexed: 11/08/2022]
Abstract
Interaction of tumour cells with their microenvironment impacts on all aspects of cancer, ranging from development through to treatment response. In this issue, Dvorak and colleagues(1) reveal a novel tumour/microenvironment relationship that may drive leukemia pathogenesis. Specifically, they find that leukemic cells secrete chromatin-complexed DNA that, in turn, triggers a variety of harmful effects, including cell death, in neighbouring stromal cells. Through this toxicity, DNA-mediated bone marrow destruction could promote disease progression by allowing leukemic cells to exit the bone marrow into the circulation.
Collapse
|