1
|
Xu W, Zhang Y, Chen D, Huang D, Zhao Y, Hu W, Lin L, Liu Y, Wang S, Zeng J, Xie C, Chan H, Li Q, Chen H, Liu X, Wong SH, Yu J, Chan FKL, Chan MTV, Ng SC, Wu WKK, Zhang L. Elucidating the genotoxicity of Fusobacterium nucleatum-secreted mutagens in colorectal cancer carcinogenesis. Gut Pathog 2024; 16:50. [PMID: 39334474 PMCID: PMC11438217 DOI: 10.1186/s13099-024-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer (CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown. RESULTS In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon adenocarcinomas in TCGA database to assess the relationship between patients' survival and F. nucleatum abundance. Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addition, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA damage. CONCLUSIONS Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.
Collapse
Affiliation(s)
- Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yuchen Zhang
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongjiao Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dan Huang
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Zhao
- Department of Pharmacology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Judeng Zeng
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Chuan Xie
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Qing Li
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Huarong Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
3
|
Liu J, Wang X, Jiang W, Azoitei A, Eiseler T, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Wezel F, Zengerling F, Bolenz C, Günes C. Impairment of α-tubulin and F-actin interactions of GJB3 induces aneuploidy in urothelial cells and promotes bladder cancer cell invasion. Cell Mol Biol Lett 2024; 29:94. [PMID: 38956497 PMCID: PMC11218312 DOI: 10.1186/s11658-024-00609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND We have previously identified an unsuspected role for GJB3 showing that the deficiency of this connexin protein induces aneuploidy in human and murine cells and accelerates cell transformation as well as tumor formation in xenograft models. The molecular mechanisms by which loss of GJB3 leads to aneuploidy and cancer initiation and progression remain unsolved. METHODS GJB3 expression levels were determined by RT-qPCR and Western blot. The consequences of GJB3 knockdown on genome instability were assessed by metaphase chromosome counting, multinucleation of cells, by micronuclei formation and by the determination of spindle orientation. Interactions of GJB3 with α-tubulin and F-actin was analyzed by immunoprecipitation and immunocytochemistry. Consequences of GJB3 deficiency on microtubule and actin dynamics were measured by live cell imaging and fluorescence recovery after photobleaching experiments, respectively. Immunohistochemistry was used to determine GJB3 levels on human and murine bladder cancer tissue sections. Bladder cancer in mice was chemically induced by BBN-treatment. RESULTS We find that GJB3 is highly expressed in the ureter and bladder epithelium, but it is downregulated in invasive bladder cancer cell lines and during tumor progression in both human and mouse bladder cancer. Downregulation of GJB3 expression leads to aneuploidy and genomic instability in karyotypically stable urothelial cells and experimental modulation of GJB3 levels alters the migration and invasive capacity of bladder cancer cell lines. Importantly, GJB3 interacts both with α-tubulin and F-actin. The impairment of these interactions alters the dynamics of these cytoskeletal components and leads to defective spindle orientation. CONCLUSION We conclude that deregulated microtubule and actin dynamics have an impact on proper chromosome separation and tumor cell invasion and migration. Consequently, these observations indicate a possible role for GJB3 in the onset and spreading of bladder cancer and demonstrate a molecular link between enhanced aneuploidy and invasive capacity cancer cells during tumor cell dissemination.
Collapse
Affiliation(s)
- Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS, UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Li J, Yang F, Wang Z, Zheng S, Zhang S, Wang C, He B, Wang J, Wang H. METTL16-mediated N6-methyladenosine modification of Soga1 enables proper chromosome segregation and chromosomal stability in colorectal cancer. Cell Prolif 2024; 57:e13590. [PMID: 38084791 PMCID: PMC11056707 DOI: 10.1111/cpr.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in mammalian messenger RNAs and is associated with numerous biological processes. However, its role in chromosomal instability remains to be established. Here, we report that an RNA m6A methyltransferase, METTL16, plays an indispensable role in the progression of chromosome segregation and is required to preserve chromosome stability in colorectal cancer (CRC) cells. Depletion or inhibition of the methyltransferase activity of METTL16 results in abnormal kinetochore-microtubule attachment during mitosis, leading to delayed mitosis, lagging chromosomes, chromosome mis-segregation and chromosomal instability. Mechanistically, METTL16 exerts its oncogenic effects by enhancing the expression of suppressor of glucose by autophagy 1 (Soga1) in an m6A-dependent manner. CDK1 phosphorylates Soga1, thereby triggering its direct interaction with the polo box domain of PLK1. This interaction facilitates PLK1 activation and promotes mitotic progression. Therefore, targeting the METTL16-Soga1 pathway may provide a potential treatment strategy against CRC because of its essential role in maintaining chromosomal stability.
Collapse
Affiliation(s)
- Jimin Li
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Fang Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College)WuhuChina
| | - Zeyu Wang
- Graduate School, Bengbu Medical CollegeBengbuChina
| | - Siqing Zheng
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shuang Zhang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Chen Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Bing He
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Jia‐Bei Wang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHeifeiChina
| | - Hao Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
5
|
Lu H, Toyoda JH, Wise SS, Browning CL, Speer RM, Croom-Pérez TJ, Bolt A, Meaza I, Wise JP. A whale of a tale: whale cells evade the driving mechanism for hexavalent chromium-induced chromosome instability. Toxicol Sci 2024; 199:49-62. [PMID: 38539048 PMCID: PMC11057468 DOI: 10.1093/toxsci/kfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Chromosome instability, a hallmark of lung cancer, is a driving mechanism for hexavalent chromium [Cr(VI)] carcinogenesis in humans. Cr(VI) induces structural and numerical chromosome instability in human lung cells by inducing DNA double-strand breaks and inhibiting homologous recombination repair and causing spindle assembly checkpoint (SAC) bypass and centrosome amplification. Great whales are long-lived species with long-term exposures to Cr(VI) and accumulate Cr in their tissue, but exhibit a low incidence of cancer. Data show Cr(VI) induces fewer chromosome aberrations in whale cells after acute Cr(VI) exposure suggesting whale cells can evade Cr(VI)-induced chromosome instability. However, it is unknown if whales can evade Cr(VI)-induced chromosome instability. Thus, we tested the hypothesis that whale cells resist Cr(VI)-induced loss of homologous recombination repair activity and increased SAC bypass and centrosome amplification. We found Cr(VI) induces similar amounts of DNA double-strand breaks after acute (24 h) and prolonged (120 h) exposures in whale lung cells, but does not inhibit homologous recombination repair, SAC bypass, or centrosome amplification, and does not induce chromosome instability. These data indicate whale lung cells resist Cr(VI)-induced chromosome instability, the major driver for Cr(VI) carcinogenesis at a cellular level, consistent with observations that whales are resistant to cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Cynthia L Browning
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Tayler J Croom-Pérez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
6
|
Abad E, Sandoz J, Romero G, Zadra I, Urgel-Solas J, Borredat P, Kourtis S, Ortet L, Martínez CM, Weghorn D, Sdelci S, Janic A. The TP53-activated E3 ligase RNF144B is a tumour suppressor that prevents genomic instability. J Exp Clin Cancer Res 2024; 43:127. [PMID: 38685100 PMCID: PMC11057071 DOI: 10.1186/s13046-024-03045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eμ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.
Collapse
Affiliation(s)
- Etna Abad
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Jérémy Sandoz
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Gerard Romero
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Ivan Zadra
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Julia Urgel-Solas
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Pablo Borredat
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Carlos M Martínez
- Pathology Platform, Instituto Murciano de Investigación Biosanitaria (IMIB-Pascual Parrilla), Murcia, 30120, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Ana Janic
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain.
| |
Collapse
|
7
|
Sperling AL, Glover DM. Aneuploidy during development in facultative parthenogenetic Drosophila. Heredity (Edinb) 2024; 132:89-97. [PMID: 38017115 PMCID: PMC10844303 DOI: 10.1038/s41437-023-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
From concatenated chromosomes to polyploidization, large-scale genome changes are known to occur in parthenogenetic animals. Here, we report mosaic aneuploidy in larval brains of facultatively parthenogenetic Drosophila. We identified a background of aneuploidy in D. mercatorum strains and found increased levels of aneuploidy in the larval brain tissue of animals arising parthenogenetically versus those arising from sexual reproduction. There is also intra-individual variation in germline-derived aneuploidy within the same strain. To determine if this is a general feature of facultative parthenogenesis in drosophilids, we compared sexually reproduced and parthenogenetic offspring from an engineered facultative parthenogenetic strain of D. melanogaster. In addition to germline-derived aneuploidy, this revealed somatic aneuploidy that increased by up to fourfold in parthenogens compared to sexually reproduced offspring. Therefore, the genetic combination identified in D. mercatorum that causes facultative parthenogenesis in D. melanogaster results in aneuploidy, which indicates that the loss of mitotic control resulting in parthenogenesis causes subsequent genome variation within the parthenogenetic offspring. Our findings challenge the assumption that parthenogenetic offspring are near genetic replicas of their mothers.
Collapse
Affiliation(s)
- A L Sperling
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - D M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Kandala S, Ramos M, Voith von Voithenberg L, Diaz-Jimenez A, Chocarro S, Keding J, Brors B, Imbusch CD, Sotillo R. Chronic chromosome instability induced by Plk1 results in immune suppression in breast cancer. Cell Rep 2023; 42:113266. [PMID: 37979172 DOI: 10.1016/j.celrep.2023.113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/20/2023] Open
Abstract
Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κβ) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κβ signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κβ inhibitors with current treatments.
Collapse
Affiliation(s)
- Sridhar Kandala
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lena Voith von Voithenberg
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alberto Diaz-Jimenez
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johanna Keding
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
9
|
Wang X, Liu J, Azoitei A, Eiseler T, Meessen S, Jiang W, Zheng X, Makori AW, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. Loss of ORP3 induces aneuploidy and promotes bladder cancer cell invasion through deregulated microtubule and actin dynamics. Cell Mol Life Sci 2023; 80:299. [PMID: 37740130 PMCID: PMC10516806 DOI: 10.1007/s00018-023-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital, Ulm, Germany
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Arika W Makori
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Ban I, Tomašić L, Trakala M, Tolić IM, Pavin N. Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes. Biophys J 2023; 122:632-645. [PMID: 36654508 PMCID: PMC9989886 DOI: 10.1016/j.bpj.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Most tumors have abnormal karyotypes, which arise from mistakes during mitotic division of healthy euploid cells and evolve through numerous complex mechanisms. In a recent mouse model with increased chromosome missegregation, chromosome gains dominate over losses both in pretumor and tumor tissues, whereas T-cell lymphomas are characterized by gains of chromosomes 14 and 15. However, the quantitative understanding of clonal selection leading to tumor karyotype evolution remains unknown. Here we show, by introducing a mathematical model based on a concept of a macro-karyotype, that tumor karyotypes can be explained by proliferation-driven evolution of aneuploid cells. In pretumor cells, increased apoptosis and slower proliferation of cells with monosomies lead to predominant chromosome gains over losses. Tumor karyotypes with gain of one chromosome can be explained by karyotype-dependent proliferation, whereas, for those with two chromosomes, an interplay with karyotype-dependent apoptosis is an additional possible pathway. Thus, evolution of tumor-specific karyotypes requires proliferative advantage of specific aneuploid karyotypes.
Collapse
Affiliation(s)
- Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lucija Tomašić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Negoto T, Jo M, Nakayama I, Morioka M, Takeuchi K, Kawachi H, Hirota T. Profiling chromosomal-level variations in gastric malignancies. Cancer Sci 2022; 113:3864-3876. [PMID: 36002148 DOI: 10.1111/cas.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Aneuploidy arises from persistent chromosome segregation errors, or chromosomal instability. Although it has long been known as a hallmark of cancer cells, reduced cellular fitness upon induced ploidy alterations hinders the understanding of how aneuploidy relates to cancer development in the body. In this study, we employed the fluorescence in situ hybridization (FISH) analysis targeting centromeres to indicate ploidy changes, and quantitatively evaluated the ploidy statuses of gastric tumors derived from a total of 214 patients, ranging from early to advanced diseases. We found that cancer cells reveal a marked elevation of aneuploid population, increasingly in cases diagnosed in advanced stages. The expansion of aneuploid population is well associated with p53 deficiency, consistent with its essential role in genome maintenance. Comparisons among multiple locations within the tumor, or between the primary and metastatic tumors, indicated that cancer cells mostly remain their ploidy alterations throughout the primary tumors, but metastatic tumors may be consisted of cells with either increased or decreased levels of aneuploidy. We also found that a notable proportion of polyploid cells are often present already in chronic gastritis epithelia. These observations underscore that the chromosome-level variations are widespread in gastric cancers, shaping their genetic heterogeneity and malignant properties.
Collapse
Affiliation(s)
- Tetsuya Negoto
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Neurosurgery, Kurume University, School of Medicine, Kurume, 830-0011, Japan
| | - Minji Jo
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Izuma Nakayama
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University, School of Medicine, Kurume, 830-0011, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Pathology Project for Molecular Targets, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| |
Collapse
|
12
|
Ferrandiz N, Downie L, Starling GP, Royle SJ. Endomembranes promote chromosome missegregation by ensheathing misaligned chromosomes. J Cell Biol 2022; 221:e202203021. [PMID: 35486148 PMCID: PMC9066052 DOI: 10.1083/jcb.202203021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023] Open
Abstract
Errors in mitosis that cause chromosome missegregation lead to aneuploidy and micronucleus formation, which are associated with cancer. Accurate segregation requires the alignment of all chromosomes by the mitotic spindle at the metaphase plate, and any misalignment must be corrected before anaphase is triggered. The spindle is situated in a membrane-free "exclusion zone"; beyond this zone, endomembranes (mainly endoplasmic reticulum) are densely packed. We investigated what happens to misaligned chromosomes localized beyond the exclusion zone. Here we show that such chromosomes become ensheathed in multiple layers of endomembranes. Chromosome ensheathing delays mitosis and increases the frequency of chromosome missegregation and micronucleus formation. We use an induced organelle relocalization strategy in live cells to show that clearance of endomembranes allows for the rescue of chromosomes that were destined for missegregation. Our findings indicate that endomembranes promote the missegregation of misaligned chromosomes that are outside the exclusion zone and therefore constitute a risk factor for aneuploidy.
Collapse
Affiliation(s)
- Nuria Ferrandiz
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| | - Laura Downie
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| | | | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, UK
| |
Collapse
|
13
|
Guo S, Li T, Xu D, Xu J, Wang H, Li J, Bi X, Cao M, Xu Z, Xia Q, Cui Y, Li K. Prognostic Implications and Immune Infiltration Characteristics of Chromosomal Instability-Related Dysregulated CeRNA in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:843640. [PMID: 35419410 PMCID: PMC8995899 DOI: 10.3389/fmolb.2022.843640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of research indicates that long-noncoding RNAs (lncRNAs) regulate the target genes and act as competitive endogenous RNAs (ceRNAs) playing an indispensable role in lung adenocarcinoma (LUAD). LUAD is frequently accompanied by the feature of chromosomal instability (CIN); however, CIN-related ceRNAs have not been investigated yet. We systematically analyzed and integrated CIN-related dysregulated ceRNAs characteristics in LUAD samples for the first time. In TCGA LUAD cohort, CIN in tumor samples was significantly higher than that in those of adjacent, and patients with high CIN risk tended to have worse clinical outcomes. We constructed a double-weighted CIN-related dysregulated ceRNA network, in which edge weight and node weight represented the disorder extent of ceRNA and the correlation of RNA expression level and prognosis, respectively. After module mining and analysis, a potential prognostic biomarker composed of 12 RNAs (8 mRNAs and 4 lncRNAs) named CIN-related dysregulated ceRNAs (CRDC) was obtained. The CRDC risk score had a positive relation with clinical stage and CIN, and patients with high CRDC risk scores exhibited poor prognosis. Moreover, CRDC tended to be an independent risk factor with high robustness to overcome the effect of multicollinearity among other explanatory variables for disease-specific survival (DSS) in TCGA and two GEO cohorts. The result of functional analysis indicated that CRDC was involved in multiple cancer progresses, especially immune-related pathways. The patients with lower CRDC risk had higher B cell, T cell CD4+, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cell infiltration than the patients with higher CRDC risk. Meanwhile, patients with lower CRDC risk could get more benefits from immunological therapy. The results suggested that the CRDC could be a potential prognostic biomarker and an immunotherapy predictor for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shengnan Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Tianhao Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jian Li
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| | - Ying Cui
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| |
Collapse
|
14
|
Abstract
Chromosome instability (CIN) and aneuploidy are hallmarks of cancer cells, typically associated with aggressiveness and poor outcomes. Historically, the causative link between aneuploidy and cancer has been difficult to study due to its intrinsic complexity and the poor fitness of aneuploid cells. In this issue of Genes & Development, two companion papers (Trakala and colleagues [pp. 1079-1092] and Shoshani and colleagues [pp. 1093-1108]) exploited sophisticated mouse models to study the progression of aneuploidy from early phases to established tumors. Both groups observed that, while in the early nontumoral cells aneuploidy is characterized by random chromosomal gains, established tumors display a stereotypic karyotype with recurrent gains of only a few chromosomes. Thus, aneuploidy in tumors is not random but shows reproducible patterns of chromosomal changes induced by mechanisms that these two studies are beginning to unveil.
Collapse
Affiliation(s)
- Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| |
Collapse
|
15
|
Trakala M, Aggarwal M, Sniffen C, Zasadil L, Carroll A, Ma D, Su XA, Wangsa D, Meyer A, Sieben CJ, Zhong J, Hsu PH, Paradis G, Ried T, Holland A, Van Deursen J, Amon A. Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis. Genes Dev 2021; 35:1079-1092. [PMID: 34266888 PMCID: PMC8336892 DOI: 10.1101/gad.348341.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022]
Abstract
In this study Trakala et al. investigated how chromosome gains and losses, which are a frequent feature of human cancers, can overcome the detrimental effects of aneuploidy. They developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal and their results show that the initial detrimental effects of random missegregation are outweighed by clonal selection, which is dependent on chromosomal location and the nature of specific genes and is sufficient to drive cancer. Chromosome gains and losses are a frequent feature of human cancers. However, how these aberrations can outweigh the detrimental effects of aneuploidy remains unclear. An initial comparison of existing chromosomal instability (CIN) mouse models suggests that aneuploidy accumulates to low levels in these animals. We therefore developed a novel mouse model that enables unprecedented levels of chromosome missegregation in the adult animal. At the earliest stages of T-cell development, cells with random chromosome gains and/or losses are selected against, but CIN eventually results in the expansion of progenitors with clonal chromosomal imbalances. Clonal selection leads to the development of T-cell lymphomas with stereotypic karyotypes in which chromosome 15, containing the Myc oncogene, is gained with high prevalence. Expressing human MYC from chromosome 6 (MYCChr6) is sufficient to change the karyotype of these lymphomas to include universal chromosome 6 gains. Interestingly, while chromosome 15 is still gained in MYCChr6 tumors after genetic ablation of the endogenous Myc locus, this chromosome is not efficiently gained after deletion of one copy of Rad21, suggesting a synergistic effect of both MYC and RAD21 in driving chromosome 15 gains. Our results show that the initial detrimental effects of random missegregation are outbalanced by clonal selection, which is dictated by the chromosomal location and nature of certain genes and is sufficient to drive cancer with high prevalence.
Collapse
Affiliation(s)
- Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Muskaan Aggarwal
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Courtney Sniffen
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lauren Zasadil
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Allison Carroll
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Darawalee Wangsa
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ashleigh Meyer
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Cynthia J Sieben
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jian Zhong
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pei-Hsin Hsu
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn Paradis
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Thomas Ried
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jan Van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
16
|
de Wolf B, Oghabian A, Akinyi MV, Hanks S, Tromer EC, van Hooff JJE, van Voorthuijsen L, van Rooijen LE, Verbeeren J, Uijttewaal ECH, Baltissen MPA, Yost S, Piloquet P, Vermeulen M, Snel B, Isidor B, Rahman N, Frilander MJ, Kops GJPL. Chromosomal instability by mutations in the novel minor spliceosome component CENATAC. EMBO J 2021; 40:e106536. [PMID: 34009673 PMCID: PMC8280824 DOI: 10.15252/embj.2020106536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.
Collapse
Affiliation(s)
- Bas de Wolf
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Ali Oghabian
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Present address:
Faculty of MedicineResearch Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Maureen V Akinyi
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sandra Hanks
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Eelco C Tromer
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jolien J E van Hooff
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Unité d'EcologieSystématique et EvolutionCNRSUniversité Paris‐SudUniversité Paris‐SaclayAgroParisTechOrsayFrance
| | - Lisa van Voorthuijsen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Jens Verbeeren
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Esther C H Uijttewaal
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Marijke P A Baltissen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Shawn Yost
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Philippe Piloquet
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Michiel Vermeulen
- Oncode InstituteDepartment of Molecular BiologyFaculty of ScienceRadboud Institute for Molecular Life ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, BiologyScience FacultyUtrecht UniversityUtrechtThe Netherlands
| | - Bertrand Isidor
- Service de Génétique MédicaleUnité de génétique CliniqueCHU Hotel DieuNantes CedexFrance
| | - Nazneen Rahman
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Mikko J Frilander
- Institute of BiotechnologyHelsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Geert J P L Kops
- Oncode InstituteHubrecht Institute ‐ Royal Academy of Arts and Sciences and University Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
17
|
Gene Instability-Related lncRNA Prognostic Model of Melanoma Patients via Machine Learning Strategy. JOURNAL OF ONCOLOGY 2021; 2021:5582920. [PMID: 34122546 PMCID: PMC8169244 DOI: 10.1155/2021/5582920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/03/2022]
Abstract
Background Melanoma is a common tumor characterized by a high mortality rate in its late stage. After metastasis, current treatment methods are relatively ineffective. Many studies have shown that long noncoding RNA (lncRNA) may participate in gene mutation and genomic instability in cancer. Methods We downloaded transcriptome data, mutation data, and clinical follow-up data of melanoma patients from The Cancer Genome Atlas. We divided samples into groups according to the number of somatic cell mutations and then performed a differential analysis to screen out the differentially expressed genes. We then divided samples into genomic unstable and genomic stable groups. We compared lncRNA expression profiles in these groups and constructed a protein-coding genes network coexpressed with selected lncRNA to analyze the pathways enriched by these genes. Two machine learning methods, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to conduct the lncRNA-related prognostic model. Afterward, we performed survival analysis, risk correlation analysis, independent prognostic analysis, and clinical subgroup model validation. Finally, through wound healing assay and transwell assay, the function of AATBC was verified by A375 cell lines. Results We screened 61 prognostic-related lncRNAs and constructed an lncRNA-mRNA coexpression network based on these lncRNAs. Seven lncRNAs were selected as common characteristic factors based on the two machine learning methods. The model formula was as follows: risk score = 0.085∗AATBC + 0.190∗ AC026689.1−0.117∗AC083799.1 + 0.036∗ AC091544.6−0.039∗ LINC01287−0.291∗ SPRY4.AS1 + 0.056∗ ZNF667.AS1. The seven lncRNAs in this formula are key candidates. Cell experiments have verified that knocking down AATBC in A375 cell lines can reduce the proliferation and invasion ability of melanoma cells. Conclusion The lncRNA we identified provides a new way to study lncRNA's role in the genomic instability of melanoma. Our findings may provide essential candidate biomarkers for the diagnosis and treatment of melanoma.
Collapse
|
18
|
Liu D, Shaukat Z, Hussain R, Khan M, Gregory SL. Drosophila as a model for chromosomal instability. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractChromosomal instability (CIN) is a common feature of tumours that leads to increased genetic diversity in the tumour and poor clinical outcomes. There is considerable interest in understanding how CIN comes about and how its contribution to drug resistance and metastasis might be counteracted. In the last decade a number of CIN model systems have been developed in Drosophila that offer unique benefits both in understanding the development of CIN in a live animal as well as giving the potential to do genome wide screens for therapeutic candidate genes. This review outlines the mechanisms used in several Drosophila CIN model systems and summarizes some significant outcomes and opportunities that they have produced.
Collapse
Affiliation(s)
- Dawei Liu
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Zeeshan Shaukat
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Rashid Hussain
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Mahwish Khan
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Stephen L. Gregory
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| |
Collapse
|
19
|
Palmieri G, Rozzo CM, Colombino M, Casula M, Sini MC, Manca A, Pisano M, Doneddu V, Paliogiannis P, Cossu A. Are Molecular Alterations Linked to Genetic Instability Worth to Be Included as Biomarkers for Directing or Excluding Melanoma Patients to Immunotherapy? Front Oncol 2021; 11:666624. [PMID: 34026645 PMCID: PMC8132875 DOI: 10.3389/fonc.2021.666624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
The improvement of the immunotherapeutic potential in most human cancers, including melanoma, requires the identification of increasingly detailed molecular features underlying the tumor immune responsiveness and acting as disease-associated biomarkers. In recent past years, the complexity of the immune landscape in cancer tissues is being steadily unveiled with a progressive better understanding of the plethora of actors playing in such a scenario, resulting in histopathology diversification, distinct molecular subtypes, and biological heterogeneity. Actually, it is widely recognized that the intracellular patterns of alterations in driver genes and loci may also concur to interfere with the homeostasis of the tumor microenvironment components, deeply affecting the immune response against the tumor. Among others, the different events linked to genetic instability—aneuploidy/somatic copy number alteration (SCNA) or microsatellite instability (MSI)—may exhibit opposite behaviors in terms of immune exclusion or responsiveness. In this review, we focused on both prevalence and impact of such different types of genetic instability in melanoma in order to evaluate whether their use as biomarkers in an integrated analysis of the molecular profile of such a malignancy may allow defining any potential predictive value for response/resistance to immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Carla Maria Rozzo
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Maria Colombino
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Sassari, Italy
| | - Milena Casula
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Sassari, Italy
| | - Maria Cristina Sini
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Sassari, Italy
| | - Antonella Manca
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Marina Pisano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Valentina Doneddu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
20
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
21
|
Büscheck F, Fraune C, Garmestani S, Simon R, Kluth M, Hube-Magg C, Ketterer K, Eichelberg C, Höflmayer D, Jacobsen F, Wittmer C, Wilczak W, Sauter G, Fisch M, Eichenauer T, Rink M. Y-chromosome loss is frequent in male renal tumors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:209. [PMID: 33708836 PMCID: PMC7940894 DOI: 10.21037/atm-20-3061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Loss of the Y-chromosome is a common event in different tumor types but its prevalence and clinical relevance in renal cell tumors is still not understood. Methods It was the aim of this study to estimate the frequency and clinical relevance of Y-loss in kidney neoplasms. A cohort of 1,252 male renal tumors was analyzed in a tissue microarray format by fluorescence in-situ hybridization (FISH). Results Y-loss was found in 47% of tumors. The frequency of this alteration varied markedly between kidney tumor subtypes. Y-loss was most prevalent in papillary renal cell carcinoma (RCC) (77%) followed by chromophobe RCC (60%), oncocytoma (51%), clear cell RCC (39%) and clear cell (tubulo)papillary RCC (19%). Y-loss was linked to higher patient age and smaller tumor size at diagnosis. Mean age (95% CI) was 65 (64–66) years in patients with Y-loss in their tumor compared to 60 (58–61) years in patients without Y-loss (P<0.0001). Significant correlations between Y-loss and tumor phenotype were found only for papillary carcinomas (P=0.002), especially for type 1 (P=0.03). Conclusions Y-loss is present in different histologic subtypes of renal neoplasm. The highest frequency is in papillary RCC, where it may represent a potentially relevant prognostic biomarker suggesting favorable disease outcome.
Collapse
Affiliation(s)
- Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Seyedehmina Garmestani
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Kathrin Ketterer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Christian Eichelberg
- Clinic for Urology, Krankenhaus St. Josef, Landshuter Straße 65 D-93053 Regensburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistr. 52 D-20246 Hamburg, Germany
| |
Collapse
|
22
|
Funk LC, Wan J, Ryan SD, Kaur C, Sullivan R, Roopra A, Weaver BA. p53 Is Not Required for High CIN to Induce Tumor Suppression. Mol Cancer Res 2021; 19:112-123. [PMID: 32948674 PMCID: PMC7810023 DOI: 10.1158/1541-7786.mcr-20-0488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer. While low levels of CIN can be tumor promoting, high levels of CIN cause cell death and tumor suppression. The widely used chemotherapeutic, paclitaxel (Taxol), exerts its anticancer effects by increasing CIN above a maximally tolerated threshold. One significant outstanding question is whether the p53 tumor suppressor is required for the cell death and tumor suppression caused by high CIN. Both p53 loss and reduction of the mitotic kinesin, centromere-associated protein-E, cause low CIN. Combining both genetic insults in the same cell leads to high CIN. Here, we test whether high CIN causes cell death and tumor suppression even in the absence p53. Despite a surprising sex-specific difference in tumor spectrum and latency in p53 heterozygous animals, these studies demonstrate that p53 is not required for high CIN to induce tumor suppression. Pharmacologic induction of high CIN results in equivalent levels of cell death due to loss of essential chromosomes in p53+/+ and p53-/- cells, further demonstrating that high CIN elicits cell death independently of p53 function. IMPLICATIONS: These results provide support for the efficacy of anticancer therapies that induce high CIN, even in tumors that lack functional p53.
Collapse
Affiliation(s)
- Laura C Funk
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ruth Sullivan
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
23
|
An Integrative Morphomolecular Classification System of Gastric Carcinoma With Distinct Clinical Outcomes. Am J Surg Pathol 2020; 44:1017-1030. [PMID: 32568823 DOI: 10.1097/pas.0000000000001521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A robust morphomolecular classification system for gastric carcinoma is required. A 4-tier morphologic classification is proposed, including diffuse, intestinal, tubular, and lymphoid types. A tissue microarray for mismatch repair immunohistochemistry and Epstein-Barr virus (EBV) in situ hybridization were performed in 329 gastric carcinomas. DNA flow cytometry was used to detect aneuploidy in formalin-fixed paraffin-embedded samples. Lymphoid histology was the third most common histologic pattern at our institute and strongly associated with EBV infection and PMS2/MLH1-deficiency (both P<0.001). HER2 overexpression and SATB2 expression more frequently occurred in intestinal histology (both P<0.001). Loss of ARID1A expression was strikingly associated with lymphoid histology (P<0.001) and negative E-cadherin expression was correlated with diffuse histology (P=0.001). Programmed death-ligand 1 expression was most frequently present in lymphoid-type gastric carcinoma than other histologic subtypes and correlated with the molecular features of PMS2/MLH1-deficiency and EBV infection (all P<0.001). Aneuploidy was detected in 53% of gastric carcinomas and was highly correlated with intestinal type and the least with the lymphoid type (P<0.001). Notably, lymphoid-type gastric carcinoma showed the best outcome, whereas tubular type showed the worst survival rate (P<0.001). We integrated aneuploidy with morphologic patterns to propose a morphomolecular classification scheme, which served as a successful and independent prognostic factor in multivariate 5-year disease-free survival analysis (P<0.001). Overall, we describe an integrated morphomolecular classification system for gastric carcinomas to effectively predict patient outcomes. This system is cost-effective and reliable and can help select target therapeutics and facilitate clinical management.
Collapse
|
24
|
Kuijt TEF, Lambers MLA, Weterings S, Ponsioen B, Bolhaqueiro ACF, Staijen DHM, Kops GJPL. A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation. Curr Biol 2020; 30:3862-3870.e6. [PMID: 32888483 DOI: 10.1016/j.cub.2020.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
Accurate chromosome segregation during cell division critically depends on error correction of chromosome-spindle interactions and the spindle assembly checkpoint (SAC) [1-3]. The kinase MPS1 is an essential regulator of both processes, ensuring full chromosome biorientation before anaphase onset [3, 4]. To understand when and where MPS1 activation occurs and how MPS1 signaling is modulated during mitosis, we developed MPS1sen, a sensitive and specific FRET-based biosensor for MPS1 activity. By placing MPS1sen at different subcellular locations, we show that MPS1 activity initiates in the nucleus ∼9-12 min prior to nuclear envelope breakdown (NEB) in a kinetochore-dependent manner and reaches the cytoplasm at the start of NEB. Soon after initiation, MPS1 activity increases with switch-like kinetics, peaking at completion of NEB. We further show that timing and extent of pre-NEB MPS1 activity is regulated by Aurora B and PP2A-B56. MPS1sen phosphorylation declines in prometaphase as a result of formation of kinetochore-microtubule attachments, reaching low but still detectable levels at metaphase. Finally, leveraging the sensitivity and dynamic range of MPS1sen, we show deregulated MPS1 signaling dynamics in colorectal cancer cell lines and tumor organoids with diverse genomic instability phenotypes.
Collapse
Affiliation(s)
- Timo E F Kuijt
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Sonja Weterings
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Bas Ponsioen
- Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, the Netherlands; Molecular Cancer Research, Centre for Molecular Medicine, UMC Utrecht, 3584CG Utrecht, the Netherlands
| | - Ana C F Bolhaqueiro
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Debbie H M Staijen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
25
|
Wang Y, Wang H, Yan Z, Li G, Hu G, Zhang H, Huang D, Wang Y, Zhang X, Yan Y, Lu Q, Cheng M, Luo S. The critical role of dysregulated Hh-FOXM1-TPX2 signaling in human hepatocellular carcinoma cell proliferation. Cell Commun Signal 2020; 18:116. [PMID: 32723329 PMCID: PMC7388463 DOI: 10.1186/s12964-020-00628-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Aberrant activation of the Hedgehog (Hh) signaling pathway is frequently observed in hepatocellular carcinoma (HCC), nevertheless, the precise molecular mechanism remains unclear. Forkhead box M1 (FOXM1), a target of the Hh pathway, is a key oncofetal transcription factor and a master cell cycle regulator. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is an oncogene critical for mitosis. However, how these molecular events affect HCC progression remains unclear. Methods Realtime PCR, immunohistochemistry, western blotting, and analyses of datasets TCGA and Gene Expression Omnibus (GEO) were conducted to assess the expression of TPX2 and FOXM1 at the mRNA and protein levels in HCC samples or HCC cells. Expression and knockdown of TPX2 and FOXM1 were performed to assess their role in regulating HCC cell proliferation in vitro and in vivo. Dual luciferase report assay and chromosome immunoprecipitation (ChIP) were investigated to seek the FOXM1 binding sites in the promoter of TPX2. Results Specific antagonists (cyclopamine and GANT61) of the Hh pathway down-regulated TPX2, whereas activation of Hh signaling stimulated TPX2 expression. Furthermore, TPX2 over-expression accelerated HCC cell proliferation when upstream events of Hh signaling were inhibited, and TPX2 knockdown significantly alleviated Sonic Hh ligand (Shh)-induced HCC cell proliferation. Reporter assays and ChIP showed that FOXM1 bound to the TPX2 promoter, confirming that TPX2 is a direct downstream target of FOXM1. Xenograft model further verified the cell function and expression regulation of TPX2 and FOXM1 in vivo. Furthermore, FOXM1 regulated TPX2 activity to drive HCC proliferation. Immunohistochemical (IHC) analysis indicated that FOXM1 and TPX2 were highly-expressed in HCC samples and cohort study revealed that FOXM1 and TPX2 may act as negative predictors for the prognosis of patients with HCC. Conclusions TPX2 acts as a novel downstream target and effector of the Hh pathway, and Hh signaling contributes to HCC proliferation via regulating the FOXM1-TPX2 cascade, suggesting that this signaling axis may be a novel therapeutic target for HCC. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yiting Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhengwei Yan
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Guohua Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Guohui Hu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hong Zhang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Dengliang Huang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yao Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| | - Shiwen Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
26
|
Mendes‐de‐Almeida DP, Lovatel VL, Santos‐Bueno FV, Kós EAA, Andrade FG, Schramm MT, Nunes EP, Grinsztejn BGJ, Pombo‐de‐Oliveira MS, Fernandez TDS. Myelodysplastic syndrome with clonal karyotype evolution associated with trisomy 8 and
ASXL1
mutation in well‐controlled HIV patient: Case report and literature review. EJHAEM 2020; 1:344-349. [PMID: 35847703 PMCID: PMC9176036 DOI: 10.1002/jha2.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Daniela Palheiro Mendes‐de‐Almeida
- Hematology DepartmentEvandro Chagas National Institute of Infectious DiseasesOswaldo Cruz Foundation (FIOCRUZ) Rio de Janeiro Brazil
- Pediatric Haematology‐Oncology ProgramResearch CentreNational Institute of Cancer (INCA) Rio de Janeiro Brazil
- Division of Cancer Epidemiology and Clinical ResearchDepartment of PediatricsUniversity of Minnesota Minneapolis Minnesota
| | - Viviane Lamim Lovatel
- Cytogenetic DepartmentBone Marrow Transplantation Centre (CEMO)National Institute of Cancer (INCA) Rio de Janeiro Brazil
| | - Filipe Vicente Santos‐Bueno
- Pediatric Haematology‐Oncology ProgramResearch CentreNational Institute of Cancer (INCA) Rio de Janeiro Brazil
| | - Elaiza Almeida Antônio Kós
- Cytogenetic DepartmentBone Marrow Transplantation Centre (CEMO)National Institute of Cancer (INCA) Rio de Janeiro Brazil
| | - Francianne Gomes Andrade
- Pediatric Haematology‐Oncology ProgramResearch CentreNational Institute of Cancer (INCA) Rio de Janeiro Brazil
| | | | - Estevão Portela Nunes
- Laboratory of Clinical Research on STD/AIDSEvandro Chagas National Institute of Infectious Disease (INI)Oswaldo Cruz Foundation (FIOCRUZ) Rio de Janeiro Brazil
| | - Beatriz Gilda J. Grinsztejn
- Laboratory of Clinical Research on STD/AIDSEvandro Chagas National Institute of Infectious Disease (INI)Oswaldo Cruz Foundation (FIOCRUZ) Rio de Janeiro Brazil
| | - Maria S Pombo‐de‐Oliveira
- Pediatric Haematology‐Oncology ProgramResearch CentreNational Institute of Cancer (INCA) Rio de Janeiro Brazil
| | - Teresa de Souza Fernandez
- Cytogenetic DepartmentBone Marrow Transplantation Centre (CEMO)National Institute of Cancer (INCA) Rio de Janeiro Brazil
| |
Collapse
|
27
|
Hoevenaar WHM, Janssen A, Quirindongo AI, Ma H, Klaasen SJ, Teixeira A, van Gerwen B, Lansu N, Morsink FHM, Offerhaus GJA, Medema RH, Kops GJPL, Jelluma N. Degree and site of chromosomal instability define its oncogenic potential. Nat Commun 2020; 11:1501. [PMID: 32198375 PMCID: PMC7083897 DOI: 10.1038/s41467-020-15279-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues.
Collapse
Affiliation(s)
- Wilma H M Hoevenaar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ajit I Quirindongo
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Huiying Ma
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antoinette Teixeira
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van Gerwen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert H M Morsink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan A Offerhaus
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nannette Jelluma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Njeru SN, Kraus J, Meena JK, Lechel A, Katz SF, Kumar M, Knippschild U, Azoitei A, Wezel F, Bolenz C, Leithäuser F, Gollowitzer A, Omrani O, Hoischen C, Koeberle A, Kestler HA, Günes C, Rudolph KL. Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor. Oncogene 2019; 39:1445-1465. [PMID: 31659255 DOI: 10.1038/s41388-019-1073-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
Aneuploidy can instigate tumorigenesis. However, mutations in genes that control chromosome segregation are rare in human tumors as these mutations reduce cell fitness. Screening experiments indicate that the knockdown of multiple classes of genes that are not directly involved in chromosome segregation can lead to aneuploidy induction. The possible contribution of these genes to cancer formation remains yet to be defined. Here we identified gene knockdowns that lead to an increase in aneuploidy in checkpoint-deficient human cancer cells. Computational analysis revealed that the identified genes overlap with recurrent mutations in human cancers. The knockdown of the three strongest selected candidate genes (ORP3, GJB3, and RXFP1) enhances the malignant transformation of human fibroblasts in culture. Furthermore, the knockout of Orp3 results in an aberrant expansion of lymphoid progenitor cells and a high penetrance formation of chromosomal instable, pauci-clonal B-cell lymphoma in aging mice. At pre-tumorous stages, lymphoid cells from the animals exhibit deregulated phospholipid metabolism and an aberrant induction of proliferation regulating pathways associating with increased aneuploidy in hematopoietic progenitor cells. Together, these results support the concept that aneuploidy-inducing gene deficiencies contribute to cellular transformation and carcinogenesis involving the deregulation of various molecular processes such as lipid metabolism, proliferation, and cell survival.
Collapse
Affiliation(s)
- Sospeter N Njeru
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.,Paul-Ehrlich-Institute, Division Immunology, 63225, Langen, Germany
| | - Johann Kraus
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Jitendra K Meena
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.,Baylor College of Medicine, Houston, TX, USA
| | - André Lechel
- Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
| | - Sarah-Fee Katz
- Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
| | - Mukesh Kumar
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, 89081, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | | | - André Gollowitzer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany
| | - Christian Hoischen
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.,Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany.
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.
| |
Collapse
|
29
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
30
|
Sinha D, Duijf PH, Khanna KK. Mitotic slippage: an old tale with a new twist. Cell Cycle 2019; 18:7-15. [PMID: 30601084 PMCID: PMC6343733 DOI: 10.1080/15384101.2018.1559557] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Targeting the mitotic machinery using anti-mitotic drugs for elimination of cancer cells is a century-old concept, which continues to be routinely used as a first line of treatment in the clinic. However, patient response remains unpredictable and drug resistance limits effectiveness of these drugs. Cancer cells exit from drug-induced mitotic arrest (mitotic slippage) to avoid subsequent cell death which is thought to be a major mechanism contributing to this resistance. The tumor cells that acquire resistance to anti-mitotic drugs have chromosomal instability (CIN) and are often aneuploid. In this review, we outline the key mechanisms involved in dictating the cell fate during perturbed mitosis and how these processes impede the efficacy of anti-mitotic therapies. Further, we emphasize the recent work from our laboratory, which highlights the functional role of CEP55 in protecting aneuploid cells from death. We also discuss the rationale of targeting CEP55 in vivo, which could prove to be a novel and effective therapeutic strategy for sensitizing cells to microtubule inhibitors and might offer significantly improved patient outcome. Abbreviations: APC/C: Anaphase-Promoting Complex/Cyclosome; BAD: BCL2-Associated agonist of cell Death; BAK1: BCL2 Antagonist Kinase1; BAX: BCL2-Associated X; BCL2: B-cell Chronic Lymphocytic Leukaemia (CLL)/Lymphoma 2; BH: BCL2 Homology Domain; BID: BH3-Interacting domain Death agonist; BIM: BCL2-Interacting Mediator of cell death; BUB: Budding Uninhibited by Benzimidazoles; CDC: Cell Division Cycle; CDH1: Cadherin-1; CDK1: Cyclin-Dependent Kinase 1; CEP55: Centrosomal Protein (55 KDa): CIN: Chromosomal Instability; CTA: Cancer Testis Antigen; EGR1: Early Growth Response protein 1; ERK: Extracellular Signal-Regulated Kinase; ESCRT: Endosomal Sorting Complexes Required for Transport; GIN: Genomic Instability; MAD2: Mitotic Arrest Deficient 2; MCL1: Myeloid Cell Leukemia sequence 1; MPS1: Monopolar Spindle 1 Kinase; MYT1: MYelin Transcription factor 1; PLK1: Polo Like Kinase 1; PUMA: p53-Upregulated Mediator of Apoptosis; SAC: Spindle Assembly Checkpoint; TAA: Tumor-Associated Antigen.
Collapse
Affiliation(s)
- Debottam Sinha
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Pascal H.G. Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
31
|
Smith ER, Capo-Chichi CD, Xu XX. Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Front Oncol 2018; 8:529. [PMID: 30524960 PMCID: PMC6256246 DOI: 10.3389/fonc.2018.00529] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Callinice D Capo-Chichi
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.,Laboratory of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
32
|
Benhra N, Barrio L, Muzzopappa M, Milán M. Chromosomal Instability Induces Cellular Invasion in Epithelial Tissues. Dev Cell 2018; 47:161-174.e4. [DOI: 10.1016/j.devcel.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
|
33
|
Tutaj H, Pogoda E, Tomala K, Korona R. Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes. Curr Genet 2018; 65:483-492. [PMID: 30244280 PMCID: PMC6420891 DOI: 10.1007/s00294-018-0885-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Loss of heterozygosity (LOH) in a vegetatively growing diploid cell signals irregularity of mitosis. Therefore, assays of LOH serve to discover pathways critical for proper replication and segregation of chromosomes. We screened for enhanced LOH in a whole-genome collection of diploid yeast strains in which a single gene was strongly overexpressed. We found 39 overexpression strains with substantially increased LOH caused either by recombination or by chromosome instability. Most of them, 32 in total, belonged to the category of "cell division", a broadly defined biological process. Of those, only one, TOP3, coded for an enzyme that uses DNA as a substrate. The rest related to establishment and maintenance of cell polarity, chromosome segregation, and cell cycle checkpoints. Former studies, in which gene deletions were used, showed that an absence of a protein participating in the DNA processing machinery is a potent stimulator of genome instability. As our results suggest, overexpression of such proteins is not comparably damaging as the absence of them. It may mean that the harmful effect of overexpression is more likely to occur in more complex and multistage processes, such as chromosome segregation. We also report a side finding, resulting from the fact that we worked with the yeast strains bearing a 2-micron plasmid. We noted that intense transcription from such a plasmid led to an enhanced rate of an entire chromosome loss (as opposed to LOH produced by recombination). This observation may support models linking segregation of 2-micron plasmids to segregation of chromosomes.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
34
|
Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress. Sci Rep 2018; 8:13904. [PMID: 30224719 PMCID: PMC6141510 DOI: 10.1038/s41598-018-32272-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
Encoded by EEF1A1, the eukaryotic translation elongation factor eEF1α1 strongly promotes the heat shock response, which protects cancer cells from proteotoxic stress, following for instance oxidative stress, hypoxia or aneuploidy. Unexpectedly, therefore, we find that EEF1A1 mRNA levels are reduced in virtually all breast cancers, in particular in ductal carcinomas. Univariate and multivariate analyses indicate that EEF1A1 mRNA underexpression independently predicts poor patient prognosis for estrogen receptor-positive (ER+) cancers. EEF1A1 mRNA levels are lowest in the most invasive, lymph node-positive, advanced stage and postmenopausal tumors. In sharp contrast, immunohistochemistry on 100 ductal breast carcinomas revealed that at the protein level eEF1α1 is ubiquitously overexpressed, especially in ER+ , progesterone receptor-positive and lymph node-negative tumors. Explaining this paradox, we find that EEF1A1 mRNA levels in breast carcinomas are low due to EEF1A1 allelic copy number loss, found in 27% of tumors, and cell cycle-specific expression, because mRNA levels are high in G1 and low in proliferating cells. This also links estrogen-induced cell proliferation to clinical observations. In contrast, high eEF1α1 protein levels protect tumor cells from stress-induced cell death. These observations suggest that, by obviating EEF1A1 transcription, cancer cells can rapidly induce the heat shock response following proteotoxic stress, and survive.
Collapse
|
35
|
No association between HMGB1 polymorphisms and cancer risk: evidence from a meta-analysis. Biosci Rep 2018; 38:BSR20180658. [PMID: 30049847 PMCID: PMC6123066 DOI: 10.1042/bsr20180658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine whether High mobility group box 1 (HMGB1) polymorphism was associated with cancer susceptibility. PubMed, Embase, and ISI Web of Science were extensively searched without language restriction. Data were extracted using a standardized data collection sheet after two reviewers scanned studies independently. The association between HMGB1 polymorphism and cancer risks was indicated as odds ratio (OR) along with its related 95% confidence interval (95%CI). Meta-analysis was conducted via RevMan 5.3 software. A total of ten studies comprising 4530 cases and 5167 controls were included in our study. Meta-analysis revealed no statistical association between rs1045411, rs1360485, rs1412125, or rs2249825 polymorphisms in HMGB1 gene and risk of cancer, either did subgroup analysis of rs1045411 stratified by cancer types and ethnic groups. Our results revealed no statistical association between current four polymorphism loci and cancer risks, suggesting that the attempt of applying HMGB1 variants as a therapeutic target or a prognosis predictor might still require a second thought. However, HMGB1 is deemed to play pleiotropic roles in cancers, we strongly call for large-scale studies with high evidence level to uncover the exact relationship between HMGB1 gene variants and cancer progression.
Collapse
|
36
|
Kim S, Park C, Jun Y, Lee S, Jung Y, Kim J. Integrative Profiling of Alternative Splicing Induced by U2AF1 S34F Mutation in Lung Adenocarcinoma Reveals a Mechanistic Link to Mitotic Stress. Mol Cells 2018; 41:733-741. [PMID: 29991672 PMCID: PMC6125417 DOI: 10.14348/molcells.2018.0176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 11/27/2022] Open
Abstract
Mutations in spliceosome components have been implicated in carcinogenesis of various types of cancer. One of the most frequently found is U2AF1 S34F missense mutation. Functional analyses of this mutation have been largely limited to hematological malignancies although the mutation is also frequently seen in other cancer types including lung adenocarcinoma (LUAD). We examined the impact of knockdown (KD) of wild type (wt) U2AF1 and ectopic expression of two splice variant S34F mutant proteins in terms of alternative splicing (AS) pattern and cell cycle progression in A549 lung cancer cells. We demonstrate that induction of distinct AS events and disruption of mitosis at distinct sub-stages result from KD and ectopic expression of the mutant proteins. Importantly, when compared with the splicing pattern seen in LUAD patients with U2AF1 S34F mutation, ectopic expression of S34F mutants but not KD was shown to result in common AS events in several genes involved in cell cycle progression. Our study thus points to an active role of U2AF1 S34F mutant protein in inducing cell cycle dysregulation and mitotic stress. In addition, alternatively spliced genes which we describe here may represent novel potential markers of lung cancer development.
Collapse
Affiliation(s)
- Suyeon Kim
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Charny Park
- Research Institute, National Cancer Center, Goyang 10408,
Korea
| | - Yukyung Jun
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Sanghyuk Lee
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Yeonjoo Jung
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Jaesang Kim
- Ewha Research Center for Systems Biology (ERCSB), Seoul 03760,
Korea
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| |
Collapse
|
37
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
38
|
Smith ER, George SH, Kobetz E, Xu XX. New biological research and understanding of Papanicolaou's test. Diagn Cytopathol 2018; 46:507-515. [PMID: 29663734 PMCID: PMC5949091 DOI: 10.1002/dc.23941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
The development of the Papanicolaou smear test by Dr. George Nicholas Papanicolaou (1883-1962) is one of the most significant achievements in screening for disease and cancer prevention in history. The Papanicolaou smear has been used for screening of cervical cancer since the 1950s. The test is technically straightforward and practical and based on a simple scientific observation: malignant cells have an aberrant nuclear morphology that can be distinguished from benign cells. Here, we review the scientific understanding that has been achieved and continues to be made on the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou's invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope structural proteins. The consequences of a nuclear envelope defect include chromosomal numerical instability, altered chromatin organization and gene expression, and increased cell mobility because of a malleable nuclear envelope. HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents as a change in nuclear morphology detectable by a Papanicolaou smear. Thus, the causes and consequences of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still undergoing active investigation to reveal the details. Recently a statue was installed in front of the Papanicolaou's Cancer Research Building to honor the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts clinical impacts and inspires scientific inquiries.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Sophia H. George
- Department of Obstetrics & Gynecology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Erin Kobetz
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
39
|
Cordeiro MH, Smith RJ, Saurin AT. A fine balancing act: A delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int J Biochem Cell Biol 2018; 96:148-156. [PMID: 29108876 DOI: 10.1016/j.biocel.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells rewire signalling networks to acquire specific hallmarks needed for their proliferation, survival, and dissemination throughout the body. Although this is often associated with the constitutive activation or inactivation of protein phosphorylation networks, there are other contexts when the dysregulation must be much milder. For example, chromosomal instability is a widespread cancer hallmark that relies on subtle defects in chromosome replication and/or division, such that these processes remain functional, but nevertheless error-prone. In this article, we will discuss how perturbations to the delicate kinase-phosphatase balance could lie at the heart of this type of dysregulation. In particular, we will explain how the two principle mechanisms that safeguard the chromosome segregation process rely on an equilibrium between at least two kinases and two phosphatases to function correctly. This balance is set during mitosis by a central complex that has also been implicated in chromosomal instability - the BUB1/BUBR1/BUB3 complex - and we will put forward a hypothesis that could link these two findings. This could be relevant for cancer treatment because most tumours have evolved by pushing the boundaries of chromosomal instability to the limit. If this involves subtle changes to the kinase-phosphatase equilibrium, then it may be possible to exacerbate these defects and tip tumour cells over the edge, whilst still maintaining the viability of healthy cells.
Collapse
Affiliation(s)
- Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Richard John Smith
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
40
|
Mauland KK, Wik E, Hoivik EA, Kusonmano K, Halle MK, Berg A, Haugland HK, Øyan AM, Kalland KH, Stefansson IM, Akslen LA, Krakstad C, Trovik J, Werner HMJ, Salvesen HB. Aneuploidy related transcriptional changes in endometrial cancer link low expression of chromosome 15q genes to poor survival. Oncotarget 2018; 8:9696-9707. [PMID: 28039471 PMCID: PMC5354764 DOI: 10.18632/oncotarget.14201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/23/2016] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy is a widely studied prognostic marker in endometrial cancer (EC), however, not implemented in clinical decision-making. It lacks validation in large prospective patient cohorts adjusted for currently standard applied prognostic markers, including estrogen/progesterone receptor status (ER/PR). Also, little is known about aneuploidy-related transcriptional alterations, relevant for understanding its role in EC biology, and as therapeutic target. We included 825 EC patients with available ploidy status and comprehensive clinicopathologic characterization to analyze ploidy as a prognostic marker. For 144 patients, gene expression data were available to explore aneuploidy-related transcriptional alterations. Aneuploidy was associated with high age, FIGO stage and grade, non-endometrioid histology, ER/PR negativity, and poor survival (p-values<0.001). In patients with ER/PR negative tumors, aneuploidy independently predicted poor survival (p=0.03), lymph node metastasis (p=0.007) and recurrence (p=0.002). A prognostic ‘aneuploidy signature’, linked to low expression of chromosome 15q genes, was identified and validated in TCGA data. In conclusion, aneuploidy adds prognostic information in ER/PR negative EC, identifying high-risk patients that could benefit from more aggressive therapies. The ‘aneuploidy signature’ equally identifies these aggressive tumors and suggests a link between aneuploidy and low expression of 15q genes. Integrated analyses point at various dysregulated pathways in aneuploid EC, underlining a complex biology.
Collapse
Affiliation(s)
- Karen Klepsland Mauland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Wik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine (K1), Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Kanthida Kusonmano
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | - Mari Kyllesø Halle
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Anna Berg
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | | | - Anne Margrete Øyan
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Lars A Akslen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Medicine (K1), Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Center for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jone Trovik
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Henrica Maria Johanna Werner
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Helga Birgitte Salvesen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science (K2), University of Bergen, Bergen, Norway.,Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
41
|
5-Azacytidine prevents relapse and produces long-term complete remissions in leukemia xenografts treated with Moxetumomab pasudotox. Proc Natl Acad Sci U S A 2018; 115:E1867-E1875. [PMID: 29432154 DOI: 10.1073/pnas.1714512115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Moxetumomab pasudotox (Moxe) is a chimeric protein composed of an anti-CD22 Fv fused to a portion of Pseudomonas exotoxin A and kills CD22-expressing leukemia cells. It is very active in hairy-cell leukemia, but many children with relapsed/refractory acute lymphoblastic leukemia (ALL) either respond transiently or are initially resistant. Resistance to Moxe in cultured cells is due to low expression of diphthamide genes (DPH), but only two of six ALL blast samples from resistant patients had low DPH expression. To develop a more clinically relevant model of resistance, we treated NSG mice bearing KOPN-8 or Reh cells with Moxe. More than 99.9% of the cancer cells were killed by Moxe, but relapse occurred from discrete bone marrow sites. The resistant cells would no longer grow in cell culture and showed major chromosomal changes and changes in phenotype with greatly decreased CD22. RNA deep sequencing of resistant KOPN-8 blasts revealed global changes in gene expression, indicating dedifferentiation toward less-mature B cell precursors, and showed an up-regulation of myeloid genes. When Moxe was combined with 5-azacytidine, resistance was prevented and survival increased to over 5 months in the KOPN-8 model and greatly improved in the Reh model. We conclude that Moxe resistance in mice is due to a new mechanism that could not be observed using cultured cells and is prevented by treatment with 5-azacytidine.
Collapse
|
42
|
Abstract
The growth of epithelial tumors is often governed by cell interactions with the surrounding stroma. Drosophila has been instrumental in identifying the relevant molecular elements mediating these interactions. Of note is the role of the TNF ligand Eiger, released from recruited blood cells, in activating the JNK tumor-promoting pathway in epithelial tumors. JNK drives the transcriptional induction of mitogenic molecules, matrix metalloproteases and systemic signals that lead to tumor growth, tissue invasiveness and malignancy. Here we review our findings on a tumor-intrinsic, Eiger- and stroma-independent mechanism that contributes to the unlimited growth potential of tumors caused either by chromosomal instability or impaired cell polarity. This newly identified mechanism, which was revealed in an experimental condition in which contacts between tumor cells and wild-type epithelial cells were minimized, relies on interactions between functionally distinct tumor cell populations that activate JNK in a cell-autonomous manner. We discuss the impact of cell interaction-based feedback amplification loops on the unlimited growth potential of epithelial tumors. These findings are expected to contribute to the identification of the relevant cell populations and molecular mechanisms to be targeted in drug therapy.
Collapse
Affiliation(s)
- Mariana Muzzopappa
- a Institute for Research in Biomedicine (IRB Barcelona) , the Barcelona Institute of Science and Technology , Baldiri Reixac, 10-12, Barcelona , Spain
| | - Marco Milán
- a Institute for Research in Biomedicine (IRB Barcelona) , the Barcelona Institute of Science and Technology , Baldiri Reixac, 10-12, Barcelona , Spain.,b Institució Catalana de Recerca i Estudis Avan¸ats (ICREA) , Passeig de Lluís Companys , Barcelona , Spain
| |
Collapse
|
43
|
Lin CY, Shukla A, Grady JP, Fink JL, Dray E, Duijf PHG. Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers (Basel) 2018; 10:cancers10010013. [PMID: 29316705 PMCID: PMC5789363 DOI: 10.3390/cancers10010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chromosomal translocations drive the development of many hematological and some solid cancers. Several factors have been identified to explain the non-random occurrence of translocation breakpoints in the genome. These include chromatin density, gene density and CCCTC-binding factor (CTCF)/cohesin binding site density. However, such factors are at least partially interdependent. Using 13,844 and 1563 karyotypes from human blood and solid cancers, respectively, our multiple regression analysis only identified chromatin density as the primary statistically significant predictor. Specifically, translocation breakpoints preferentially occur in open chromatin. Also, blood and solid tumors show markedly distinct translocation signatures. Strikingly, translocation breakpoints occur significantly more frequently in acrocentric chromosomes than in non-acrocentric chromosomes. Thus, translocations are probably often generated around nucleoli in the inner nucleoplasm, away from the nuclear envelope. Importantly, our findings remain true both in multivariate analyses and after removal of highly recurrent translocations. Finally, we applied pairwise probabilistic co-occurrence modeling. In addition to well-known highly prevalent translocations, such as those resulting in BCR-ABL1 (BCR-ABL) and RUNX1-RUNX1T1 (AML1-ETO) fusion genes, we identified significantly underrepresented translocations with putative fusion genes, which are probably subject to strong negative selection during tumor evolution. Taken together, our findings provide novel insights into the generation and selection of translocations during cancer development.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Ankit Shukla
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - John P Grady
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - J Lynn Fink
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
44
|
Vidotto T, Tiezzi DG, Squire JA. Distinct subtypes of genomic PTEN deletion size influence the landscape of aneuploidy and outcome in prostate cancer. Mol Cytogenet 2018; 11:1. [PMID: 29308088 PMCID: PMC5753467 DOI: 10.1186/s13039-017-0348-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Background Inactivation of the PTEN tumor suppressor gene by deletion occurs in 20-30% of prostate cancer tumors and loss strongly correlates with a worse outcome. PTEN loss of function not only leads to activation of the PI3K/AKT pathway, but is also thought to affect genome stability and increase levels of tumor aneuploidy. We performed an in silico integrative genomic and transcriptomic analysis of 491 TCGA prostate cancer tumors. These data were used to map the genomic sizes of PTEN gene deletions and to characterize levels of instability and patterns of aneuploidy acquisition. Results PTEN homozygous deletions had a significant increase in aneuploidy compared to PTEN tumors without an apparent deletion, and hemizygous deletions showed an intermediate aneuploidy profile. A supervised clustering of somatic copy number alterations (SCNA) demonstrated that the size of PTEN deletions was not random, but comprised five distinct subtypes: (1) "Small Interstitial" (70 bp-789Kb); (2) "Large Interstitial" (1-7 MB); (3) "Large Proximal" (3-65 MB); (4) "Large Terminal" (8-64 MB), and (5) "Extensive" (71-132 MB). Many of the deleted fragments in each subtype were flanked by low copy repetitive (LCR) sequences. SCNAs such as gain at 3q21.1-3q29 and deletions at 8p, RB1, TP53 and TMPRSS2-ERG were variably present in all subtypes. Other SCNAs appeared to be recurrent in some deletion subtypes, but absent from others. To determine how the aneuploidy influenced global levels of gene expression, we performed a comparative transcriptome analysis. One deletion subtype (Large Interstitial) was characterized by gene expression changes associated with angiogenesis and cell adhesion, structure, and metabolism. Logistic regression demonstrated that this deletion subtype was associated with a high Gleason score (HR = 2.386; 95% C.I. 1.245-4.572), extraprostatic extension (HR = 2.423, 95% C.I. 1.157-5.075), and metastasis (HR = 7.135; 95% C.I. 1.540-33.044). Univariate and multivariate Cox Regression showed that presence of this deletion subtype was also strongly predictive of disease recurrence. Conclusions Our findings indicate that genomic deletions of PTEN fall into five different size distributions, with breakpoints that often occur close LCR regions, and that each subtype is associated with a characteristic aneuploidy signature. The Large Interstitial deletion had a distinct gene expression signature that was related to cancer progression and was also predictive of a worse prognosis.
Collapse
Affiliation(s)
- Thiago Vidotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Guimarães Tiezzi
- Deparment of Gynecology and Obstetrics, Clinical Hospital of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, São Paulo 14040-900 Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
45
|
Seelige R, Searles S, Bui JD. Mechanisms regulating immune surveillance of cellular stress in cancer. Cell Mol Life Sci 2018; 75:225-240. [PMID: 28744671 PMCID: PMC11105730 DOI: 10.1007/s00018-017-2597-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
The purpose of this review is to explore immune-mediated mechanisms of stress surveillance in cancer, with particular emphasis on the idea that all cancers have classical hallmarks (Hanahan and Weinberg in Cell 100:57-70, 67; Cell 144:646-674, 68) that could be interrelated. We postulate that hallmarks of cancer associated with cellular stress pathways (Luo et al. in Cell 136:823-837, 101) including oxidative stress, proteotoxic stress, mitotic stress, DNA damage, and metabolic stress could define and modulate the inflammatory component of cancer. As such, the overarching goal of this review is to define the types of cellular stress that cancer cells undergo, and then to explore mechanisms by which immune cells recognize, respond to, and are affected by each stress response.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA
| | - Stephen Searles
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA
| | - Jack D Bui
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
46
|
Tang YC, Yuwen H, Wang K, Bruno PM, Bullock K, Deik A, Santaguida S, Trakala M, Pfau SJ, Zhong N, Huang T, Wang L, Clish CB, Hemann MT, Amon A. Aneuploid Cell Survival Relies upon Sphingolipid Homeostasis. Cancer Res 2017; 77:5272-5286. [PMID: 28775166 DOI: 10.1158/0008-5472.can-17-0049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
Aneuploidy, a hallmark of cancer cells, poses an appealing opportunity for cancer treatment and prevention strategies. Using a cell-based screen to identify small molecules that could selectively kill aneuploid cells, we identified the compound N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenylethyl]-decanamide monohydrochloride (DL-PDMP), an antagonist of UDP-glucose ceramide glucosyltransferase. DL-PDMP selectively inhibited proliferation of aneuploid primary mouse embryonic fibroblasts and aneuploid colorectal cancer cells. Its selective cytotoxic effects were based on further accentuating the elevated levels of ceramide, which characterize aneuploid cells, leading to increased apoptosis. We observed that DL-PDMP could also enhance the cytotoxic effects of paclitaxel, a standard-of-care chemotherapeutic agent that causes aneuploidy, in human colon cancer and mouse lymphoma cells. Our results offer pharmacologic evidence that the aneuploid state in cancer cells can be targeted selectively for therapeutic purposes, or for reducing the toxicity of taxane-based drug regimens. Cancer Res; 77(19); 5272-86. ©2017 AACR.
Collapse
Affiliation(s)
- Yun-Chi Tang
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Yuwen
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter M Bruno
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin Bullock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stefano Santaguida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sarah J Pfau
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Na Zhong
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
47
|
Caswell DR, Swanton C. The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med 2017; 15:133. [PMID: 28716075 PMCID: PMC5514532 DOI: 10.1186/s12916-017-0900-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/22/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The advent of rapid and inexpensive sequencing technology allows scientists to decipher heterogeneity within primary tumours, between primary and metastatic sites, and between metastases. Charting the evolutionary history of individual tumours has revealed drivers of tumour heterogeneity and highlighted its impact on therapeutic outcomes. DISCUSSION Scientists are using improved sequencing technologies to characterise and address the challenge of tumour heterogeneity, which is a major cause of resistance to therapy and relapse. Heterogeneity may fuel metastasis through the selection of rare, aggressive, somatically altered cells. However, extreme levels of chromosomal instability, which contribute to intratumour heterogeneity, are associated with improved patient outcomes, suggesting a delicate balance between high and low levels of genome instability. CONCLUSIONS We review evidence that intratumour heterogeneity influences tumour evolution, including metastasis, drug resistance, and the immune response. We discuss the prevalence of tumour heterogeneity, and how it can be initiated and sustained by external and internal forces. Understanding tumour evolution and metastasis could yield novel therapies that leverage the immune system to control emerging tumour neo-antigens.
Collapse
Affiliation(s)
- Deborah R Caswell
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
48
|
Pan HW, Su HH, Hsu CW, Huang GJ, Wu TTL. Targeted TPX2 increases chromosome missegregation and suppresses tumor cell growth in human prostate cancer. Onco Targets Ther 2017; 10:3531-3543. [PMID: 28761362 PMCID: PMC5522830 DOI: 10.2147/ott.s136491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is a complex disease that can be relatively harmless or extremely aggressive. Although androgen-deprivation therapy is a commonly used treatment for men with prostate cancer, the adverse effects can be detrimental to patient health and quality of life. Therefore, identifying new target genes for tumor growth will enable the development of novel therapeutic intervention. TPX2 plays a critical role in chromosome segregation machinery during mitosis. Low rates of chromosome missegregation can promote tumor development, whereas higher levels might promote cell death and suppress tumorigenesis. Hence, the strategy of promoting cell death by inducing massive chromosome missegregation has been a therapeutic application for selectively eliminating highly proliferating tumor cells. RNAi was used for TPX2 protein expression knockdown, and a clonogenic assay, immunostaining, double thymidine block, image-cytometry analysis, and tumor spheroid assay were used to analyze the role of TPX2 in tumor cell growth, cell cycle progression, multinuclearity, ploidy, and tumorigenicity, respectively; finally, Western blotting was used to analyze anticancer mechanisms in TPX2 targeting. We demonstrated that targeting TPX2 reduced cell cycle regulators and chromosome segregation genes, resulting in increased cell micronucleation. Moreover, TPX2 depletion led to prostate cancer cell growth inhibition, increased apoptosis, and reduced tumorigenesis. These results confirmed the therapeutic potential of targeting TPX2 in prostate cancer treatment. Moreover, we found that TPX2 silencing led to deregulation of CDK1, cyclin B, securin, separase, and aurora A proteins; by contrast, p21 mRNA was upregulated. We also determined the molecular mechanisms for TPX2 targeting in prostate cancer cells. In conclusion, our study illustrates the power of TPX2 as a potential novel target gene for prostate cancer treatment.
Collapse
Affiliation(s)
- Hung-Wei Pan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Applied Chemistry, National Pingtung University, Pingtung
| | - Hsing-Hao Su
- Department of Otorhinolaryngology-Head and Neck Surgery.,Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung
| | - Chao-Wen Hsu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei
| | - Guan-Jin Huang
- Department of Pathology, National Chung Kung University Hospital, Tainan
| | - Tony Tong-Lin Wu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Thangavelu PU, Lin CY, Vaidyanathan S, Nguyen THM, Dray E, Duijf PHG. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer. Oncotarget 2017; 8:62167-62182. [PMID: 28977935 PMCID: PMC5617495 DOI: 10.18632/oncotarget.19131] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 06/03/2017] [Indexed: 12/21/2022] Open
Abstract
During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1-deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.
Collapse
Affiliation(s)
- Pulari U Thangavelu
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Srividya Vaidyanathan
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Thu H M Nguyen
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Inner centromere localization of the CPC maintains centromere cohesion and allows mitotic checkpoint silencing. Nat Commun 2017; 8:15542. [PMID: 28561035 PMCID: PMC5460030 DOI: 10.1038/ncomms15542] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Faithful chromosome segregation during mitosis requires that the kinetochores of all sister chromatids become stably connected to microtubules derived from opposite spindle poles. How stable chromosome bi-orientation is accomplished and coordinated with anaphase onset remains incompletely understood. Here we show that stable chromosome bi-orientation requires inner centromere localization of the non-enzymatic subunits of the chromosomal passenger complex (CPC) to maintain centromeric cohesion. Precise inner centromere localization of the CPC appears less relevant for Aurora B-dependent resolution of erroneous kinetochore-microtubule (KT-MT) attachments and for the stabilization of bi-oriented KT-MT attachments once sister chromatid cohesion is preserved via knock-down of WAPL. However, Aurora B inner centromere localization is essential for mitotic checkpoint silencing to allow spatial separation from its kinetochore substrate KNL1. Our data infer that the CPC is localized at the inner centromere to sustain centromere cohesion on bi-oriented chromosomes and to coordinate mitotic checkpoint silencing with chromosome bi-orientation.
Collapse
|