1
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
2
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
3
|
Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst 2023; 14:447-463.e8. [PMID: 37220749 PMCID: PMC10330685 DOI: 10.1016/j.cels.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).
Collapse
Affiliation(s)
- Anton Kratz
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA; University of Texas Health Science Center San Antonio, Department of Biochemistry and Structural Biology, San Antonio, TX 78229, USA
| | - Marcus R Kelly
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Fan Zheng
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Christopher A Koczor
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Jianfeng Li
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Keiichiro Ono
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Yue Qin
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Christopher Churas
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jing Chen
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Rudolf T Pillich
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jisoo Park
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Rachel Collier
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Kate Licon
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Dexter Pratt
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Robert W Sobol
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA; Brown University, Department of Pathology and Laboratory Medicine and Legorreta Cancer Center, Providence, RI 02903, USA.
| | - Nevan J Krogan
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| | - Trey Ideker
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| |
Collapse
|
4
|
Rahman H, Liu T, Askaryar S, Grossman D. Aspirin Protects against UVB-Induced DNA Damage through Activation of AMP Kinase. J Invest Dermatol 2023; 143:154-162.e3. [PMID: 35926656 DOI: 10.1016/j.jid.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
The anti-inflammatory and chemopreventive activities of aspirin (ASA) may be mediated through its cyclooxygenase inhibitor function. We have previously shown that ASA can protect against UVR-induced skin inflammation and DNA damage; however, the role of inflammation in UV-induced DNA damage and the mechanism underlying ASA protection are poorly characterized. Using immunodeficient NOD scid gamma mice and immunocompetent C57BL/6 mice treated with immune cell‒depleting antibodies, we found that inflammation was not required for UVB-induced 8-oxoguanine and cyclobutane pyrimidine dimers in vivo. Unlike ASA, neither its immediate metabolite salicylate nor the cyclooxygenase inhibitor indomethacin reduced UVB-induced 8-oxoguanine or cyclobutane pyrimidine dimers in melanocyte Melan-a or keratinocyte HaCat cells in vitro. Moreover, addition of prostaglandin E2 did not reverse the protective effect of ASA on UVB-treated cells. Phosphorylation of the 5' AMP protein kinase, observed in ASA-treated cells, could be blocked by the 5' AMP protein kinase inhibitor compound C. Compound C or 5' AMP protein kinase knockdown partially reduced ASA-mediated protection against UVB-induced DNA damage. Finally, injection of compound C partially reversed the protective effect of ASA on UVB-treated mouse skin in vivo. These studies suggest that ASA confers protection against UVB-induced DNA damage through the activation of 5' AMP protein kinase rather than through cyclooxygenase inhibition.
Collapse
Affiliation(s)
- Hafeez Rahman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Tong Liu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sajjad Askaryar
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA; Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
5
|
Jiang Y, Cong X, Jiang S, Dong Y, Zhao L, Zang Y, Tan M, Li J. Phosphoproteomics Reveals the AMPK Substrate Network in Response to DNA Damage and Histone Acetylation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:597-613. [PMID: 33607295 PMCID: PMC9880816 DOI: 10.1016/j.gpb.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 01/31/2023]
Abstract
AMP-activated protein kinase (AMPK) is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates. Emerging studies have demonstrated the regulatory roles of AMPK in DNA repair, but the underlying mechanisms remain to be fully understood. Herein, using mass spectrometry-based proteomic technologies, we systematically investigate the regulatory network of AMPK in DNA damage response (DDR). Our system-wide phosphoproteome study uncovers a variety of newly-identified potential substrates involved in diverse biological processes, whereas our system-wide histone modification analysis reveals a link between AMPK and histone acetylation. Together with these findings, we discover that AMPK promotes apoptosis by phosphorylating apoptosis-stimulating of p53 protein 2 (ASPP2) in an irradiation (IR)-dependent manner and regulates histone acetylation by phosphorylating histone deacetylase 9 (HDAC9) in an IR-independent manner. Besides, we reveal that disrupting the histone acetylation by the bromodomain BRD4 inhibitor JQ-1 enhances the sensitivity of AMPK-deficient cells to IR. Therefore, our study has provided a resource to investigate the interplay between phosphorylation and histone acetylation underlying the regulatory network of AMPK, which could be beneficial to understand the exact role of AMPK in DDR.
Collapse
Affiliation(s)
- Yuejing Jiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoji Cong
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangwen Jiang
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Dong
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Corresponding authors.
| | - Minjia Tan
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Corresponding authors.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China,Corresponding authors.
| |
Collapse
|
6
|
Ndembe G, Intini I, Perin E, Marabese M, Caiola E, Mendogni P, Rosso L, Broggini M, Colombo M. LKB1: Can We Target an Hidden Target? Focus on NSCLC. Front Oncol 2022; 12:889826. [PMID: 35646638 PMCID: PMC9131655 DOI: 10.3389/fonc.2022.889826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
LKB1 (liver kinase B1) is a master regulator of several processes such as metabolism, proliferation, cell polarity and immunity. About one third of non-small cell lung cancers (NSCLCs) present LKB1 alterations, which almost invariably lead to protein loss, resulting in the absence of a potential druggable target. In addition, LKB1-null tumors are very aggressive and resistant to chemotherapy, targeted therapies and immune checkpoint inhibitors (ICIs). In this review, we report and comment strategies that exploit peculiar co-vulnerabilities to effectively treat this subgroup of NSCLCs. LKB1 loss leads to an enhanced metabolic avidity, and treatments inducing metabolic stress were successful in inhibiting tumor growth in several preclinical models. Biguanides, by compromising mitochondria and reducing systemic glucose availability, and the glutaminase inhibitor telaglenastat (CB-839), inhibiting glutamate production and reducing carbon intermediates essential for TCA cycle progression, have provided the most interesting results and entered different clinical trials enrolling also LKB1-null NSCLC patients. Nutrient deprivation has been investigated as an alternative therapeutic intervention, giving rise to interesting results exploitable to design specific dietetic regimens able to counteract cancer progression. Other strategies aimed at targeting LKB1-null NSCLCs exploit its pivotal role in modulating cell proliferation and cell invasion. Several inhibitors of LKB1 downstream proteins, such as mTOR, MEK, ERK and SRK/FAK, resulted specifically active on LKB1-mutated preclinical models and, being molecules already in clinical experimentation, could be soon proposed as a specific therapy for these patients. In particular, the rational use in combination of these inhibitors represents a very promising strategy to prevent the activation of collateral pathways and possibly avoid the potential emergence of resistance to these drugs. LKB1-null phenotype has been correlated to ICIs resistance but several studies have already proposed the mechanisms involved and potential interventions. Interestingly, emerging data highlighted that LKB1 alterations represent positive determinants to the new KRAS specific inhibitors response in KRAS co-mutated NSCLCs. In conclusion, the absence of the target did not block the development of treatments able to hit LKB1-mutated NSCLCs acting on several fronts. This will give patients a concrete chance to finally benefit from an effective therapy.
Collapse
Affiliation(s)
- Gloriana Ndembe
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilenia Intini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Perin
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
7
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
8
|
Jian Y, Shim WB, Ma Z. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. STRESS BIOLOGY 2021; 1:18. [PMID: 37676626 PMCID: PMC10442046 DOI: 10.1007/s44154-021-00019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Jiang Y, Dong Y, Luo Y, Jiang S, Meng FL, Tan M, Li J, Zang Y. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep 2021; 34:108713. [PMID: 33596428 DOI: 10.1016/j.celrep.2021.108713] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.
Collapse
Affiliation(s)
- Yuejing Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yifeng Luo
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shangwen Jiang
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei-Long Meng
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
10
|
The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 2020; 47:9075-9086. [PMID: 33070285 PMCID: PMC7674386 DOI: 10.1007/s11033-020-05900-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
One of the most complex health disproportions in the human body is the metabolic syndrome (MetS). It can result in serious health consequences such as type 2 diabetes mellitus, atherosclerosis or insulin resistance. The center of energy regulation in human is AMP-activated protein kinase (AMPK), which modulates cells' metabolic pathways and protects them against negative effects of metabolic stress, e.g. reactive oxygen species. Moreover, recent studies show the relationship between the AMPK activity and the regulation of DNA damage repair such as base excision repair (BER) system, which is presented in relation to the influence of MetS on human genome. Hence, AMPK is studied not only in the field of counteracting MetS but also prevention of genetic alterations and cancer development. Through understanding AMPK pathways and its role in cells with damaged DNA it might be possible to improve cell's repair processes and develop new therapies. This review presents AMPK role in eukaryotic cells and focuses on the relationship between AMPK activity and the regulation of BER system through its main component-8-oxoguanine glycosylase (OGG1).
Collapse
|
11
|
Li TT, Zhu HB. LKB1 and cancer: The dual role of metabolic regulation. Biomed Pharmacother 2020; 132:110872. [PMID: 33068936 DOI: 10.1016/j.biopha.2020.110872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is an essential serine/threonine kinase frequently associated with Peutz-Jeghers syndrome (PJS). In this review, we provide an overview of the role of LKB1 in conferring protection to cancer cells against metabolic stress and promoting cancer cell survival and invasion. This carcinogenic effect contradicts the previous conclusion that LKB1 is a tumor suppressor gene. Here we try to explain the contradictory effect of LKB1 on cancer from a metabolic perspective. Upon deletion of LKB1, cancer cells experience increased energy as well as oxidative stress, thereby causing genomic instability. Meanwhile, mutated LKB1 cooperates with other metabolic regulatory genes to promote metabolic reprogramming that subsequently facilitates adaptation to strong metabolic stress, resulting in development of a more aggressive malignant phenotype. We aim to specifically discuss the contradictory role of LKB1 in cancer by reviewing the mechanism of LKB1 with an emphasis on metabolic stress and metabolic reprogramming.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Bin Zhu
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
12
|
Harrod A, Lane KA, Downs JA. The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks. DNA Repair (Amst) 2020; 93:102919. [PMID: 33087260 DOI: 10.1016/j.dnarep.2020.102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells possess multiple closely related SWI/SNF chromatin remodelling complexes. These complexes have been implicated in the cellular response to DNA double strand breaks (DSBs). Evidence suggests that SWI/SNF complexes contribute to successful repair via both the homologous recombination and non-homologous end joining pathways. In addition, repressing transcription near DSBs is dependent on SWI/SNF activity. Understanding these roles is important because SWI/SNF complexes are frequently dysregulated in cancer, and DNA DSB repair defects have the potential to be therapeutically exploited. In this graphical review, we summarise what is known about SWI/SNF contribution to DNA DSB responses in mammalian cells and provide an overview of the SWI/SNF-encoding gene alteration spectrum in human cancers.
Collapse
Affiliation(s)
- Alison Harrod
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Karen A Lane
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
13
|
Jin LY, Zhao K, Xu LJ, Zhao RX, Werle KD, Wang Y, Liu XL, Chen Q, Wu ZJ, Zhang K, Zhao Y, Jiang GQ, Cui FM, Xu ZX. LKB1 inactivation leads to centromere defects and genome instability via p53-dependent upregulation of survivin. Aging (Albany NY) 2020; 12:14341-14354. [PMID: 32668413 PMCID: PMC7425461 DOI: 10.18632/aging.103473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 01/25/2023]
Abstract
Inactivating mutations in the liver kinase B1 (LKB1) tumor suppressor gene underlie Peutz-Jeghers syndrome (PJS) and occur frequently in various human cancers. We previously showed that LKB1 regulates centrosome duplication via PLK1. Here, we report that LKB1 further helps to maintain genomic stability through negative regulation of survivin, a member of the chromosomal passenger complex (CPC) that mediates CPC targeting to the centromere. We found that loss of LKB1 led to accumulation of misaligned and lagging chromosomes at metaphase and anaphase and increased the appearance of multi- and micro-nucleated cells. Ectopic LKB1 expression reduced these features and improved mitotic fidelity in LKB1-deficient cells. Through pharmacological and genetic manipulations, we showed that LKB1-mediated repression of survivin is independent of AMPK, but requires p53. Consistent with the key influence of LKB1 on survivin expression, immunohistochemical analysis indicated that survivin is highly expressed in intestinal polyps from a PJS patient. Lastly, we reaffirm a potential therapeutic avenue to treat LKB1-mutated tumors by demonstrating the increased sensitivity to survivin inhibitors of LKB1-deficient cells.
Collapse
Affiliation(s)
- Li-Yan Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Kui Zhao
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Long-Jiang Xu
- Department of Pathology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Rui-Xun Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaitlin D Werle
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-Long Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of Urology, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhuo-Jun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ke Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ying Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Feng-Mei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
He P, Li Z, Xu F, Ru G, Huang Y, Lin E, Peng S. AMPK Activity Contributes to G2 Arrest and DNA Damage Decrease via p53/p21 Pathways in Oxidatively Damaged Mouse Zygotes. Front Cell Dev Biol 2020; 8:539485. [PMID: 33015052 PMCID: PMC7505953 DOI: 10.3389/fcell.2020.539485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
In zygotes, the capacity of G2/M checkpoint and DNA repair mechanisms to respond to DNA damage varies depending on different external stressors. In our previous studies, we found that mild oxidative stress induced a G2/M phase delay in mouse zygotes fertilized in vitro, due to the activation of the spindle assembly checkpoint. However, it is unclear whether the G2/M phase delay involves G2 arrest, triggered by activation of the G2/M checkpoint, and whether AMPK, a highly conserved cellular energy sensor, is involved in G2 arrest and DNA damage repair in mouse zygotes. Here, we found that mouse zygotes treated with 0.03 mM H2O2 at 7 h post-insemination (G1 phase), went into G2 arrest in the first cleavage. Furthermore, phosphorylated H2AX, a specific DNA damage and repair marker, can be detected since the early S phase. We also observed that oxidative stress induced phosphorylation and activation of AMPK. Oxidative stress-activated AMPK first localized in the cytoplasm of the mouse zygotes in the late G1 phase and then translocated to the nucleus from the early S phase. Overall, most of the activated AMPK accumulated in the nuclei of mouse zygotes arrested in the G2 phase. Inhibition of AMPK activity with Compound C and SBI-0206965 abolished oxidative stress-induced G2 arrest, increased the activity of CDK1, and decreased the induction of cell cycle regulatory proteins p53 and p21. Moreover, bypassing G2 arrest after AMPK inhibition aggravated oxidative stress-induced DNA damage at M phase, increased the apoptotic rate of blastocysts, and reduced the formation rate of 4-cell embryos and blastocysts. Our results suggest the G2/M checkpoint and DNA repair mechanisms are operative in coping with mild oxidative stress-induced DNA damage. Further, AMPK activation plays a vital role in the regulation of the oxidative stress-induced G2 arrest through the inhibition of CDK1 activity via p53/p21 pathways, thereby facilitating the repair of DNA damage and the development and survival of oxidative stress-damaged embryos. Our study provides insights into the molecular mechanisms underlying oxidative-stress induced embryonic developmental arrest, which is crucial for the development of novel strategies to ensure viable embryo generation.
Collapse
Affiliation(s)
- Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Zhiling Li,
| | - Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sanfeng Peng
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst) 2019; 77:87-95. [PMID: 30897376 DOI: 10.1016/j.dnarep.2019.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
SWI/SNF complexes are among the most studied ATP-dependent chromatin remodeling complexes, mostly due to their critical role in coordinating chromatin architecture and gene expression. Mutations in genes encoding SWI/SNF subunits are frequently observed in a large variety of human cancers, suggesting that one or more of the multiple SWI/SNF functions protect against tumorigenesis. Chromatin remodeling is an integral component of the DNA damage response (DDR), which safeguards against DNA damage-induced genome instability and tumorigenesis by removing DNA damage through interconnected DNA repair and signaling pathways. SWI/SNF has been implicated in facilitating repair of double-strand breaks, by non-homologous end-joining as well as homologous recombination, and repair of helix-distorting DNA damage by nucleotide excision repair. Here, we review current knowledge on SWI/SNF activity in the DDR and discuss the potential of exploiting DDR-related vulnerabilities due to SWI/SNF dysfunction for precision cancer therapy.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Wang YS, Chen J, Cui F, Wang H, Wang S, Hang W, Zeng Q, Quan CS, Zhai YX, Wang JW, Shen XF, Jian YP, Zhao RX, Werle KD, Cui R, Liang J, Li YL, Xu ZX. LKB1 is a DNA damage response protein that regulates cellular sensitivity to PARP inhibitors. Oncotarget 2018; 7:73389-73401. [PMID: 27705915 PMCID: PMC5341986 DOI: 10.18632/oncotarget.12334] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/17/2016] [Indexed: 12/30/2022] Open
Abstract
Liver kinase B1 (LKB1) functions as a tumor suppressor encoded by STK11, a gene that mutated in Peutz-Jeghers syndrome and in sporadic cancers. Previous studies showed that LKB1 participates in IR- and ROS-induced DNA damage response (DDR). However, the impact of LKB1 mutations on targeted cancer therapy remains unknown. Herein, we demonstrated that LKB1 formed DNA damage-induced nuclear foci and co-localized with ataxia telangiectasia mutated kinase (ATM), γ-H2AX, and breast cancer susceptibility 1 (BRCA1). ATM mediated LKB1 phosphorylation at Thr 363 following the exposure of cells to ionizing radiation (IR). LKB1 interacted with BRCA1, a downstream effector in DDR that is recruited to sites of DNA damage and functions directly in homologous recombination (HR) DNA repair. LKB1 deficient cells exhibited delayed DNA repair due to insufficient HR. Notably, LKB1 deficiency sensitized cells to poly (ADP-ribose) polymerase (PARP) inhibitors. Thus, we have demonstrated a novel function of LKB1 in DNA damage response. Cancer cells lacking LKB1 are more susceptible to DNA damage-based therapy and, in particular, to drugs that further impair DNA repair, such as PARP inhibitors.
Collapse
Affiliation(s)
- Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Jianfeng Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengmei Cui
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huibo Wang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shuai Wang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Hang
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Zeng
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng-Shi Quan
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Ying-Xian Zhai
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Jian-Wei Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Xiang-Feng Shen
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Rui-Xun Zhao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaitlin D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rutao Cui
- Department of Pharmacology and Experimental Therapeutics, Boston University, School of Medicine, Boston, MA 02118, USA
| | - Jiyong Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Lin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
The mTOR-S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol 2018; 20:320-331. [PMID: 29403037 PMCID: PMC5826806 DOI: 10.1038/s41556-017-0033-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (LKB1; also known as STK11) hyperactivates mTOR complex 1 (mTORC1)-S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1-S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.
Collapse
|
18
|
Richer AL, Cala JM, O'Brien K, Carson VM, Inge LJ, Whitsett TG. WEE1 Kinase Inhibitor AZD1775 Has Preclinical Efficacy in LKB1-Deficient Non–Small Cell Lung Cancer. Cancer Res 2017; 77:4663-4672. [DOI: 10.1158/0008-5472.can-16-3565] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 06/20/2017] [Indexed: 11/16/2022]
|
19
|
Clinical Relevance of Liver Kinase B1(LKB1) Protein and Gene Expression in Breast Cancer. Sci Rep 2016; 6:21374. [PMID: 26877155 PMCID: PMC4753425 DOI: 10.1038/srep21374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Liver kinase B1 (LKB1) is a tumor suppressor, and its loss might lead to activation of the mammalian target of rapamycin (mTOR) and tumorigenesis. This study aimed to determine the clinical relevance of LKB1 gene and protein expression in breast cancer patients. LKB1 protein expression was evaluated using immunohistochemistry in tumors from early breast cancer patients in two Taiwanese medical centers. Data on LKB1 gene expression were obtained from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data set. The correlations between LKB1 expression, clinicopathologic factors, and patient outcome were analyzed. LKB1 expression was significantly associated with estrogen receptor (ER) expression in 2 of the 4 cohorts, but not with other clinicopathologic factors. LKB1 expression was not a predictor for relapse-free survival, overall survival (OS), or breast cancer-specific survival. In a subgroup analysis of the two Taiwanese cohorts, high LKB1 protein expression was predictive of high OS in human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients (P = 0.013). Our study results indicate that LKB1 expression is not prognostic in the whole population of breast cancer patients, but it is a potential predictor of OS in the subset of HER2-positive patients.
Collapse
|
20
|
Shorning BY, Clarke AR. Energy sensing and cancer: LKB1 function and lessons learnt from Peutz-Jeghers syndrome. Semin Cell Dev Biol 2016; 52:21-9. [PMID: 26877140 DOI: 10.1016/j.semcdb.2016.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
We describe in this review increasing evidence that loss of LKB1 kinase in Peutz-Jeghers syndrome (PJS) derails the existing natural balance between cell survival and tumour growth suppression. LKB1 deletion can plunge cells into an energy/oxidative stress-induced crisis which leads to the activation of alternative and often carcinogenic pathways to maintain cellular energy levels. It therefore appears that although LKB1 deficiency can suppress oncogenic transformation in the short term, it can ultimately lead to more progressed and malignant phenotypes by driving abnormal cell differentiation, genomic instability and increased tumour heterogeneity.
Collapse
Affiliation(s)
- Boris Y Shorning
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
21
|
Chang HW, Nam HY, Kim HJ, Moon SY, Kim MR, Lee M, Kim GC, Kim SW, Kim SY. Effect of β-catenin silencing in overcoming radioresistance of head and neck cancer cells by antagonizing the effects of AMPK on Ku70/Ku80. Head Neck 2015; 38 Suppl 1:E1909-17. [PMID: 26713771 DOI: 10.1002/hed.24347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/09/2015] [Accepted: 10/17/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We attempted to elucidate the mechanism of cell death after radiation by studying how β-catenin silencing controls the radiation sensitivity of radioresistant head and neck cancer cells. METHODS The most radioresistant cancer cell line (AMC-HN-9) was selected for study. Targeted silencing of β-catenin was used on siRNAs. Sensitivity to radiation was examined using clonogenic and methylthiazol tetrazolium (MTT) assays. RESULTS A combination of irradiation plus β-catenin silencing led to a significant reduction in the inherent radioresistance of AMC-HN-9 cells. Although expression of Ku70/80 was upregulated in AMC-HN-9 cells after irradiation, Ku70/80 was dramatically decreased in a combination of irradiation and β-catenin silencing. Interestingly, irradiation-induced Ku70/80 was completely prevented by β-catenin silencing-induced LKB1/AMP-activated protein kinase (LKB1/AMPK) signal. CONCLUSION The LKB1/AMPK pathway might relay the signal between the Wnt/β-catenin pathway and the Ku70/Ku80 DNA repair machinery, and play a decisive role in fine-tuning the responses of cancer cells to irradiation. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1909-E1917, 2016.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hae Yun Nam
- Departments of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So Young Moon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Myungjin Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gui Chul Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Who Kim
- Departments of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
22
|
Rhodes LV, Tate CR, Hoang VT, Burks HE, Gilliam D, Martin EC, Elliott S, Miller DB, Buechlein A, Rusch D, Tang H, Nephew KP, Burow ME, Collins-Burow BM. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1. Oncogenesis 2015; 4:e168. [PMID: 26436950 PMCID: PMC4632088 DOI: 10.1038/oncsis.2015.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/02/2014] [Indexed: 12/17/2022] Open
Abstract
Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), has been identified as a tumor suppressor in many cancers including breast. Low LKB1 expression has been associated with poor prognosis of breast cancer patients, and we report here a significant association between loss of LKB1 expression and reduced patient survival specifically in the basal subtype of breast cancer. Owing to the aggressive nature of the basal subtype as evidenced by high incidences of metastasis, the purpose of this study was to determine if LKB1 expression could regulate the invasive and metastatic properties of this specific breast cancer subtype. Induction of LKB1 expression in basal-like breast cancer (BLBC)/triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, inhibited invasiveness in vitro and lung metastatic burden in an orthotopic xenograft model. Further analysis of BLBC cells overexpressing LKB1 by unbiased whole transcriptomics (RNA-sequencing) revealed striking regulation of metastasis-associated pathways, including cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT). In addition, LKB1 overexpression inhibited EMT-associated genes (CDH2, Vimentin, Twist) and induced the epithelial cell marker CDH1, indicating reversal of the EMT phenotype in the MDA-MB-231 cells. We further demonstrated marked inhibition of matrix metalloproteinase 1 expression and activity via regulation of c-Jun through inhibition of p38 signaling in LKB1-expressing cells. Taken together, these data support future development of LKB1 inducing therapeutics for the suppression of invasion and metastasis of BLBC.
Collapse
Affiliation(s)
- L V Rhodes
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - C R Tate
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - V T Hoang
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - H E Burks
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - D Gilliam
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - E C Martin
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - S Elliott
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - D B Miller
- Department of Cellular and Integrative Physiology, Bloomington, IN, USA
| | - A Buechlein
- Center for Genomics and Bioinformatics, College of Arts and Sciences, Indiana University School of Medicine and Simon Cancer Center, Bloomington, IN, USA
| | - D Rusch
- Center for Genomics and Bioinformatics, College of Arts and Sciences, Indiana University School of Medicine and Simon Cancer Center, Bloomington, IN, USA
| | - H Tang
- Center for Genomics and Bioinformatics, College of Arts and Sciences, Indiana University School of Medicine and Simon Cancer Center, Bloomington, IN, USA
| | - K P Nephew
- Department of Cellular and Integrative Physiology, Bloomington, IN, USA
| | - M E Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - B M Collins-Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
23
|
Brownlee PM, Meisenberg C, Downs JA. The SWI/SNF chromatin remodelling complex: Its role in maintaining genome stability and preventing tumourigenesis. DNA Repair (Amst) 2015; 32:127-133. [PMID: 25981841 DOI: 10.1016/j.dnarep.2015.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genes encoding subunits of the two SWI/SNF chromatin remodelling complexes (BAF and PBAF) are mutated in almost 20% of all human cancers. In addition to a role in regulating transcription, recent work from our laboratory and others identified roles for both complexes in DNA damage responses and the maintenance of sister chromatid cohesion, which may have profound impacts on genome stability and contribute to its role as a tumour suppressor. Here, we review some of the transcription-independent functions of the SWI/SNF chromatin remodelling complex and discuss these in light of their potential relevance to tumourigenesis.
Collapse
Affiliation(s)
- Peter M Brownlee
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Cornelia Meisenberg
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
24
|
Swisa A, Granot Z, Tamarina N, Sayers S, Bardeesy N, Philipson L, Hodson DJ, Wikstrom JD, Rutter GA, Leibowitz G, Glaser B, Dor Y. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. J Biol Chem 2015; 290:20934-20946. [PMID: 26139601 PMCID: PMC4543653 DOI: 10.1074/jbc.m115.639237] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.
Collapse
Affiliation(s)
- Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Natalia Tamarina
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sophie Sayers
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114
| | - Louis Philipson
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Jakob D Wikstrom
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
25
|
Gerhold CB, Hauer MH, Gasser SM. INO80-C and SWR-C: Guardians of the Genome. J Mol Biol 2015; 427:637-51. [DOI: 10.1016/j.jmb.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
|
26
|
Gupta R, Liu AY, Glazer PM, Wajapeyee N. LKB1 preserves genome integrity by stimulating BRCA1 expression. Nucleic Acids Res 2014; 43:259-71. [PMID: 25488815 PMCID: PMC4288185 DOI: 10.1093/nar/gku1294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Serine/threonine kinase 11 (STK11, also known as LKB1) functions as a tumor suppressor in many human cancers. However, paradoxically loss of LKB1 in mouse embryonic fibroblast results in resistance to oncogene-induced transformation. Therefore, it is unclear why loss of LKB1 leads to increased predisposition to develop a wide variety of cancers. Here, we show that LKB1 protects cells from genotoxic stress. Cells lacking LKB1 display increased sensitivity to irradiation, accumulates more DNA double-strand breaks, display defective homology-directed DNA repair (HDR) and exhibit increased mutation rate, compared with that of LKB1-expressing cells. Conversely, the ectopic expression of LKB1 in cells lacking LKB1 protects them against genotoxic stress-induced DNA damage and prevents the accumulation of mutations. We find that LKB1 post-transcriptionally stimulates HDR gene BRCA1 expression by inhibiting the cytoplasmic localization of the RNA-binding protein, HU antigen R, in an AMP kinase-dependent manner and stabilizes BRCA1 mRNA. Cells lacking BRCA1 similar to the cell lacking LKB1 display increased genomic instability and ectopic expression of BRCA1 rescues LKB1 loss-induced sensitivity to genotoxic stress. Collectively, our results demonstrate that LKB1 is a crucial regulator of genome integrity and reveal a novel mechanism for LKB1-mediated tumor suppression with direct therapeutic implications for cancer prevention.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alex Y Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
27
|
Esteve-Puig R, Gil R, González-Sánchez E, Bech-Serra JJ, Grueso J, Hernández-Losa J, Moliné T, Canals F, Ferrer B, Cortés J, Bastian B, Ramón y Cajal S, Martín-Caballero J, Flores JM, Vivancos A, García-Patos V, Recio JÁ. A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation. PLoS Genet 2014; 10:e1004721. [PMID: 25329316 PMCID: PMC4199501 DOI: 10.1371/journal.pgen.1004721] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/30/2014] [Indexed: 11/29/2022] Open
Abstract
Exposure to ultraviolet (UV) radiation from sunlight accounts for 90% of the symptoms of premature skin aging and skin cancer. The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome and in a spectrum of epithelial cancers whose etiology suggests a cooperation with environmental insults. Here we analyzed the role of LKB1 in a UV-dependent mouse skin cancer model and show that LKB1 haploinsufficiency is enough to impede UVB-induced DNA damage repair, contributing to tumor development driven by aberrant growth factor signaling. We demonstrate that LKB1 and its downstream kinase NUAK1 bind to CDKN1A. In response to UVB irradiation, LKB1 together with NUAK1 phosphorylates CDKN1A regulating the DNA damage response. Upon UVB treatment, LKB1 or NUAK1 deficiency results in CDKN1A accumulation, impaired DNA repair and resistance to apoptosis. Importantly, analysis of human tumor samples suggests that LKB1 mutational status could be a prognostic risk factor for UV-induced skin cancer. Altogether, our results identify LKB1 as a DNA damage sensor protein regulating skin UV-induced DNA damage response. Environmental insults are directly involved in cancer development. In particular, Ultraviolet (UV) radiation has been associated to the acquisition of different types skin cancer and premature skin aging. UV radiation causes modifications in the genetic material of cells (DNA) that if not repaired properly will lead to a mutated DNA (mutated genes) which might trigger the development of cancer. Understanding the molecular basis of the UV-induced DNA damage response is important to elucidate the mechanisms of skin homeostasis and tumorigenesis. Here we provide a UVB-induced skin cancer animal model showing that LKB1 tumor suppressor is also a DNA damage sensor. Importantly, the data suggest that reduced amounts of LKB1 protein in skin could be a risk factor for UV-induced skin carcinogenesis in humans.
Collapse
Affiliation(s)
- Rosaura Esteve-Puig
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Gil
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena González-Sánchez
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Josep Bech-Serra
- Proteomic Laboratory Medical Oncology Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Judit Grueso
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Teresa Moliné
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Canals
- Proteomic Laboratory Medical Oncology Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Berta Ferrer
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Javier Cortés
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology - VHIO, Barcelona, Spain
| | - Boris Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Juana Maria Flores
- Surgery and Medicine Department, Veterinary School, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Vivancos
- Cancer Genomics Group Translational Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vicenç García-Patos
- Dermatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Juan Ángel Recio
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- * E-mail:
| |
Collapse
|
28
|
Xu H, Zhou Y, Coughlan KA, Ding Y, Wang S, Wu Y, Song P, Zou MH. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:65-73. [PMID: 25307521 DOI: 10.1016/j.bbamcr.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21(WAF1/Cip1) (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein 1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis.
Collapse
Affiliation(s)
- Hairong Xu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanhong Zhou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Kathleen A Coughlan
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ye Ding
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaobin Wang
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yue Wu
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ming-Hui Zou
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Xu HG, Zhai YX, Chen J, Lu Y, Wang JW, Quan CS, Zhao RX, Xiao X, He Q, Werle KD, Kim HG, Lopez R, Cui R, Liang J, Li YL, Xu ZX. LKB1 reduces ROS-mediated cell damage via activation of p38. Oncogene 2014; 34:3848-59. [PMID: 25263448 PMCID: PMC4377312 DOI: 10.1038/onc.2014.315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/27/2022]
Abstract
Liver kinase B1 (LKB1, also known as serine/threonine kinase 11, STK11) is a tumor suppressor mutated in Peutz-Jeghers syndrome and in a variety of sporadic cancers. Herein, we demonstrate that LKB1 controls the levels of intracellular reactive oxygen species (ROS) and protects the genome from oxidative damage. Cells lacking LKB1 exhibit markedly increased intracellular ROS levels, excessive oxidation of DNA, increased mutation rates, and accumulation of DNA damage, which are effectively prevented by ectopic expression of LKB1 and by incubation with antioxidant N-acetylcysteine (NAC). The role of LKB1 in suppressing ROS is independent of AMPK, a canonical substrate of LKB1. Instead, under the elevated ROS, LKB1 binds to and maintains the activity of cdc42-PAK1 (p21 activated kinase 1) complex, which triggers the activation of p38 and its downstream signaling targets, such as ATF-2, thereby enhancing the activity of SOD-2 and catalase, two antioxidant enzymes that protect the cells from ROS accumulation, DNA damage, and loss of viability. Our results provide a new paradigm for a non-canonical tumor suppressor function of LKB1 and highlight the importance of targeting ROS signaling as a potential therapeutic strategy for cancer cells lacking LKB1.
Collapse
Affiliation(s)
- H-G Xu
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y-X Zhai
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - J Chen
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y Lu
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - J-W Wang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - C-S Quan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - R-X Zhao
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - X Xiao
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Q He
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K D Werle
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H-G Kim
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Lopez
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Cui
- Department of Dermatology, Boston University, School of Medicine, Boston, MA, USA
| | - J Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Y-L Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Z-X Xu
- 1] Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA [2] Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research; Basel, Switzerland; University of Basel; Faculty of Natural Sciences; Basel, Switzerland
| | - Vincent Dion
- University of Lausanne; Center for Integrative Genomics; Lausanne, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research; Basel, Switzerland; University of Basel; Faculty of Natural Sciences; Basel, Switzerland
| |
Collapse
|