1
|
Skingen VE, Salberg UB, Hompland T, Fjeldbo CS, Helgeland H, Frikstad KAM, Ragnum HB, Vlatkovic L, Hole KH, Seierstad T, Lyng H. Spatial analysis of microRNA regulation at defined tumor hypoxia levels reveals biological traits of aggressive prostate cancer. J Pathol 2024; 264:270-283. [PMID: 39329425 DOI: 10.1002/path.6344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024]
Abstract
Mechanisms regulating the gene expression program at different hypoxia severity levels in patient tumors are not understood. We aimed to determine microRNA (miRNA) regulation of this program at defined hypoxia levels from moderate to severe in prostate cancer. Biopsies from 95 patients were used, where 83 patients received the hypoxia marker pimonidazole before prostatectomy. Forty hypoxia levels were extracted from pimonidazole-stained histological sections and correlated with miRNA and gene expression profiles determined by RNA sequencing and Illumina bead arrays. This identified miRNAs associated with moderate (n = 7) and severe (n = 28) hypoxia and predicted their target genes. The scores of miRNAs or target genes showed prognostic significance, as validated in an external cohort of 417 patients. The target genes showed enrichment of gene sets for cell proliferation and MYC activation at all hypoxia levels and PTEN inactivation at severe hypoxia. This was confirmed by RT-qPCR for MYC and PTEN, by Ki67 immunohistochemistry, and by gene set analysis in an external cohort. To assess whether miRNA regulation occurred within the predicted hypoxic regions, a method to quantify co-localization of multiple histopathology parameters at defined hypoxia levels was applied. A high Ki67 proliferation index co-localized significantly with hypoxia at all levels. The co-localization index was strongly associated with poor prognosis. Absence of PTEN staining co-localized significantly with severe hypoxia. The scores for miRNAs correlated with the co-localization index for Ki67 staining and hypoxia, consistent with miRNA regulation within the overlapping regions. This was confirmed by showing miR-210-3p expression within severe hypoxia by in situ hybridization. Cell line experiments (22Rv1, PC3) were conducted to determine whether miRNAs and target genes were regulated directly by hypoxia. Most of them were hypoxia-unresponsive, and probably regulated by other mechanisms such as MYC activation. In conclusion, in aggressive, hypoxic prostate tumors, cancer cells exhibit different proliferative gene expression programs that is regulated by miRNAs and depend on whether the cells reside in moderate or severe hypoxic regions. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vilde E Skingen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Unn Beate Salberg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tord Hompland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christina S Fjeldbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hanna Helgeland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald B Ragnum
- Department of Hematology and Oncology, Telemark Hospital Trust, Skien, Norway
| | | | - Knut Håkon Hole
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Goncharov AP, Vashakidze N, Kharaishvili G. Epithelial-Mesenchymal Transition: A Fundamental Cellular and Microenvironmental Process in Benign and Malignant Prostate Pathologies. Biomedicines 2024; 12:418. [PMID: 38398019 PMCID: PMC10886988 DOI: 10.3390/biomedicines12020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial and fundamental mechanism in many cellular processes, beginning with embryogenesis via tissue remodulation and wound healing, and plays a vital role in tumorigenesis and metastasis formation. EMT is a complex process that involves many transcription factors and genes that enable the tumor cell to leave the primary location, invade the basement membrane, and send metastasis to other tissues. Moreover, it may help the tumor avoid the immune system and establish radioresistance and chemoresistance. It may also change the normal microenvironment, thus promoting other key factors for tumor survival, such as hypoxia-induced factor-1 (HIF-1) and promoting neoangiogenesis. In this review, we will focus mainly on the role of EMT in benign prostate disease and especially in the process of establishment of malignant prostate tumors, their invasiveness, and aggressive behavior. We will discuss relevant study methods for EMT evaluation and possible clinical implications. We will also introduce clinical trials conducted according to CONSORT 2010 that try to harness EMT properties in the form of circulating tumor cells to predict aggressive patterns of prostate cancer. This review will provide the most up-to-date information to establish a keen understanding of the cellular and microenvironmental processes for developing novel treatment lines by modifying or blocking the pathways.
Collapse
Affiliation(s)
- Aviv Philip Goncharov
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Nino Vashakidze
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
- Department of Human Morphology and Pathology, Medical Faculty, David Tvildiani Medical University, Tbilisi 0159, Georgia
| |
Collapse
|
4
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
5
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
6
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
7
|
|
8
|
Barbier RH, McCrea EM, Lee KY, Strope JD, Risdon EN, Price DK, Chau CH, Figg WD. Abiraterone induces SLCO1B3 expression in prostate cancer via microRNA-579-3p. Sci Rep 2021; 11:10765. [PMID: 34031488 PMCID: PMC8144422 DOI: 10.1038/s41598-021-90143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding mechanisms of resistance to abiraterone, one of the primary drugs approved for the treatment of castration resistant prostate cancer, remains a priority. The organic anion polypeptide 1B3 (OATP1B3, encoded by SLCO1B3) transporter has been shown to transport androgens into prostate cancer cells. In this study we observed and investigated the mechanism of induction of SLCO1B3 by abiraterone. Prostate cancer cells (22Rv1, LNCaP, and VCAP) were treated with anti-androgens and assessed for SLCO1B3 expression by qPCR analysis. Abiraterone treatment increased SLCO1B3 expression in 22Rv1 cells in vitro and in the 22Rv1 xenograft model in vivo. MicroRNA profiling of abiraterone-treated 22Rv1 cells was performed using a NanoString nCounter miRNA panel followed by miRNA target prediction. TargetScan and miRanda prediction tools identified hsa-miR-579-3p as binding to the 3'-untranslated region (3'UTR) of the SLCO1B3. Using dual luciferase reporter assays, we verified that hsa-miR-579-3p indeed binds to the SLCO1B3 3'UTR and significantly inhibited SLCO1B3 reporter activity. Treatment with abiraterone significantly downregulated hsa-miR-579-3p, indicating its potential role in upregulating SLCO1B3 expression. In this study, we demonstrated a novel miRNA-mediated mechanism of abiraterone-induced SLCO1B3 expression, a transporter that is also responsible for driving androgen deprivation therapy resistance. Understanding mechanisms of abiraterone resistance mediated via differential miRNA expression will assist in the identification of potential miRNA biomarkers of treatment resistance and the development of future therapeutics.
Collapse
Affiliation(s)
- Roberto H Barbier
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Emily N Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA.
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Scaravilli M, Koivukoski S, Latonen L. Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer. Front Cell Dev Biol 2021; 9:623809. [PMID: 33634124 PMCID: PMC7900491 DOI: 10.3389/fcell.2021.623809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.
Collapse
Affiliation(s)
- Mauro Scaravilli
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
11
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
12
|
Danarto R, Astuti I, Umbas R, Haryana SM. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turk J Urol 2019; 46:26-30. [PMID: 31905122 DOI: 10.5152/tud.2019.19163] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/10/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate the miR-21-5p and miR-200c-3p expressions in the urine of patients with prostate cancer (PCa) and to investigate their potential as biomarkers. MATERIAL AND METHODS The urine samples collected from 80 patients, including 20 patients diagnosed with benign prostate hyperplasia (BPH) and 60 patients diagnosed with PCa, were examined. The exosome isolation was performed using the miRCURY exosome isolation kit (Exiqon, Denmark), total RNA was extracted using the miRCURY RNA Isolation Kit-Biofluid kit (Exiqon, Denmark), and complementary DNA (cDNA) was synthesized using the Universal cDNA Synthesis kit (Exiqon, Denmark). A quantitative polymerase chain reaction (qPCR) analysis of gene expression was performed using the qPCR CFX 96 Thermocycler (Bio-Rad). All the procedures followed the manufacturer's recommendations. RESULTS The overexpressions of miR-21 in the non-metastatic PCa and metastatic PCa group compared to the BPH group were statistically significant with a p-value of 0.001 and 0.018, respectively. The non-metastatic PCa compared to the metastatic PCa group was also statistically significant with a p-value of 0.037. The under expressions of miR-200c in the non-metastatic PCa and metastatic PCa group compared to the BPH group are statistically significant with a p-value of 0.001 and 0.001, respectively. CONCLUSION The overexpressions of miR-21 found in this study could be a potential non-invasive diagnostic tool for patients with PCa. Despite the significant results in our study, the use of micro-RNA in urine samples may vary due to epigenetic variation. Further studies with larger populations are required to investigate the role of miR-21 and miR-200c as biomarkers in PCa.
Collapse
Affiliation(s)
- Raden Danarto
- Department of Surgery, Universitas Gadjah Mada School of Medicine, Yogyakarta, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology, Universitas Gadjah Mada School of Medicine, Yogyakarta, Indonesia
| | - Rainy Umbas
- Department of Urology, Universitas Indonesia School of Medicine, Jakarta, Indonesia
| | - Sofia Mubarika Haryana
- Postgraduate Doctoral Program, Universitas Gadjah Mada School of Medicine, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Culig Z. Epithelial mesenchymal transition and resistance in endocrine-related cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1368-1375. [PMID: 31108117 DOI: 10.1016/j.bbamcr.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Epithelial to mesencyhmal transition (EMT) has a central role in tumor metastasis and progression. EMT is regulated by several growth factors and pro-inflammatory cytokines. The most important role in this regulation could be attributed to transforming growth factor-β (TGF-β). In breast cancer, TGF-β effect on EMT could be potentiated by Fos-related antigen, oncogene HER2, epidermal growth factor, or mitogen-activated protein kinase kinase 5 - extracellular-regulated kinase signaling. Several microRNAs in breast cancer have a considerable role either in potentiation or in suppression of EMT thus acting as oncogenic or tumor suppressive modulators. At present, possibilities to target EMT are discussed but the results of clinical translation are still limited. In prostate cancer, many cellular events are regulated by androgenic hormones. Different experimental results on androgenic stimulation or inhibition of EMT have been reported in the literature. Thus, a possibility that androgen ablation therapy leads to EMT thus facilitating tumor progression has to be discussed. Novel therapy agents, such as the anti-diabetic drug metformin or selective estrogen receptor modulator ormeloxifene were used in pre-clinical studies to inhibit EMT in prostate cancer. Taken together, the results of pre-clinical and clinical studies in breast cancer may be helpful in the process of drug development and identify potential risk during the early stage of that process.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Maloney N, Bridge JA, de Abreu F, Korkolopoulou P, Sakellariou S, Linos K. A novel MAP3K7CL-ERG fusion in a molecularly confirmed case of dermatofibrosarcoma protuberans with fibrosarcomatous transformation. J Cutan Pathol 2019; 46:532-537. [PMID: 30950098 DOI: 10.1111/cup.13469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a translocation-associated, low-grade sarcoma with fibroblastic differentiation. It is the most common superficial sarcoma, almost exclusively arising within the dermis. In a minority of cases, there is a transition from the conventional morphology to a fibrosarcomatous pattern, known as a fibrosarcomatous DFSP (FS-DFSP). Although a number of different molecular alterations have been described to account for this transformation, it remains poorly understood. Herein we report the first case of a FS-DFSP with a fusion between ERG, an ETS family transcription factor, and MAP3K7CL, a kinase gene rarely observed in fusion gene events.
Collapse
Affiliation(s)
- Nolan Maloney
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, Nebraska 68198-3135, The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Francine de Abreu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| | | | | | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, One Medical Center Drive, New Hampshire, Lebanon
| |
Collapse
|
15
|
Chen J, Xu J, Li Y, Zhang J, Chen H, Lu J, Wang Z, Zhao X, Xu K, Li Y, Li X, Zhang Y. Competing endogenous RNA network analysis identifies critical genes among the different breast cancer subtypes. Oncotarget 2018; 8:10171-10184. [PMID: 28052038 PMCID: PMC5354650 DOI: 10.18632/oncotarget.14361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Although competing endogenous RNAs (ceRNAs) have been implicated in many solid tumors, their roles in breast cancer subtypes are not well understood. We therefore generated a ceRNA network for each subtype based on the significance of both, positive co-expression and the shared miRNAs, in the corresponding subtype miRNA dys-regulatory network, which was constructed based on negative regulations between differentially expressed miRNAs and targets. All four subtype ceRNA networks exhibited scale-free architecture and showed that the common ceRNAs were at the core of the networks. Furthermore, the common ceRNA hubs had greater connectivity than the subtype-specific hubs. Functional analysis of the common subtype ceRNA hubs highlighted factors involved in proliferation, MAPK signaling pathways and tube morphogenesis. Subtype-specific ceRNA hubs highlighted unique subtype-specific pathways, like the estrogen response and inflammatory pathways in the luminal subtypes or the factors involved in the coagulation process that participates in the basal-like subtype. Ultimately, we identified 29 critical subtype-specific ceRNA hubs that characterized the different breast cancer subtypes. Our study thus provides new insight into the common and specific subtype ceRNA interactions that define the different categories of breast cancer and enhances our understanding of the pathology underlying the different breast cancer subtypes, which can have prognostic and therapeutic implications in the future.
Collapse
Affiliation(s)
- Juan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xueying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yixue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Zoni E, Karkampouna S, Thalmann GN, Kruithof-de Julio M, Spahn M. Emerging aspects of microRNA interaction with TMPRSS2-ERG and endocrine therapy. Mol Cell Endocrinol 2018; 462:9-16. [PMID: 28189568 DOI: 10.1016/j.mce.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy detected in males and the second most common cause of cancer death in western countries. The development of the prostate gland, is finely regulated by androgens which modulate also its growth and function. Importantly, androgens exert a major role in PCa formation and progression and one of the hypothesized mechanism proposed has been linked to the chromosomal rearrangement of the androgen regulated gene TMPRSS2 with ERG. Androgens have been therefore used as main target for therapies in the past. However, despite the development of endocrine therapies (e.g. androgen ablation), when PCa progress, tumors become resistant to this therapeutic castration and patients develop incurable metastases. A strategy to better understand how patients respond to therapy, in order to achieve a better patient stratification, consists in monitoring the levels of small noncoding RNAs (microRNAs). microRNAs are a class of small molecules that regulate protein abundance and their application as biomarkers to monitor disease progression has been intensely studied in the last years. In this review, we highlight the interactions between microRNAs and endocrine-related aspects of PCa in tissues. We focus on the modulation of TMPRSS2-ERG and Glucocorticoid Receptor (GR) by microRNAs and detail the influence of steroidal hormonal therapies on microRNAs expression.
Collapse
Affiliation(s)
- Eugenio Zoni
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Urology Research Laboratory, Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Spahn
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
17
|
The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget 2018; 7:37993-38003. [PMID: 27191272 PMCID: PMC5122366 DOI: 10.18632/oncotarget.9366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
The TMPRSS2-ERG fusion occurs in approximately 50% of prostate cancer (PCa), resulting in expression of the oncogenic ERG in the prostate. Because ERG is a transcriptional activator, we hypothesized that ERG-regulated genes contribute to PCa development. Since microRNA (miRNA) has crucial functions in cancer, we searched for miRNAs regulated by ERG in PCas. We mined published datasets based on the MSKCC Prostate Oncogene Project, in which a comprehensive analysis defined the miRNA transcriptomes in 113 PCas. We retrieved the miRNA expression datasets, and identified miRNAs differentially expressed between ERG-positive and ERG-negative samples. Out of 369 miRNAs, miR-200a, −200b, −429 and −205 are the only miRNAs significantly increased in ERG-positive tumors. Strikingly, miR-200a, −200b and −429 are transcribed as a single polycistronic transcript, suggesting they are regulated at the transcriptional level. With ChIP-qPCR and in vitro binding assay, we identified two functional ETS motifs in the miR-200b/a/429 gene promoter. Knockdown of ERG in PCa cells reduced expression of these three miRNAs. In agreement with the well-established tumor suppressor function, overexpression of the miR-200b/a/429 gene inhibited PCa cell growth and invasion. In summary, our study reveals that miR-200b/a/429 is an ERG target gene, which implicates an important role in TMPRSS2/ERG-dependent PCa development. Although induction of the tumor suppressive miR-200b subfamily by oncogenic ERG appears to be counterintuitive, it is consistent with the observation that the vast majority of primary prostate cancers are slow-growing and indolent.
Collapse
|
18
|
Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget 2017; 7:22791-806. [PMID: 26988912 PMCID: PMC5008401 DOI: 10.18632/oncotarget.8061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Epigenetic regulation by SIRT1, a multifaceted NAD+-dependent protein deacetylase, is one of the most common factors modulating cellular processes in a broad range of diseases, including prostate cancer (CaP). SIRT1 is over-expressed in CaP cells, however the associated mechanism is not well understood. To identify whether specific microRNAs might mediate this linkage, we have screened a miRNA library for differential expression in ERG-associated CaP tissues. Of 20 differentially and significantly expressed miRNAs that distinguish ERG-positive tumors from ERG-negative tumors, we find miR-449a is highly suppressed in ERG-positive tumors. We establish that SIRT1 is a direct target of miR-449a and is also induced by ERG in ERG-associated CaP. Our data suggest that attenuation of miR-449a promotes the invasive phenotype of the ERG-positive CaP in part by inducing the expression of SIRT1 in prostate cancer cells. Furthermore, we also find that suppression of SIRT1 results in a significant reduction in ERG expression in ERG-positive CaP cells, indicating a feed-back regulatory loop associated with ERG, miR-449a and SIRT1. We also report that ERG suppresses p53 acetylation perhaps through miR-449a-SIRT1 axis in CaP cells. Our findings provide new insight into the function of miRNAs in regulating ERG-associated CaP. Thus, miR-449a activation or SIRT1 suppression may represent new therapeutic opportunity for ERG-associated CaP.
Collapse
|
19
|
Deplus R, Delliaux C, Marchand N, Flourens A, Vanpouille N, Leroy X, de Launoit Y, Duterque-Coquillaud M. TMPRSS2-ERG fusion promotes prostate cancer metastases in bone. Oncotarget 2017; 8:11827-11840. [PMID: 28055969 PMCID: PMC5355307 DOI: 10.18632/oncotarget.14399] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear. Since bone metastasis starts with the tropism of cancer cells to bone through specific migratory and invasive processes involving osteomimetic capabilities, it is crucial to better our understanding of the influence of TMPRSS2-ERG expression in the mechanisms underlying the bone tropism properties of PCa cells. We developed bioluminescent cell lines expressing the TMPRSS2-ERG fusion in order to assess its role in tumor growth and bone metastasis appearance in a mouse model. First, we showed that the TMPRSS2-ERG fusion increases cell migration and subcutaneous tumor size. Second, using intracardiac injection experiments in mice, we showed that the expression of TMPRSS2-ERG fusion increases the number of metastases in bone. Moreover, TMPRSS2-ERG affects the pattern of metastatic spread by increasing the incidence of tumors in hind limbs and spine, which are two of the most frequent sites of human PCa metastases. Finally, transcriptome analysis highlighted a series of genes regulated by the fusion and involved in the metastatic process. Altogether, our work indicates that TMPRSS2-ERG increases bone tropism of PCa cells and metastasis development.
Collapse
Affiliation(s)
- Rachel Deplus
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Carine Delliaux
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Nathalie Marchand
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Anne Flourens
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Nathalie Vanpouille
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Xavier Leroy
- Institut de Pathologie Centre de Biologie Pathologie Centre Hospitalier Régional et Universitaire, F-59037 Lille, France
| | - Yvan de Launoit
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Martine Duterque-Coquillaud
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| |
Collapse
|
20
|
Significance of microRNAs in Androgen Signaling and Prostate Cancer Progression. Cancers (Basel) 2017; 9:cancers9080102. [PMID: 28783103 PMCID: PMC5575605 DOI: 10.3390/cancers9080102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) plays important roles in prostate cancer development and prostate tumor growth. After binding to androgens, AR functions as a nuclear receptor and translocates to the nucleus to bind to specific AR-binding sites (ARBSs). AR regulates epigenetic factor recruitments to activate its downstream signaling. Although androgen deprivation therapy (ADT) is initially useful for prostate cancer patients, most patients eventually show resistance with hormone-refractory prostate cancers (HRPCs) or castration-resistant prostate cancers (CRPCs). Thus, new therapeutic strategies targeting HRPCs/CRPCs should be very important for clinical medicine as well as prostate cancer biology. Past studies have shown that mechanisms such as AR overexpression, hypersensitivity, variants and reprograming are responsible for developing HRPCs/CRPCs. These findings suggest that AR target genes will be major key factors. In this review article, we focus mainly on the androgen-regulated microRNAs (miRNAs) to summarize the contribution of miRNA-mediated pathways for prostate cancer progression.
Collapse
|
21
|
Kim JY, Yu J, Abdulkadir SA, Chakravarti D. KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Mol Endocrinol 2016; 30:925-36. [PMID: 27268279 DOI: 10.1210/me.2016-1024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Androgen receptor (AR) plays pivotal roles in prostate cancer. Upon androgen stimulation, AR recruits the Protein kinase N1 (PKN1), which phosphorylates histone H3 at threonine 11, with subsequent recruitment of tryptophan, aspartic acid (WD) repeat-containing protein 5 (WDR5) and the su(var)3-9, enhancer of zeste, trithorax/mixed-lineage leukemia (SET1/MLL) histone methyltransferase complex to promote AR target gene activation and prostate cancer cell growth. However, the underlying mechanisms of target gene activation and cell growth subsequent to WDR5 recruitment are not well understood. Here, we demonstrate an epigenetic cross talk between histone modifications and AR target gene regulation. We discovered that K(lysine) acetyltransferase 8 (KAT8), a member of the MOZ, YBF2/SAS2, and TIP 60 protein 1 (MYST) family of histone acetyltransferases that catalyzes histone H4 lysine 16 acetylation, colocalized with WDR5 at AR target genes, resulting in hormone-dependent gene activation in prostate cancer cells. PKN1 or WDR5 knockdown severely inhibited KAT8 association with AR target genes and histone H4 lysine 16 acetylation upon androgen treatment. Knockdown of KAT8 significantly decreased AR target gene expression and prostate cancer cell proliferation. Collectively, these data describe a trans-histone modification pathway involving PKN1/histone H3 threonine 11 phosphorylation followed by WDR5/MLL histone methyltransferase and KAT8/histone acetyltransferase recruitment to effect androgen-dependent gene activation and prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Ji-Young Kim
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jindan Yu
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sarki A Abdulkadir
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine (J.-Y.K., D.C.), Department of Obstetrics and Gynecology; Division of Hematology/Oncology (J.Y.), Department of Medicine; Departments of Urology (S.A.A.), Pathology (S.A.A.), and Pharmacology (D.C.); and Robert H. Lurie Comprehensive Cancer Center (J.Y., S.A.A., D.C.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
22
|
Shah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol 2016; 86:3-13. [PMID: 27208692 PMCID: PMC5404112 DOI: 10.1016/j.vph.2016.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023]
Abstract
Over the last few years, the ETS transcription factor ERG has emerged as a major regulator of endothelial function. Multiple studies have shown that ERG plays a crucial role in promoting angiogenesis and vascular stability during development and after birth. In the mature vasculature ERG also functions to maintain endothelial homeostasis, by transactivating genes involved in key endothelial functions, while repressing expression of pro-inflammatory genes. Its homeostatic role is lineage-specific, since ectopic expression of ERG in non-endothelial tissues such as prostate is detrimental and contributes to oncogenesis. This review summarises the main roles and pathways controlled by ERG in the vascular endothelium, its transcriptional targets and its functional partners and the emerging evidence on the pathways regulating ERG's activity and expression.
Collapse
Affiliation(s)
- Aarti V Shah
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graeme M Birdsey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Zhou J, Li W, Guo J, Li G, Chen F, Zhou J. Downregulation of miR-329 promotes cell invasion by regulating BRD4 and predicts poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37:3561-9. [PMID: 26456956 DOI: 10.1007/s13277-015-4109-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that abnormal microRNA (miRNA) expression is related to hepatocellular carcinoma (HCC) development. Our study aimed to elucidate the essential role of miR-329 in HCC progression. Real-time PCR was used to analyze miR-329 and bromodomain containing 4 (BRD4) expression in HCC samples (n = 135). Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to investigate cell proliferation and apoptosis. The transwell assay was used to examine the cell invasive ability. The regulation mechanism was confirmed by luciferase reporter and western blot assays. Kaplan-Meier analysis was used to detect the function of miR-329 on the prognosis of HCC patients. miR-329 was decreased in HCC samples and was related to tumor development. Furthermore, miR-329 significantly regulated cell invasion by targeting BRD4 but had no effect on cell proliferation and apoptosis. Moreover, downregulation of miR-329 predicted poor prognosis of HCC patients. miR-329 could control cell invasion via regulating BRD4 expression and may be a prognostic marker in HCC.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Gastrointestinal Surgery, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China
| | - Weiling Li
- Department of Obstetrics and Gynecology, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China
| | - Jianfeng Guo
- Department of B-Ultrasound Room, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China
| | - Gang Li
- Department of B-Ultrasound Room, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China
| | - Fang Chen
- Department of Operating Theater, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China
| | - Jiangang Zhou
- Department of Orthopedic, Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, People's Republic of China.
| |
Collapse
|
24
|
Bishop JL, Davies A, Ketola K, Zoubeidi A. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocr Relat Cancer 2015; 22:R165-82. [PMID: 25934687 DOI: 10.1530/erc-15-0137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) has become the most common form of cancer in men in the developed world, and it ranks second in cancer-related deaths. Men that succumb to PCa have a disease that is resistant to hormonal therapies that suppress androgen receptor (AR) signaling, which plays a central role in tumor development and progression. Although AR continues to be a clinically relevant therapeutic target in PCa, selection pressures imposed by androgen-deprivation therapies promote the emergence of heterogeneous cell populations within tumors that dictate the severity of disease. This cellular plasticity, which is induced by androgen deprivation, is the focus of this review. More specifically, we address the emergence of cancer stem-like cells, epithelial-mesenchymal or myeloid plasticity, and neuroendocrine transdifferentiation as well as evidence that demonstrates how each is regulated by the AR. Importantly, because all of these cell phenotypes are associated with aggressive PCa, we examine novel therapeutic approaches for targeting therapy-induced cellular plasticity as a way of preventing PCa progression.
Collapse
Affiliation(s)
- Jennifer L Bishop
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsi Ketola
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada The Vancouver Prostate Centre2660 Oak Street, Vancouver, British Columbia, Canada V6H-3Z6Department of Urologic SciencesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
The oncogene ERG: a key factor in prostate cancer. Oncogene 2015; 35:403-14. [PMID: 25915839 DOI: 10.1038/onc.2015.109] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022]
Abstract
ETS-related gene (ERG) is a member of the E-26 transformation-specific (ETS) family of transcription factors with roles in development that include vasculogenesis, angiogenesis, haematopoiesis and bone development. ERG's oncogenic potential is well known because of its involvement in Ewing's sarcoma and leukaemia. However, in the past decade ERG has become highly associated with prostate cancer development, particularly as a result of a gene fusion with the promoter region of the androgen-induced TMPRRSS2 gene. We review ERG's structure and function, and its role in prostate cancer. We discuss potential new therapies that are based on targeting ERG.
Collapse
|
26
|
Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015; 107:111-29. [PMID: 25631473 DOI: 10.1111/boc.201400096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The advent of widespread cancer genome sequencing has accelerated our understanding of the molecular aberrations underlying malignant disease at an unprecedented rate. Coupling the large number of bioinformatic methods developed to locate genomic breakpoints with increased sequence read length and a deeper understanding of coding region function has enabled rapid identification of novel actionable oncogenic fusion genes. Using examples of kinase fusions found in liquid and solid tumours, this review highlights major concepts that have arisen in our understanding of cancer pathogenesis through the study of fusion proteins. We provide an overview of recently developed methods to identify potential fusion proteins from next-generation sequencing data, describe the validation of their oncogenic potential and discuss the role of targetted therapies in treating cancers driven by fusion oncoproteins.
Collapse
Affiliation(s)
- Monika A Davare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, U.S.A; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, U.S.A
| | | |
Collapse
|
27
|
Peng H, Wang X, Zhang P, Sun T, Ren X, Xia Z. miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2259-2266. [PMID: 25973137 PMCID: PMC4396271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
miR-27a has been reported to exhibit abnormal expression in renal cell carcinoma (RCC), but the role of miR-27a in RCC remains unknown. In our study, up-regulation of miR-27a was validated by Real-time PCR analysis in 133 RCC samples. Overexpression of miR-27a promoted cell migration, invasion and proliferation in vitro, while its low expression exerted opposite effects. Kaplan-Meier analysis demonstrated that the patients with high expression of miR-27a had a worse overall and relapse-free survivals compared with those with low expression of miR-27a. Cox proportional hazards analyses showed that miR-27a expression was an independent prognostic factor for RCC patients. Collectively, our findings illustrate the promoting-cancer effect of miR-27a in RCC, suggesting that miR-27a could be a potential therapeutic target for RCC. Additionally, Kaplan-Meier analyses and Cox proportional regression analysis suggest that miR-27a may be a potential biomarker for predicting the survival of RCC patients.
Collapse
Affiliation(s)
- Hongjun Peng
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine305 Zhongshan Road East, Nanjing 210002, P.R. China
| | - Xianjun Wang
- Department of Neurology, Linyi People’s HospitalNo. 49 Yizhou Road, Linyi 276000, Shandong, P.R. China
| | - Pei Zhang
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine305 Zhongshan Road East, Nanjing 210002, P.R. China
| | - Tao Sun
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine305 Zhongshan Road East, Nanjing 210002, P.R. China
| | - Xianguo Ren
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine305 Zhongshan Road East, Nanjing 210002, P.R. China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing University School of Medicine305 Zhongshan Road East, Nanjing 210002, P.R. China
| |
Collapse
|
28
|
Role of MicroRNAs in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2015; 13:261-270. [PMID: 25733057 DOI: 10.1016/j.clgc.2015.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed malignant tumor in men, and is the second highest cause of cancer mortality after lung tumors in the United States. Accumulating research indicates that microRNAs (miRNAs) are increasingly being implicated in PCa. miRNAs are conserved small noncoding RNAs that control gene expression posttranscriptionally. Recent profiling research suggests that miRNAs are aberrantly expressed in PCa, and these have been implicated in the regulation of apoptosis, cell cycle, epithelial to mesenchymal transition, PCa stem cells, and androgen receptor pathway. All of these might provide the basis for new approaches for PCa. Here, we review current findings regarding miRNA research in PCa to provide a strong basis for future study aimed at promising contributions of miRNA in PCa.
Collapse
|
29
|
Jackson BL, Grabowska A, Ratan HL. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer 2014; 14:930. [PMID: 25496077 PMCID: PMC4295407 DOI: 10.1186/1471-2407-14-930] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This non-systematic review article aims to summarise the progress made in understanding the functional consequences of microRNA (miRNA) dysregulation in prostate cancer development, and the identification of potential miRNA targets as serum biomarkers for diagnosis or disease stratification. RESULTS A number of miRNAs have been shown to influence key cellular processes involved in prostate tumourigenesis, including apoptosis-avoidance, cell proliferation and migration and the androgen signalling pathway. An overlapping group of miRNAs have shown differential expression in the serum of patients with prostate cancer of varying stages compared with unaffected individuals. The majority of studies thus far however, involve small numbers of patients and have shown variable and occasionally conflicting results CONCLUSION MiRNAs show promise as potential circulating biomarkers in prostate cancer, but larger prospective studies are required to validate particular targets and better define their clinical utility.
Collapse
Affiliation(s)
- Benjamin L Jackson
- />Unit of Cancer Biology, University of Nottingham, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH England
| | - Anna Grabowska
- />Unit of Cancer Biology, University of Nottingham, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH England
| | - Hari L Ratan
- />Unit of Cancer Biology, University of Nottingham, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH England
- />Department of Urology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB England
| |
Collapse
|
30
|
Shi R, Xiao H, Yang T, Chang L, Tian Y, Wu B, Xu H. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism. Front Med 2014; 8:456-63. [PMID: 25363395 DOI: 10.1007/s11684-014-0353-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 07/11/2014] [Indexed: 01/30/2023]
Abstract
microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200c compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR-200c could inhibit migration and invasion by epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Runlin Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 2014; 20:643-51. [PMID: 25262538 DOI: 10.1016/j.molmed.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, the capacity of cancer cells to oscillate between epithelial and mesenchymal phenotypes, termed epithelial plasticity (EP), has been demonstrated to play a critical role in metastasis. This phenomenon may be particularly important for prostate cancer (PC) progression, since recent studies have revealed interplay between EP and signaling by the androgen receptor (AR) oncoprotein. Moreover, EP appears to play a role in dictating the response to therapies for metastatic PC. This review will evaluate preclinical and clinical evidence for the relevance of EP in PC progression and consider the potential of targeting and measuring EP as a means to treat and manage lethal forms of the disease.
Collapse
|
32
|
Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95. [PMID: 24948871 PMCID: PMC4062951 DOI: 10.7150/ijbs.8671] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.
Collapse
Affiliation(s)
| | | | - Natasha Kyprianou
- Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
33
|
Yang YA, Kim J, Yu J. Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer. APPLICATION OF CLINICAL GENETICS 2014; 7:81-91. [PMID: 24876790 PMCID: PMC4036145 DOI: 10.2147/tacg.s35598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, facilitated by rapid technological advances, we are becoming more adept at probing the molecular processes, which take place in the nucleus, that are crucial for the hierarchical regulation and organization of chromatin architecture. With an unprecedented level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, modifications, chromosome territories, and DNA looping) and mechanisms underlying their establishment, provides invaluable insight into physiological as well as pathological phenomena. In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently observed oncogenic alterations associated with chromatin conformation, while emphasizing the TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and its functions in compromising the chromatin landscape in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA ; Robert H Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
34
|
Culig Z. TMPRSS:ERG fusion in prostate cancer: from experimental approaches to prognostic studies. Eur Urol 2014; 66:861-2. [PMID: 24768276 DOI: 10.1016/j.eururo.2014.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Ganju A, Yallapu MM, Khan S, Behrman SW, Chauhan SC, Jaggi M. Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resist Updat 2014; 17:13-23. [PMID: 24853766 DOI: 10.1016/j.drup.2014.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common non-cutaneous malignancy in American men. Docetaxel is a useful chemotherapeutic agent for prostate cancer that has been available for over a decade, but the length of the treatment and systemic side effects hamper compliance. Additionally, docetaxel resistance invariably emerges, leading to disease relapse. Docetaxel resistance is either intrinsic or acquired by adopting various mechanisms that are highly associated with genetic alterations, decreased influx and increased efflux of drugs. Several combination therapies and small P-glycoprotein inhibitors have been proposed to improve the therapeutic potential of docetaxel in prostate cancer. Novel therapeutic strategies that may allow reversal of docetaxel resistance include alterations of enzymes, improving drug uptake and enhancement of apoptosis. In this review, we provide the most current docetaxel reversal approaches utilizing nanotechnology. Nanotechnology mediated docetaxel delivery is superior to existing therapeutic strategies and a more effective method to induce P-glycoprotein inhibition, enhance cellular uptake, maintain sustained drug release, and improve bioavailability.
Collapse
Affiliation(s)
- Aditya Ganju
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|