1
|
Siavoshi A, Piran M, Sharifi‐Zarchi A, Ataellahi F. Integration of Gastric Cancer RNA-Seq Datasets Along With PPI Network Suggests That Nonhub Nodes Have the Potential to Become Biomarkers. Cancer Rep (Hoboken) 2025; 8:e70126. [PMID: 39854135 PMCID: PMC11757912 DOI: 10.1002/cnr2.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes. Consequently, it is essential not to overlook weakly connected nodes (nonhubs) when determining suitable biomarkers from PPIN. METHODS AND RESULTS In this study, several potential biomarkers for GC were proposed based on the findings from RNA-sequencing (RNA-Seq) datasets, along with differential gene expression (DGE) analysis, PPINs, and weighted gene co-expression network analysis (WGCNA). Considering the overall survival (OS) analysis and the evaluation of expression levels alongside statistical parameters of the PPIN cluster nodes, it is plausible to suggest that THY1, CDH17, TGIF1, and AEBP1, categorized as nonhub nodes, along with ITGA5, COL1A1, FN1, and MMP2, identified as hub nodes, possess characteristics that render them applicable as biomarkers for the GC. Additionally, insulin-like growth factor (IGF)-binding protein-2 (IGFBP2), classified as a nonhub node, demonstrates a significant negative correlation with both groups within the same cluster. This observation underscores the conflicting findings regarding IGFBP2 in various cancer studies and enhances the potential of this gene to serve as a biomarker. CONCLUSION The findings of the current study not only identified the hubs and nonhubs that may serve as potential biomarkers for GC but also revealed a PPIN cluster that includes both hubs and nonhubs in conjunction with IGFBP2, thereby enhancing the understanding of the complex behavior associated with IGFBP2.
Collapse
Affiliation(s)
- Akram Siavoshi
- Department of Alborz Health Technology Development CenterAlborz University of Medical SciencesAlborzIran
| | - Mehran Piran
- Department of Medical Biotechnology, Drug Design and Bioinformatics Unit, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Ali Sharifi‐Zarchi
- Department of Computer EngineeringSharif University of TechnologyTehranIran
| | - Fatemeh Ataellahi
- Department of Biology, College of SciencesShiraz UniversityShirazIran
| |
Collapse
|
2
|
Zhang Y, Rabinovsky R, Wei Z, El Fatimy R, Deforzh E, Luan B, Peshkin L, Uhlmann EJ, Krichevsky AM. Secreted PGK1 and IGFBP2 contribute to the bystander effect of miR-10b gene editing in glioma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:265-275. [PMID: 36700043 PMCID: PMC9852814 DOI: 10.1016/j.omtn.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
MicroRNA-10b (miR-10b) is an essential glioma driver and one of the top candidates for targeted therapies for glioblastoma and other cancers. This unique miRNA controls glioma cell cycle and viability via an array of established conventional and unconventional mechanisms. Previously reported CRISPR-Cas9-mediated miR-10b gene editing of glioma cells in vitro and established orthotopic glioblastoma in mouse models demonstrated the efficacy of this approach and its promise for therapy development. However, therapeutic gene editing in patients' brain tumors may be hampered, among other factors, by the imperfect delivery and distribution of targeting vectors. Here, we demonstrate that miR-10b gene editing in glioma cells triggers a potent bystander effect that leads to the selective cell death of the unedited glioma cells without affecting the normal neuroglial cells. The effect is mediated by the secreted miR-10b targets phosphoglycerate kinase 1 (PGK1) and insulin-like growth factor binding protein 2 (IGFBP2) that block cell-cycle progression and induce glioma cell death. These findings further support the feasibility of therapeutic miR-10b editing without the need to target every cell of the tumor.
Collapse
Affiliation(s)
- Yanhong Zhang
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Bai Luan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J. Uhlmann
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
3
|
Soloperto D, Gazzini S, Cerullo R. Molecular Mechanisms of Carcinogenesis in Pediatric Airways Tumors. Int J Mol Sci 2023; 24:ijms24032195. [PMID: 36768522 PMCID: PMC9916405 DOI: 10.3390/ijms24032195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Primary tumors of the airways in the pediatric population are very rare entities. For this reason, little is known about the pathogenesis of these neoplasms. Understanding the biology has different practical implications: for example, it could help in the differential diagnosis, have a prognostic significance, or may lead to the development of a targeted therapy. The aim of this article is to present the current knowledge about pediatric airways tumors, focusing on the molecular mechanisms that cause the onset and progression of these neoplasms. After a brief introduction of epidemiology and clinical presentation, the tumorigenesis of the most frequent pediatric airways tumors will be described: Juvenile-onset recurrent respiratory papillomatosis (JORRP), Subglottic Hemangiona (SH), Rhabdomyosarcoma (RMS), and Mucoepidermoid carcinoma (MEC).
Collapse
|
4
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
5
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
6
|
IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Lett 2020; 500:132-146. [PMID: 33309859 DOI: 10.1016/j.canlet.2020.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Tumor-associated macrophages (TAMs) represent the M2-like phenotype with potent immunosuppressive activity, and play a pro-tumor role in pancreatic ductal adenocarcinoma (PDAC) biology. In this study, we investigated the role of the insulin-like growth factor binding protein 2 (IGFBP2) as a determinant of TAM polarity. Clinical data revealed that the levels of IGFBP2 correlated with M2 TAMs accumulation and disease progression in human PDAC. In vivo mouse model experiments showed that IGFBP2 promoted an immunosuppressive microenvironment and tumor growth in a macrophage dependent manner. Bioinformatics analysis of PDAC transcriptomes revealed a significant association between IGFBP2 expression and M2 macrophage polarization and signal transducer and activator of transcription 3 (STAT3) activation. Mechanistic investigations demonstrated that IGFBP2 augmented the expression and secretion of IL-10 through STAT3 activation in PDAC cells, which induced TAM polarization toward an M2 phenotype. IGFBP2-polarized M2 macrophages significantly increased Tregs infiltration and impaired antitumor T-cell immunity in a mouse model. Thus, our investigations have illuminated the IGFBP2 signaling pathway that contributes to the macrophage-based immunosuppressive microenvironment in PDAC, suggesting that blocking the IGFBP2 axis constitutes a potential treatment strategy to reset TAM polarization toward an antitumor state in PDAC.
Collapse
|
7
|
The Prognostic Values of the Insulin-Like Growth Factor Binding Protein Family in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7658782. [PMID: 33282953 PMCID: PMC7685796 DOI: 10.1155/2020/7658782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Purpose To assess the expression of insulin-like growth factor binding protein (IGFBP) family and its prognostic impact in ovarian cancer (OC) patients. Materials and Methods The mRNA expression and protein expression of individual IGFBPs in healthy ovarian samples and OC tissues were explored through Oncomine, Gene Expression Profiling Interactive Analysis, and Human Protein Atlas database. Additionally, the prognostic values of the six IGFBP members in patients with OC were evaluated by Kaplan-Meier plotter. Results IGFBP2 and IGFBP4 mRNA expression were remarkably upregulated in patients with OC. To be specific, the mRNA expression of IGFBP2 was upregulated in patients with serous ovarian cancer (SOC), while IGFBP1/3/4/5/6 mRNA levels were downregulated. In addition, the IGFBP4 protein expression was upregulated in SOC, and the IGFBP6 protein expression was upregulated in both of SOC and endometrioid ovarian cancer (EOC) tissues. High IGFBP1 mRNA levels showed favorable overall survival (OS) and progression-free survival (PFS) in all OC. Meanwhile, increased IGFBP5/6 mRNA levels revealed worsen OS and PFS in all OC patients. IGFBP4/6 mRNA levels predicted unfavorable OS and PFS only in SOC patients. Moreover, the aberrant mRNA expression of IGFBP1/2/4/5/6 was correlated with significantly prognosis in patients receiving different chemotherapeutic regimens. Conclusion This study indicates that the IGFBP family reveals distinct prognosis in patients with OC. IGFBP1/2/4/5/6 are useful prognostic predictors for chemotherapeutic effect in OC patients, and IGFBP2/4 are potential tumor markers for the diagnosis of OC.
Collapse
|
8
|
Beck O, Paret C, Russo A, Burhenne J, Fresnais M, Steimel K, Seidmann L, Wagner DC, Vewinger N, Lehmann N, Sprang M, Backes N, Roth L, Neu MA, Wingerter A, Henninger N, El Malki K, Otto H, Alt F, Desuki A, Kindler T, Faber J. Safety and Activity of the Combination of Ceritinib and Dasatinib in Osteosarcoma. Cancers (Basel) 2020; 12:cancers12040793. [PMID: 32224911 PMCID: PMC7225940 DOI: 10.3390/cancers12040793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma (OS) is the second most common cause of cancer-related death in pediatric patients. The insulin-like growth factor (IGF) pathway plays a relevant role in the biology of OS but no IGF targeted therapies have been successful as monotherapy so far. Here, we tested the effect of three IGF specific inhibitors and tested ceritinib as an off-target inhibitor, alone or in combination with dasatinib, on the proliferation of seven primary OS cells. Picropodophyllin, particularly in combination with dasatinib and the combination ceritinib/dasatinib were effective in abrogating the proliferation. The ceritinib/dasatinib combination was applied to the primary cells of a 16-year-old girl with a long history of lung metastases, and was more effective than cabozantinib and olaparib. Therefore, the combination was used to treat the patient. The treatment was well tolerated, with toxicity limited to skin rush and diarrhea. A histopathological evaluation of the tumor after three months of therapy indicated regions of high necrosis and extensive infiltration of macrophages. The extension of the necrosis was proportional to the concentration of dasatinib and ceritinib in the area, as analysed by an ultra performance liquid chromatography–tandem mass spectrometer (UPLC-MS/MS). After the cessation of the therapy, radiological analysis indicated a massive growth of the patient’s liver metastases. In conclusion, these data indicate that the combination of ceritinib/dasatinib is safe and may be used to develop new therapy protocols.
Collapse
Affiliation(s)
- Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
- German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kevin Steimel
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (M.F.); (K.S.)
| | - Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.S.); (D.-C.W.)
| | - Daniel-Christoph Wagner
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (L.S.); (D.-C.W.)
| | - Nadine Vewinger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nadine Lehmann
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Maximilian Sprang
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nora Backes
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Lea Roth
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Marie Astrid Neu
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Nicole Henninger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Henrike Otto
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
| | - Alexander Desuki
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Joerg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (O.B.); (C.P.); (A.R.); (N.V.); (N.L.); (M.S.); (N.B.); (L.R.); (M.A.N.); (A.W.); (N.H.); (K.E.M.); (H.O.); (F.A.)
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (A.D.); (T.K.)
- German Cancer Consortium (DKTK), site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6131-17-6821
| |
Collapse
|
9
|
Prognostic Value of Circulating IGFBP2 and Related Autoantibodies in Children with Metastatic Rhabdomyosarcomas. Diagnostics (Basel) 2020; 10:diagnostics10020115. [PMID: 32093404 PMCID: PMC7168276 DOI: 10.3390/diagnostics10020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP2) is a tumor-associated protein measurable in patients’ biopsies and blood samples. Increased IGFBP2 expression correlates with tumor severity in rhabdomyosarcoma (RMS). Thus, we examined the plasmatic IGFBP2 levels in 114 RMS patients and 15 healthy controls by ELISA assay in order to evaluate its value as a plasma biomarker for RMS. Additionally, we looked for the presence of a humoral response against IGBFP2 protein measurable by the production of anti-IGFBP2 autoantibodies. We demonstrated that both circulating IGFBP2 protein and autoantibodies were significantly higher in RMS patients with respect to controls and their combination showed a better discriminative capacity. IGFBP2 protein identified metastatic patients with worse event-free survival, whereas both IGFBP2 and anti-IGFBP2 antibodies negatively correlated with overall survival. Our study suggests that IGFBP2 and anti-IGFBP2 antibodies are useful for diagnostic and prognostic purposes, mainly as independent negative prognostic markers in metastatic patients. This is the first study that reports a specific humoral response in RMS plasma samples and proves the value of blood-based biomarkers in improving risk assessment and outcome of metastatic RMS patients.
Collapse
|
10
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Andersson MK, Åman P, Stenman G. IGF2/IGF1R Signaling as a Therapeutic Target in MYB-Positive Adenoid Cystic Carcinomas and Other Fusion Gene-Driven Tumors. Cells 2019; 8:cells8080913. [PMID: 31426421 PMCID: PMC6721700 DOI: 10.3390/cells8080913] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Chromosome rearrangements resulting in pathogenetically important gene fusions are a common feature of many cancers. They are often potent oncogenic drivers and have key functions in central cellular processes and pathways and encode transcription factors, transcriptional co-regulators, growth factor receptors, tyrosine kinases, and chromatin modifiers. In addition to being useful diagnostic biomarkers, they are also targets for development of new molecularly targeted therapies. Studies in recent decades have shown that several oncogenic gene fusions interact with the insulin-like growth factor (IGF) signaling pathway. For example, the MYB-NFIB fusion in adenoid cystic carcinoma is regulated by IGF1R through an autocrine loop, and IGF1R is a downstream target of the EWSR1-WT1 and PAX3-FKHR fusions in desmoplastic small round cell tumors and alveolar rhabdomyosarcoma, respectively. Here, we will discuss the mechanisms behind the interactions between oncogenic gene fusions and the IGF signaling pathway. We will also discuss the role of therapeutic inhibition of IGF1R in fusion gene driven malignancies.
Collapse
Affiliation(s)
- Mattias K Andersson
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Pierre Åman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
van Erp AEM, Versleijen-Jonkers YMH, van der Graaf WTA, Fleuren EDG. Targeted Therapy-based Combination Treatment in Rhabdomyosarcoma. Mol Cancer Ther 2019; 17:1365-1380. [PMID: 29967215 DOI: 10.1158/1535-7163.mct-17-1131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
Targeted therapies have revolutionized cancer treatment; however, progress lags behind in alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS), a soft-tissue sarcoma mainly occurring at pediatric and young adult age. Insulin-like growth factor 1 receptor (IGF1R)-directed targeted therapy is one of the few single-agent treatments with clinical activity in these diseases. However, clinical effects only occur in a small subset of patients and are often of short duration due to treatment resistance. Rational selection of combination treatments of either multiple targeted therapies or targeted therapies with chemotherapy could hypothetically circumvent treatment resistance mechanisms and enhance clinical efficacy. Simultaneous targeting of distinct mechanisms might be of particular interest in this regard, as this affects multiple hallmarks of cancer at once. To determine the most promising and clinically relevant targeted therapy-based combination treatments for ARMS and ERMS, we provide an extensive overview of preclinical and (early) clinical data concerning a variety of targeted therapy-based combination treatments. We concentrated on the most common classes of targeted therapies investigated in rhabdomyosarcoma to date, including those directed against receptor tyrosine kinases and associated downstream signaling pathways, the Hedgehog signaling pathway, apoptosis pathway, DNA damage response, cell-cycle regulators, oncogenic fusion proteins, and epigenetic modifiers. Mol Cancer Ther; 17(7); 1365-80. ©2018 AACR.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands. .,The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Emmy D G Fleuren
- The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research, Sutton, United Kingdom.
| |
Collapse
|
13
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Mancarella C, Scotlandi K. IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy. J Mol Endocrinol 2018; 61:T45-T60. [PMID: 29273680 DOI: 10.1530/jme-17-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) system has gained substantial interest due to its involvement in regulating cell proliferation, differentiation and survival during anoikis and after conventional and targeted therapies. However, results from clinical trials have been largely disappointing, with only a few but notable exceptions, such as trials targeting sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF axis, as understanding the control of this axis is essential for future clinical studies.
Collapse
Affiliation(s)
- Caterina Mancarella
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
15
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
16
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
17
|
Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Vishwamitra D, Wang Y, Maywald RL, Buford AS, Fokt I, Skora S, Wang J, Naing A, Lazar AJ, Rohren EM, Daw NC, Subbiah V, Benjamin RS, Ratan R, Priebe W, Mikos AG, Amin HM, Ludwig JA. IGF-1R and mTOR Blockade: Novel Resistance Mechanisms and Synergistic Drug Combinations for Ewing Sarcoma. J Natl Cancer Inst 2016; 108:djw182. [PMID: 27576731 DOI: 10.1093/jnci/djw182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Therapies cotargeting insulin-like growth factor receptor 1 (IGF-1R) and mammalian target of rapamycin (mTOR) have demonstrated remarkable, albeit short-lived, clinical responses in a subset of Ewing sarcoma (ES) patients. However, the mechanisms of resistance and applicable strategies for overcoming drug resistance to the IGF-1R/mTOR blockade are still undefined. METHODS To elucidate predominant mechanism(s) of acquired drug resistance while identifying synergistic drug combinations that improve clinical efficacy, we generated more than 18 ES cell lines resistant to IGF-1R- or mTOR-targeted therapy. Two small-molecule inhibitors of IGF-1R were chosen, NVP-ADW-742 (IGF-1R-selective) and OSI-906 (a dual IGF-1R/insulin receptor alpha [IR-α] inhibitor). Reverse-phase protein lysate arrays (RPPAs) revealed proteomic changes linked to IGF-1R/mTOR resistance, and selected proteins were validated in cell-based assays, xenografts, and within human clinical samples. All statistical tests were two-sided. RESULTS Novel mechanisms of resistance (MOR) emerged after dalotuzumab-, NVP-ADW-742-, and OSI-906-based targeting of IGF-1R. MOR to dalotuzumab included upregulation of IRS1, PI3K, and STAT3, as well as p38 MAPK, which was also induced by OSI-906. pEIF4E(Ser209), a key regulator of Cap-dependent translation, was induced in ridaforolimus-resistant ES cell lines. Unique drug combinations targeting IGF-1R and PI3K-alpha or Mnk and mTOR were synergistic in vivo and vitro (P < .001) as assessed respectively by Mantel-Cox and isobologram testing. CONCLUSIONS We discovered new druggable targets expressed by chemoresistant ES cells, xenografts, and relapsed human tumors. Joint suppression of these newfound targets, in concert with IGF-1R or mTOR blockade, should improve clinical outcomes.
Collapse
Affiliation(s)
- Salah-Eddine Lamhamedi-Cherradi
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Brian A Menegaz
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Vandhana Ramamoorthy
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Deeksha Vishwamitra
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Ying Wang
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Rebecca L Maywald
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Adriana S Buford
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Izabela Fokt
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Stanislaw Skora
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Jing Wang
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Aung Naing
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Alexander J Lazar
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Eric M Rohren
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Najat C Daw
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Vivek Subbiah
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Robert S Benjamin
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Ravin Ratan
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Waldemar Priebe
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Antonios G Mikos
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Hesham M Amin
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| | - Joseph A Ludwig
- Departments of Sarcoma Medical Oncology (SELC, BAM, VR, RSB, RR, JAL), Hematopathology (DV, HMA), Bioinformatics and Computational Biology (YW, JW), Investigational Cancer Therapeutics (AN, VS), Pediatrics-Patient Care (NCD), Experimental Therapeutics (IF, SS, WP), and Pathology (AJL), The University of Texas MD Anderson Cancer Center, Houston, TX; Departments of Radiology (EMR) and Molecular & Human Genetics (RLM), Baylor College of Medicine, Houston, TX; Department of Pediatric-Oncology, Texas Children's Hospital. Houston, TX (ASB); Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, Houston, TX (AGM)
| |
Collapse
|
18
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
19
|
Liang J, Li B, Yuan L, Ye Z. Prognostic value of IGF-1R expression in bone and soft tissue sarcomas: a meta-analysis. Onco Targets Ther 2015; 8:1949-55. [PMID: 26251617 PMCID: PMC4524581 DOI: 10.2147/ott.s88293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulated evidence has indicated a correlation between IGF-1R and bone and soft tissue sarcoma (BSTS) progression. However, research on the prognostic role of IGF-1R in sarcomas has revealed very different or even totally opposite results. This meta-analysis aimed to unveil the controversial role IGF-1R plays in predicting the outcome of BSTS patients. We systematically reviewed the evidence for the effect of IGF-1R expression in multiple types of BSTSs, including osteosarcoma, Ewing’s sarcoma, synovial sarcoma, liposarcoma, and rhabdomyosarcoma, to elucidate this issue. The prognostic value of IGF-1R expression in BSTS patients was evaluated regarding overall survival, measured by pooled hazard ratios (HRs) with 95% confidence intervals (CIs). Seven studies including 627 patients were enrolled in this meta-analysis. Our results demonstrated that IGF-1R expression was associated with poor outcome in terms of overall survival in BSTS patients (pooled HR =2.15, 95% CI: 1.06–4.38; P=0.03). In subtypes of BSTSs, elevated IGF-1R expression was revealed to be significantly correlated with worse prognosis in osteosarcoma (pooled HR =2.20, 95% CI: 1.59–0.03; P<0.001), while no statistical significance was discovered in Ewing’s sarcoma (pooled HR =1.01, 95% CI: 0.45–2.27; P=0.99). Expression of IGF-1R could be a negative prognostic biomarker for patients suffering from BSTSs.
Collapse
Affiliation(s)
- Junbo Liang
- School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China ; Department of Orthopedics, Taizhou Hospital, Taizhou, People's Republic of China
| | - Binghao Li
- Department of Orthopaedics, Institute of Orthopaedic Research, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Yuan
- School of Public Health, Fudan University, Shanghai, People's Republic of China
| | - Zhaoming Ye
- Department of Orthopaedics, Institute of Orthopaedic Research, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Heidegger I, Massoner P, Sampson N, Klocker H. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer. Cancer Lett 2015; 367:113-21. [PMID: 26231734 DOI: 10.1016/j.canlet.2015.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants.
Collapse
Affiliation(s)
- Isabel Heidegger
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Petra Massoner
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Natalie Sampson
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, Ye J, Wei Q, Wang J, Zhao L, Luu HH. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2015; 2:13-25. [PMID: 25984556 PMCID: PMC4431759 DOI: 10.1016/j.gendis.2014.10.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
One of the greatest obstacles to current cancer treatment efforts is the development of drug resistance by tumors. Despite recent advances in diagnostic practices and surgical interventions, many neoplasms demonstrate poor response to adjuvant or neoadjuvant radiation and chemotherapy. As a result, the prognosis for many patients afflicted with these aggressive cancers remains bleak. The insulin-like growth factor (IGF) signaling axis has been shown to play critical role in the development and progression of various tumors. Many basic science and translational studies have shown that IGF pathway modulators can have promising effects when used to treat various malignancies. There also exists a substantial body of recent evidence implicating IGF signaling dysregulation in the dwindling response of tumors to current standard-of-care therapy. By better understanding both the IGF-dependent and -independent mechanisms by which pathway members can influence drug sensitivity, we can eventually aim to use modulators of IGF signaling to augment the effects of current therapy. This review summarizes and synthesizes numerous recent investigations looking at the role of the IGF pathway in drug resistance. We offer a brief overview of IGF signaling and its general role in neoplasia, and then delve into detail about the many types of human cancer that have been shown to have IGF pathway involvement in resistance and/or sensitization to therapy. Ultimately, our hope is that such a compilation of evidence will compel investigators to carry out much needed studies looking at combination treatment with IGF signaling modulators to overcome current therapy resistance.
Collapse
Affiliation(s)
- Sahitya K. Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Xiang-Ya Hospital of Central South University, Changsha 410008, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Lianggong Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Discovery and validation of an INflammatory PROtein-driven GAstric cancer Signature (INPROGAS) using antibody microarray-based oncoproteomics. Oncotarget 2015; 5:1942-54. [PMID: 24722433 PMCID: PMC4039123 DOI: 10.18632/oncotarget.1879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aimed to improve gastric cancer (GC) diagnosis by identifying and validating an INflammatory PROtein-driven GAstric cancer Signature (hereafter INPROGAS) using low-cost affinity proteomics. The detection of 120 cytokines, 43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 metalloproteinases was performed using commercially available human antibody microarray-based arrays. We identified 21 inflammation-related proteins (INPROGAS) with significant differences in expression between GC tissues and normal gastric mucosa in a discovery cohort of matched pairs (n=10) of tumor/normal gastric tissues. Ingenuity pathway analysis confirmed the "inflammatory response", "cellular movement" and "immune cell trafficking" as the most overrepresented biofunctions within INPROGAS. Using an expanded independent validation cohort (n = 22), INPROGAS classified gastric samples as "GC" or "non-GC" with a sensitivity of 82% (95% CI 59-94) and a specificity of 73% (95% CI 49-89). The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. Antibody microarray analyses of the GC-associated inflammatory proteome identified a 21-protein INPROGAS that accurately discriminated GC from noncancerous gastric mucosa.
Collapse
|
23
|
Pickard A, McCance DJ. IGF-Binding Protein 2 - Oncogene or Tumor Suppressor? Front Endocrinol (Lausanne) 2015; 6:25. [PMID: 25774149 PMCID: PMC4343188 DOI: 10.3389/fendo.2015.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
- *Correspondence: Adam Pickard, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT7 9BL, UK e-mail:
| | - Dennis J. McCance
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
| |
Collapse
|