1
|
Ma Y, Wang R, Liao J, Guo P, Wang Q, Li W. Xanthohumol overcomes osimertinib resistance via governing ubiquitination-modulated Ets-1 turnover. Cell Death Discov 2024; 10:454. [PMID: 39468027 PMCID: PMC11519634 DOI: 10.1038/s41420-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and fatal malignancy with a significant global impact. Recent advancements have introduced targeted therapies like tyrosine kinase inhibitors (TKIs) such as osimertinib, which have improved patient outcomes, particularly in those with EGFR mutations. Despite these advancements, acquired resistance to TKIs remains a significant challenge. Hence, one of the current research priorities is understanding the resistance mechanisms and identifying new therapeutic targets to improve therapeutic efficacy. Herein, we identified high expression of c-Met in osimertinib-resistant NSCLC cells, and depletion of c-Met significantly inhibited the proliferation of osimertinib-resistant cells and prolonged survival in mice, suggesting c-Met as an attractive therapeutic target. To identify effective anti-tumor agents targeting c-Met, we screened a compound library containing 641 natural products and found that only xanthohumol exhibited potent inhibitory effects against osimertinib-resistant NSCLC cells. Moreover, combination treatment with xanthohumol and osimertinib sensitized osimertinib-resistant NSCLC cells to osimertinib both in vitro and in vivo. Mechanistically, xanthohumol disrupted the interaction between USP9X and Ets-1, and inhibited the phosphorylation of Ets-1 at Thr38, promoting its degradation, thereby targeting the Ets-1/c-Met signaling axis and inducing intrinsic apoptosis in osimertinib-resistant NSCLC cells. Overall, the research highlights the critical role of targeting c-Met to address osimertinib resistance in NSCLC. By demonstrating the efficacy of xanthohumol in overcoming resistance and enhancing therapeutic outcomes, this study provides valuable insights and potential new strategies for improving the clinical management of NSCLC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Pengfei Guo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Qiang Wang
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
4
|
He G, Li W, Zhao W, Men H, Chen Q, Hu J, Zhang J, Zhu H, Wang W, Deng M, Xu Z, Wang G, Zhou L, Qian X, Liang L. Formin-like 2 promotes angiogenesis and metastasis of colorectal cancer by regulating the EGFL6/CKAP4/ERK axis. Cancer Sci 2023; 114:2014-2028. [PMID: 36715549 PMCID: PMC10154862 DOI: 10.1111/cas.15739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence indicates that angiogenesis plays a pivotal role in tumor progression. Formin-like 2 (FMNL2) is well-known for promoting metastasis; however, the molecular mechanisms by which FMNL2 promotes angiogenesis in colorectal cancer (CRC) remain unclear. Here, we found that FMNL2 promotes angiogenesis and metastasis of CRC in vitro and in vivo. The GDB/FH3 domain of FMNL2 directly interacts with epidermal growth factor-like protein 6 (EGFL6). Formin-like 2 promotes EGFL6 paracrine signaling by exosomes to regulate angiogenesis in CRC. Cytoskeleton associated protein 4 (CKAP4) is a downstream target of EGFL6 and is involved in CRC angiogenesis. Epidermal growth factor-like protein 6 binds to the N-terminus of CKAP4 to promote the migration of HUVECs by activating the ERK/MMP pathway. These findings suggest that FMNL2 promotes the migration of HUVECs and enhances angiogenesis and tumorigenesis in CRC by regulating the EGFL6/CKAP4/ERK axis. Therefore, the EGFL6/CKAP4/ERK axis could be a candidate therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Wenli Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hui Men
- Department of Pathology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.,Department of Pathology, Southern Medical University, Guangzhou, China
| | - Qingqing Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jinlong Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingyu Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Huifang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Wenxin Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Meijing Deng
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Gaoxiang Wang
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinlai Qian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.,Department of Pathology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Li Liang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
5
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
6
|
Zhang W, Zhang X, Cheng P, Yue K, Tang M, Li Y, Guo Q, Zhang Y. HSF4 promotes tumor progression of colorectal cancer by transactivating c-MET. Mol Cell Biochem 2022; 478:1141-1150. [PMID: 36229759 DOI: 10.1007/s11010-022-04582-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Heat shock factors (HSFs) are a family of transcription factors, composed of HSF1, HSF2, and HSF4, to regulate cell stress reaction for maintaining cellular homeostasis in response to adverse stimuli. Recent studies have disclosed the roles of HSF1 and HSF2 in modulating tumor development, including colorectal cancer (CRC). However, HSF4, which is closely associated with pathology of congenital cataracts, remains less studied in tumors. In this study, we aimed to describe the regulatory effects of HSF4 and underlying molecular mechanism in CRC progression. By bioinformatic analysis of TCGA database and TMA-IHC assay, we identified that the expression of HSF4 was significantly upregulated in CRCs compared with normal colonic tissues and was a prognostic factor of poor outcomes of CRC patients. Function assays, including CCK-8, colony formation, transwell assays, and xenografted mouse model, were employed to verify that HSF4 promoted cell growth, colony formation, invasion of CRC cells in vitro, and tumor growth in vivo as a potential oncogenic factor. Mechanistically, results of Chromatin immunoprecipitation (ChIP) and immunoblotting assays revealed that HSF4 associated directly to MET promoter to enhance expression of c-MET, a well-known oncogene in multiple cancers, thus fueling the activity of downstream ERK1/2 and AKT signaling pathways. In further rescue experiments, restoration of c-MET expression abolished inhibitory cell growth and invasion induced by downregulated HSF4 expression. To sum up, our findings describe a crucial role of HSF4 in CRC progression by enhancing activity of c-MET and downstream ERK1/2 and AKT signaling pathways, and highlight HSF4 as a potential therapeutic target for anti-CRC treatment.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Medical Oncology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China.,Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Xuelian Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Peng Cheng
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China
| | - Kelin Yue
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Ming Tang
- Department of Pathology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, China
| | - Yan Li
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China
| | - Yu Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 650000, Kunming, China.
| |
Collapse
|
7
|
Zylla JLS, Hoffman MM, Plesselova S, Bhattacharya S, Calar K, Afeworki Y, de la Puente P, Gnimpieba EZ, Miskimins WK, Messerli SM. Reduction of Metastasis via Epigenetic Modulation in a Murine Model of Metastatic Triple Negative Breast Cancer (TNBC). Cancers (Basel) 2022; 14:1753. [PMID: 35406526 PMCID: PMC8996906 DOI: 10.3390/cancers14071753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies.
Collapse
Affiliation(s)
- Jessica L. S. Zylla
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA; (J.L.S.Z.); (M.M.H.); (E.Z.G.)
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, Sioux Falls, SD 57107, USA
| | - Mariah M. Hoffman
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA; (J.L.S.Z.); (M.M.H.); (E.Z.G.)
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, Sioux Falls, SD 57107, USA
| | - Simona Plesselova
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
| | - Somshuvra Bhattacharya
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
| | - Kristin Calar
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
| | - Yohannes Afeworki
- Functional Genomics and Bioinformatics Core, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Pilar de la Puente
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57006, USA
| | - Etienne Z. Gnimpieba
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA; (J.L.S.Z.); (M.M.H.); (E.Z.G.)
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, Sioux Falls, SD 57107, USA
| | - W. Keith Miskimins
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57006, USA
| | - Shanta M. Messerli
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA; (J.L.S.Z.); (M.M.H.); (E.Z.G.)
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, Sioux Falls, SD 57107, USA
- Cancer Biology & Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA; (S.P.); (S.B.); (K.C.); (P.d.l.P.); (W.K.M.)
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| |
Collapse
|
8
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
9
|
Jing Z, Guo S, Li Y, Liang Z. FOXC2/ADAM12-dependent radiosensitivity of head and neck squamous cell carcinoma cells. Head Neck 2021; 44:212-225. [PMID: 34731528 DOI: 10.1002/hed.26918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Radiotherapy greatly benefits patients with tumors, but not all patients show favorable treatment response. This study investigated the impact of forkhead box protein C2 (FOXC2)-mediated a disintegrin and metalloprotease 12 (ADAM12) on the radiosensitivity of head and neck squamous cell carcinoma (HNSCC). METHODS After transfection and ionizing radiation, the biological activities of HNSCC cells were assessed. The relationship between ADAM12 and FOXC2 was verified. A xenograft model was used to evaluate the effect of FOXC2 knockdown on HNSCC growth in the context of radiation therapy. RESULTS FOXC2 and ADAM12 were upregulated in irradiated CAL-27 and HN4 cells. Knockdown of FOXC2 suppressed the malignant behaviors of CAL-27 and HN4 cells and inhibited the growth of transplanted tumors in nude mice. FOXC2 could bind ADAM12 promoter. Overexpression of ADAM12 reversed the promotion of FOXC2 silencing on the radiosensitivity of HNSCC cells. CONCLUSIONS FOXC2 regulates the radiosensitivity of HNSCC by targeting ADAM12.
Collapse
Affiliation(s)
- Zhibin Jing
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Sitong Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Li
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, Zhu X, Liu L, Li M, Lin D, Qiu J, Liu G, Zhang L, Wu Y, Tang H, Liu Y, Liang L, Ding Y, Liao W. Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:304. [PMID: 34583750 PMCID: PMC8477524 DOI: 10.1186/s13046-021-02108-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Background Tumor-associated macrophages (TAMs) are key regulators of the complex interplay between cancer and the immune microenvironment. Tumor cell-derived spondin 2 (SPON2) is an extracellular matrix glycoprotein that has complicated roles in recruitment of macrophages and neutrophils during inflammation. Overexpression of SPON2 has been shown to promote tumor cell migration in colorectal cancer (CRC). However, the mechanism by which SPON2 regulates the accumulation of TAMs in the tumor microenvironment (TME) of CRC is unknown. Methods Immunohistochemistry was used to examine SPON2 expression in clinical CRC tissues. In vitro migration assays, transendothelial migration assays (iTEM), and cell adhesion assays were used to investigate the effects of SPON2 on monocyte/macrophage migration. Subcutaneous tumor formation and orthotopic implantation assays were performed in C57 BL/6 mice to confirm the effects of SPON2 on TAM infiltration in tumors. Results SPON2 expression is positively correlated with M2-TAM infiltration in clinical CRC tumors and poor prognosis of CRC patients. In addition, SPON2 promotes cytoskeletal remodeling and transendothelial migration of monocytes by activating integrin β1/PYK2 axis. SPON2 may indirectly induce M2-polarization through upregulating cytokines including IL10, CCL2 and CSF1 expression in tumor cells. Blocking M2 polarization and Macrophage depletion inhibited the SPON2-induced tumors growth and invasion. Furthermore, blocking the SPON2/integrin β1/PYK2 axis impairs the transendothelial migration of monocytes and cancer-promoting functions of TAMs in vivo. Conclusions Our findings demonstrate that SPON2-driven M2-TAM infiltration plays an important role during CRC tumor growth and metastasis. SPON2 may be a valuable biomarker guiding the use of macrophage-targeting strategies and a potential therapeutic target in advanced CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02108-0.
Collapse
Affiliation(s)
- Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ruizhang Ou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yihao Liang
- Department of Orthopedist, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Xiaohui Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Dagui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yuanyuan Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Huiyi Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanmin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Retraction Note: TLE3 represses colorectal cancer proliferation by inhibiting MAPK and AKT signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:277. [PMID: 34470659 PMCID: PMC8408939 DOI: 10.1186/s13046-021-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Koch S. Regulation of Wnt Signaling by FOX Transcription Factors in Cancer. Cancers (Basel) 2021; 13:cancers13143446. [PMID: 34298659 PMCID: PMC8307807 DOI: 10.3390/cancers13143446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cancer is caused by a breakdown of cell-to-cell communication, which results in the unrestricted expansion of cells within a tissue. In many cases, tumor growth is maintained by the continuous activation of cell signaling programs that normally drive embryonic development and wound repair. In this review article, I discuss how one of the largest human protein families, namely FOX proteins, controls the activity of the Wnt pathway, a major regulatory signaling cascade in developing organisms and adult stem cells. Evidence suggests that there is considerable crosstalk between FOX proteins and the Wnt pathway, which contributes to cancer initiation and progression. A better understanding of FOX biology may therefore lead to the development of new targeted treatments for many types of cancer. Abstract Aberrant activation of the oncogenic Wnt signaling pathway is a hallmark of numerous types of cancer. However, in many cases, it is unclear how a chronically high Wnt signaling tone is maintained in the absence of activating pathway mutations. Forkhead box (FOX) family transcription factors are key regulators of embryonic development and tissue homeostasis, and there is mounting evidence that they act in part by fine-tuning the Wnt signaling output in a tissue-specific and context-dependent manner. Here, I review the diverse ways in which FOX transcription factors interact with the Wnt pathway, and how the ectopic reactivation of FOX proteins may affect Wnt signaling activity in various types of cancer. Many FOX transcription factors are partially functionally redundant and exhibit a highly restricted expression pattern, especially in adults. Thus, precision targeting of individual FOX proteins may lead to safe treatment options for Wnt-dependent cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, 58185 Linköping, Sweden; ; Tel.: +46-132-829-69
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
13
|
Yamamoto-Fukuda T, Akiyama N, Kojima H. Super-enhancer Acquisition Drives FOXC2 Expression in Middle Ear Cholesteatoma. J Assoc Res Otolaryngol 2021; 22:405-424. [PMID: 33861394 PMCID: PMC8329101 DOI: 10.1007/s10162-021-00801-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Distinct histone modifications regulate gene expression in certain diseases, but little is known about histone epigenetics in middle ear cholesteatoma. It is known that histone acetylation destabilizes the nucleosome and chromatin structure and induces gene activation. The association of histone acetylation with chronic inflammatory diseases has been indicated in recent studies. In this study, we examined the localization of variously modified histone H3 acetylation at lysine 9, 14, 18, 23, and 27 in paraffin-embedded sections of human middle ear cholesteatoma (cholesteatoma) tissues and the temporal bones of an animal model of cholesteatoma immunohistochemically. As a result, we found that there was a significant increase of the expression levels of H3K27ac both in human cholesteatoma tissues and the animal model. In genetics, super-enhancers are clusters of enhancers that drive the transcription of genes involved in cell identity. Super-enhancers were originally defined using the H3K27ac signal, and then we used H3K27ac chromatin immunoprecipitation followed by sequencing to map the active cis-regulatory landscape in human cholesteatoma. Based on the results, we identified increased H3K27ac signals as super-enhancers of the FOXC2 loci, as well as increased protein of FOXC2 in cholesteatoma. Recent studies have indicated that menin-MLL inhibitor could suppress tumor growth through the control of histone H3 modification. In this study, we demonstrated that the expression of FOXC2 was inhibited by menin-MLL inhibitor in vivo. These findings indicate that FOXC2 expression under histone modifications promoted the pathogenesis of cholesteatoma and suggest that it may be a therapeutic target of cholesteatoma.
Collapse
Affiliation(s)
- Tomomi Yamamoto-Fukuda
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan.
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Naotaro Akiyama
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Xia S, Yu W, Menden H, Younger ST, Sampath V. FOXC2 Autoregulates Its Expression in the Pulmonary Endothelium After Endotoxin Stimulation in a Histone Acetylation-Dependent Manner. Front Cell Dev Biol 2021; 9:657662. [PMID: 34017833 PMCID: PMC8129010 DOI: 10.3389/fcell.2021.657662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The innate immune response of pulmonary endothelial cells (EC) to lipopolysaccharide (LPS) induces Forkhead box protein C2 (FOXC2) activation through Toll Like Receptor 4 (TLR4). The mechanisms by which FOXC2 expression is regulated in lung EC under LPS stimulation remain unclear. We postulated that FOXC2 regulates its own expression in sepsis, and its transcriptional autoregulation directs lymphatic EC cell-fate decision. Bioinformatic analysis identified potential FOXC2 binding sites in the FOXC2 promoter. In human lung EC, we verified using chromatin immunoprecipitation (ChIP) and luciferase assays that FOXC2 bound to its own promoter and stimulated its expression after LPS stimulation. Chemical inhibition of histone acetylation by garcinol repressed LPS-induced histone acetylation in the FOXC2 promoter region, and disrupted LPS-mediated FOXC2 binding and transcriptional activation. CRISPR/dCas9/gRNA directed against FOXC2-binding-element (FBE) suppressed LPS-stimulated FOXC2 binding and autoregulation by blocking FBEs in the FOXC2 promoter, and repressed expression of lymphatic EC markers. In a neonatal mouse model of sterile sepsis, LPS-induced FOXC2 binding to FBE and FOXC2 expression in lung EC was attenuated with garcinol treatment. These data reveal a new mechanism of LPS-induced histone acetylation-dependent FOXC2 autoregulation.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Children's Mercy Kansas City, MO, United States
| | - Wei Yu
- Department of Pediatrics, Children's Mercy Kansas City, MO, United States
| | - Heather Menden
- Department of Pediatrics, Children's Mercy Kansas City, MO, United States
| | - Scott T Younger
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, MO, United States
| | - Venkatesh Sampath
- Department of Pediatrics, Children's Mercy Kansas City, MO, United States
| |
Collapse
|
15
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
16
|
Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L, Matuskova M. Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncol Rep 2021; 45:10. [PMID: 33649827 PMCID: PMC7876998 DOI: 10.3892/or.2021.7961] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Uncontrollable metastatic outgrowth process is the leading cause of mortality worldwide, even in the case of colorectal cancer. Colorectal cancer (CRC) accounts for approximately 10% of all annually diagnosed cancers and 50% of CRC patients will develop metastases in the course of disease. Most patients with metastatic CRC have incurable disease. Even if patients undergo resection of liver metastases, the 5‑year survival rate ranges from 25 to 58%. Next‑generation sequencing of tumour specimens from large colorectal cancer patient cohorts has led to major advances in elucidating the genomic landscape of these tumours and paired metastases. The expression profiles of primary CRC and their metastatic lesions at both the gene and pathway levels were compared and led to the selection of early driver genes responsible for carcinogenesis and metastasis‑specific genes that increased the metastatic process. The genetic, transcriptional and epigenetic alteration encoded by these genes and their combination influence many pivotal signalling pathways, enabling the dissemination and outgrowth in distant organs. Therapeutic regimens affecting several different active pathways may have important implications for therapeutic efficacy.
Collapse
Affiliation(s)
- Martina Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Tatiana Furielova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Sona Balintova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Miroslava Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| |
Collapse
|
17
|
Hargadon KM, Győrffy B, Strong EW. The prognostic significance of FOXC2 gene expression in cancer: A comprehensive analysis of RNA-seq data from the cancer genome atlas. Cancer Genet 2021; 254-255:58-64. [PMID: 33636524 DOI: 10.1016/j.cancergen.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
The FOXC2 transcription factor is a key regulator of tumor progression in many cancer types. Known to exhibit an array of oncogenic functions when dysregulated, FOXC2 has emerged as a useful biomarker for predicting disease aggression and patient outcome. In this regard, increased expression and nuclear localization of FOXC2 protein in tumor tissue have become well-established as poor prognostic factors for many cancer types. However, whether FOXC2 gene expression can serve as a similarly useful RNA-level biomarker has remained largely unexplored. Therefore, we conducted a comprehensive analysis of TCGA RNA-seq data to evaluate whether FOXC2 gene expression levels in primary tumor biopsies correlate with patient outcome. We report herein that increased expression of FOXC2 RNA in tumor tissue is a poor prognostic factor for patient survival in many cancer types. Moreover, we also found that FOXC2 gene expression predicts cancer patient response to several commonly prescribed chemotherapeutics. Together, these data highlight FOXC2 RNA expression in tumor tissue as an important biomarker with prognostic significance for solid tumors of diverse origin.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA.
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Magyar Tudósok körútja 2., H-1117 Budapest, Hungary; Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Tuzolto u. 7-9, H-1094 Budapest, Hungary
| | - Elijah W Strong
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Brown Student Center, Box 837, Hampden-Sydney, VA 23943, USA
| |
Collapse
|
18
|
Yoon PS, Del Piccolo N, Shirure VS, Peng Y, Kirane A, Canter RJ, Fields RC, George SC, Gholami S. Advances in Modeling the Immune Microenvironment of Colorectal Cancer. Front Immunol 2021; 11:614300. [PMID: 33643296 PMCID: PMC7902698 DOI: 10.3389/fimmu.2020.614300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related death in the US. CRC frequently metastasizes to the liver and these patients have a particularly poor prognosis. The infiltration of immune cells into CRC tumors and liver metastases accurately predicts disease progression and patient survival. Despite the evident influence of immune cells in the CRC tumor microenvironment (TME), efforts to identify immunotherapies for CRC patients have been limited. Here, we argue that preclinical model systems that recapitulate key features of the tumor microenvironment-including tumor, stromal, and immune cells; the extracellular matrix; and the vasculature-are crucial for studies of immunity in the CRC TME and the utility of immunotherapies for CRC patients. We briefly review the discoveries, advantages, and disadvantages of current in vitro and in vivo model systems, including 2D cell culture models, 3D culture systems, murine models, and organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Paul Sukwoo Yoon
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Nuala Del Piccolo
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Yushuan Peng
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Kirane
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Robert J Canter
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Ryan C Fields
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Sepideh Gholami
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
19
|
Yan Y, Xuan B, Gao Z, Shen C, Cao Y, Hong J, Chen H, Cui Z, Ye G, Fang JY, Wang Z. CCMAlnc Promotes the Malignance of Colorectal Cancer by Modulating the Interaction Between miR-5001-5p and Its Target mRNA. Front Cell Dev Biol 2020; 8:566932. [PMID: 33681178 PMCID: PMC7931267 DOI: 10.3389/fcell.2020.566932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Objective Colorectal cancer (CRC) is highly malignant and cancer metastasis remains the predominant cause of CRC death. The potential molecular mechanism of long non-coding RNA (lncRNAs) in CRC malignance is still poorly elucidated. Methods CCMAlnc expression was analyzed by using the Sequence ReadArchive (SRA) database. Target gene expression was examined by real-time PCR and Western blotting. The biological function of CCMAlnc and miR-5001-5p was detected by cell invasion, CCK8 proliferation, and colony formation assays in loss of function and gain of function experiments in vitro. A luciferase assay was performed to validate the target site of miR-5001-5p on the 3′-UTR of HES6 mRNA. Results CCMAlnc was identified as a novel functional lncRNA in CRC. Elevated CCMAlnc was detected in CRC cells as well as in clinical CRC tissue samples, and the expression of this lncRNA positively correlated with the poor prognosis of CRC patients. Functional validation assays revealed that downregulation of CCMAlnc impaired CRC cell proliferation and invasion in vitro, but upregulation of CCMAlnc reversed this effect. Moreover, CCMAlnc was validated to act as a competing endogenous RNA (ceRNA) that stabilizes the expression of HES6 by downregulating miR-5001-5p. Conclusion CCMAlnc/miR-5001-5p/HES6 signaling is strongly activated to promote CRC malignance. CCMAlnc is defined as a potential candidate biomarker for metastasis prediction in CRC patients and as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Yuqing Yan
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyun Gao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Cao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Joosten SPJ, Spaargaren M, Clevers H, Pals ST. Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochim Biophys Acta Rev Cancer 2020; 1874:188437. [PMID: 32976979 DOI: 10.1016/j.bbcan.2020.188437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial self-renewal is a tightly controlled process, which is critically dependent on WNT signalling. Aberrant activation of the WNT pathway in intestinal stem cells (ISCs) results in constitutive transcription of target genes, which collectively drive malignant transformation in colorectal cancer (CRC). However, the contribution of individual genes to intestinal homeostasis and tumorigenesis often is incompletely defined. Here, we discuss converging evidence indicating that the receptor tyrosine kinase (RTK) MET and its ligand hepatocyte growth factor (HGF) play a major role in the intestinal damage response, as well as in intestinal tumorigenesis, by controlling the proliferation, survival, motility, and stemness of normal and neoplastic intestinal epithelial cells. These activities of MET are promoted by specific CD44 isoforms expressed by ISCs. The accrued data indicate that MET and the EGFR have overlapping roles in the biology of intestinal epithelium and that metastatic CRCs can exploit this redundancy to escape from EGFR-targeted treatments, co-opting HGF/MET/CD44v signalling. Hence, targeting both pathways may be required for effective treatment of (a subset of) CRCs. The RTK identity of MET, the distinctive 'plasminogen-like' structure and activation mode of its ligand HGF, and the specific collaboration of MET with CD44, provide several unique targeting options, which merit further exploration.
Collapse
Affiliation(s)
- Sander P J Joosten
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands
| | - Marcel Spaargaren
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, University of Utrecht, Utrecht, the Netherlands
| | - Steven T Pals
- Department of Pathology and Cancer Center Amsterdam (CCA), Amsterdam University Medical Centers, Loc. AMC, the Netherlands..
| |
Collapse
|
21
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
22
|
Wang S, Qiu J, Liu L, Su C, Qi L, Huang C, Chen X, Zhang Y, Ye Y, Ding Y, Liang L, Liao W. CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:168. [PMID: 32843066 PMCID: PMC7446182 DOI: 10.1186/s13046-020-01673-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND cAMP responsive element binding protein 5 (CREB5) is a transcriptional activator in eukaryotic cells that can regulate gene expression. Previously, we found that CREB5 was involved in the occurrence and development of colorectal cancer (CRC) using bioinformatics analysis. However, the biological roles and underlying regulatory mechanism of CREB5 in CRC remain unclear. METHODS Real-time PCR, western blotting, and immunohistochemistry were used to examine CREB5 expression. In vitro experiments including migration assay, wound-healing assay, chicken chorioallantoic membrane assay, and human umbilical vein endothelial cells tube formation assay were used to investigate the effects of CREB5 on CRC cell migration and tumor angiogenesis ability. Additionally, an orthotopic implantation assay was performed in nude mice to confirm the effects of CREB5 in vivo. Furthermore, gene set enrichment analysis was performed to explore the potential mechanism of CREB5 in CRC. RESULTS We found that CREB5 expression was highly upregulated in CRC. CREB5 overexpression was positively correlated with advanced WHO stages and TNM stages and shorter survival in CRC patients. Moreover, CREB5 overexpression promoted while CREB5 silencing reduced the invasiveness and metastatic capacity of CRC cells both in vitro and in vivo. Furthermore, CREB5 directly interacted with the MET promoter and activated the hepatocyte growth factor-MET signalling pathway. Importantly, inhibition of MET reduced the invasion and metastasis of CREB5-overexpressing CRC cells, suggesting that CREB5 promotes metastasis mainly through activation of MET signalling. CONCLUSION Our study demonstrates a crucial role for CREB5 in CRC metastasis by directly upregulating MET expression. CREB5 may be both a potential prognostic marker and a therapeutic target to effectively overcome metastasis in CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Cailin Su
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xiaoning Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.
| |
Collapse
|
23
|
Tavian D, Missaglia S, Michelini S, Maltese PE, Manara E, Mordente A, Bertelli M. FOXC2 Disease Mutations Identified in Lymphedema Distichiasis Patients Impair Transcriptional Activity and Cell Proliferation. Int J Mol Sci 2020; 21:ijms21145112. [PMID: 32698337 PMCID: PMC7404146 DOI: 10.3390/ijms21145112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
FOXC2 is a member of the human forkhead-box gene family and encodes a regulatory transcription factor. Mutations in FOXC2 have been associated with lymphedema distichiasis (LD), an autosomal dominant disorder that primarily affects the limbs. Most patients also show extra eyelashes, a condition known as distichiasis. We previously reported genetic and clinical findings in six unrelated families with LD. Half the patients showed missense mutations, two carried frameshift mutations and a stop mutation was identified in a last patient. Here we analyzed the subcellular localization and transactivation activity of the mutant proteins, showing that all but one (p.Y109*) localized to the nucleus. A significant reduction of transactivation activity was observed in four mutants (p.L80F, p.H199Pfs*264, p.I213Tfs*18, p.Y109*) compared with wild type FOXC2 protein, while only a partial loss of function was associated with p.V228M. The mutant p.I213V showed a very slight increase of transactivation activity. Finally, immunofluorescence analysis revealed that some mutants were sequestered into nuclear aggregates and caused a reduction of cell viability. This study offers new insights into the effect of FOXC2 mutations on protein function and shows the involvement of aberrant aggregation of FOXC2 proteins in cell death.
Collapse
Affiliation(s)
- Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, 20145 Milan, Italy;
- Psychology Department, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
- Correspondence: ; Tel.: +39-02-72348731
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, 20145 Milan, Italy;
- Psychology Department, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Sandro Michelini
- Department of Vascular Rehabilitation, San Giovanni Battista Hospital, 00148 Rome, Italy;
| | - Paolo Enrico Maltese
- Laboratory of Molecular Genetics, International Association of Medical Genetics, MAGI’s Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
| | | | - Alvaro Mordente
- Dipartimento di Scienze di Laboratorio ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
- Facoltà di Scienze della Formazione, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Matteo Bertelli
- Laboratory of Molecular Genetics, International Association of Medical Genetics, MAGI’s Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI EUREGIO, 39100 Bolzano, Italy;
| |
Collapse
|
24
|
Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca 2+-FAK signal pathway. Cell Death Dis 2020; 11:434. [PMID: 32513911 PMCID: PMC7280533 DOI: 10.1038/s41419-020-2633-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed, which are involved in tumorigenesis and metastasis in colorectal cancer (CRC). FOXC2 antisense RNA 1 (FOXC2-AS1) was reported, facilitating the proliferation and progression in several cancers. However, the role of FOXC2-AS1 in CRC cell migration and metastasis is not unclear. In this study, we observed that lncRNA FOXC2-AS1 was upregulated in CRC tissues, and its high expression indicated the poor survival in CRC patients. Meanwhile, FOXC2-AS1 was higher in CRC tissues with metastasis than that of nonmetastatic tumor tissues. We found that FOXC2-AS1 was predominately expressed in the nucleus of tissues and cells. FOXC2-AS1 knockdown suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo. Moreover, FOXC2-AS1 could positively regulate the neighboring gene FOXC2 and stabilized FOXC2 mRNA by forming a RNA duplex. Meanwhile, ectopic expression of FOXC2 could obviously alleviate the suppressed effects caused by silencing FOXC2-AS1. For the mechanism, FOXC2-AS1 knockdown could reduce intracellular Ca2+ levels, inhibited FA formation and FAK signaling, and these suppressed effects were mitigated by increasing FOXC2 expression. These results demonstrated that FOXC2-AS1 enhances FOXC2 mRNA stability to promote CRC proliferation, migration, and invasion by activation of Ca2+-FAK signaling, which implicates that FOXC2-AS1 may represent a latent effective therapeutic target for CRC progression.
Collapse
Affiliation(s)
- Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
25
|
Lin CL, Tan X, Chen M, Kusi M, Hung CN, Chou CW, Hsu YT, Wang CM, Kirma N, Chen CL, Lin CH, Lathrop KI, Elledge R, Kaklamani VG, Mitsuya K, Huang THM. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer. BMC Med Genomics 2020; 13:69. [PMID: 32408897 PMCID: PMC7222439 DOI: 10.1186/s12920-020-0729-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.
Collapse
Affiliation(s)
- Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ya-Ting Hsu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Nameer Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kate I Lathrop
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Elledge
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Virginia G Kaklamani
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma. Cell Death Dis 2020; 11:296. [PMID: 32341351 PMCID: PMC7186230 DOI: 10.1038/s41419-020-2492-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
ZNF750 is one novel significantly mutated gene identified in esophageal squamous cell carcinoma (ESCC) using next-generation sequencing. However, its clinically relevant and potential mechanisms have remained elusive. Using genomic sequencing of 612 ESCC patients, we analyzed the associations of ZNF750 mutations with clinicopathologic features and its prognostic value. We further investigated the function and underlying mechanism of ZNF750 in angiogenesis. The results showed ZNF750 mutations/deletions are significantly associated with malignant progression and poor prognosis of ESCC patients. Decreased ZNF750 in ESCC cells induces enhanced angiogenesis of human umbilical vein endothelial cells (HUVECs) and human arterial endothelial cells (HAECs), and the effect may be indirectly mediated by FOXC2. RNA-seq and ChIP shows lncRNA DANCR is a direct downstream target of ZNF750. Furtherly, knockdown ZNF750 evokes DANCR expression, which prevents miR-4707-3p to interact with FOXC2 as a microRNA sponge in a ceRNA manner, leading to enhanced FOXC2 signaling and angiogenesis. In contrast, ZNF750 expression reverses the effect. Our study reveals a novel mechanism of ZNF750, highlights a significance of ZNF750 as a metastatic and prognostic biomarker, and offers potential therapeutic targets for ESCC patients harboring ZNF750 mutations.
Collapse
|
27
|
The CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of gastric cancer. Cancer Lett 2020; 482:90-101. [PMID: 32278016 DOI: 10.1016/j.canlet.2020.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have shown an association between coiled-coil domain-containing (CCDC) genes and different cancers. Our previous studies revealed that CCDC43 is highly expressed in colorectal cancer, but the expression and molecular mechanisms of CCDC43 in gastric cancer (GC) are yet to be determined. Here, we show that CCDC43 is overexpressed in gastric tissues. CCDC43 expression is closely related to tumor differentiation, lymph-node-metastasis, and prognosis of gastric cancer. Overexpression of CCDC43 promotes the proliferation, invasion, and metastasis of GC cells. CCDC43 may upregulate and stabilize ADRM1, resulting in the construction of the ubiquitin-mediated proteasome. In contrast, inhibition of ADRM1 could reverse the function of CCDC43 in GC both in vitro and in vivo. Our data demonstrate that transcription factor YY1 directly binds to CCDC43 and ADRM1 gene promoters, leading to over-expression of CCDC43 and ADRM1. Furthermore, in vitro experiments demonstrate that knock down of CCDC43 or ADRM1 attenuates the YY1-mediated malignant phenotypes. Finally, the association among YY1, CCDC43 and ADRM1 is validated in clinical samples. Our findings suggest that the CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of GC, and the axis may be a potential therapeutic target for GC.
Collapse
|
28
|
Yang S, Li Z, Luo R. miR-34c Targets MET to Improve the Anti-Tumor Effect of Cisplatin on Ovarian Cancer. Onco Targets Ther 2020; 13:2887-2897. [PMID: 32308421 PMCID: PMC7148417 DOI: 10.2147/ott.s239425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cisplatin is a commonly used drug for the treatment of various types of malignant cancers, including ovarian cancer. However, resistance to cisplatin is still a considerable obstacle to achieve a satisfactory therapeutic effect. The purpose of this study is to develop a strategy to sensitize ovarian cancer cells to cisplatin-induced cytotoxicity. Methods miR-34c levels in ovarian cancer tissues and cell lines were tested by qRT-PCR analysis. In vitro assays, the effect of miR-34c on cisplatin was evaluated by using MTT. Expression of MET and phosphorylation of PI3K and AKT were tested by Western blot assays. Conjugation with Bad and Bcl-xl was evaluated through immunoprecipitation. Flow cytometry analysis was performed to measure the apoptotic rate of ovarian cancer cells. Results Downregulation of miR-34c was observed in ovarian cancer tissues and cell lines. However, miR-34c overexpression was found to sensitize ovarian cancer cells to cisplatin treatment in vitro and in vivo. Mechanically, we found that miR-34c targeted the MET gene, thereby inhibiting the phosphorylation of PI3K and AKT to activate Bad. As a result, miR-34c reduced resistance of ovarian cancer cells to cisplatin-induced apoptosis. Conclusion miR-34c/MET axis promotes cisplatin-induced cytotoxicity against ovarian cancer by targeting the MET/PI3K/AKT/Bad pathway.
Collapse
Affiliation(s)
- Shiying Yang
- Department of Gynecology and Obstetrics, Rizhao People's Hospital, Rizhao City 276800, Shandong Province, People's Republic of China
| | - Zhen Li
- Reproductive Medicine Center, Qingdao Women and Children Hospital, Qingdao City 266011, Shandong Province, People's Republic of China
| | - Rui Luo
- Department of Gynecology, Linyi People's Hospital, Linyi City 276000, Shandong Province, People's Republic of China
| |
Collapse
|
29
|
Yan M, Gao H, Lv Z, Liu Y, Zhao S, Gong W, Liu W. Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells. J Cell Mol Med 2020; 24:5593-5604. [PMID: 32249539 PMCID: PMC7214167 DOI: 10.1111/jcmm.15215] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
As a class of covalently closed non-coding RNAs, circular RNAs (circRNAs) are key regulators in various malignancies including osteosarcoma (OS). In the present study, we found that circular RNA PVT1 (circPVT1) was up-regulated in OS and correlated with poor prognosis of patients with OS. Functionally, we showed that knockdown of circPVT1 suppressed OS cells metastasis. In addition, we found that (forkhead box C2) FOXC2 was a downstream gene in circPVT1-mediated metastasis in OS cells. We demonstrated that circPVT1 promoted OS cells metastasis via post-transcriptionally regulating of FOXC2. Furthermore, we revealed that microRNA 526b (miR-526b) was a key bridge which connected circPVT1 and FOXC2. We showed that miR-526b was down-regulated in OS tissue and cell lines. Through a transwell assay, we found that miR-526b suppressed OS cells metastasis by targeting of FOXC2. We also showed that miR-526b targeted circPVT1 via similar mircoRNA response elements (MREs) as it did for FOXC2. Finally, we proved that circPVT1 decoyed miR-526b to promote FOXC2-mediated metastasis in OS cells. In brief, our current study demonstrated that circPVT1, functioning as an oncogene, promotes OS cells metastasis via regulation of FOXC2 by acting as a ceRNA of miR-526b. CircPVT1/miR-526b/FOXC2 axis might be a novel target in molecular treatment of OS.
Collapse
Affiliation(s)
- Ming Yan
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Zhenshan Lv
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Ying Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Song Zhao
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Weiquan Gong
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, P.R.China
| |
Collapse
|
30
|
Hargadon KM, Györffy B, Strong EW, Tarnai BD, Thompson JC, Bushhouse DZ, Johnson CE, Williams CJ. The FOXC2 Transcription Factor Promotes Melanoma Outgrowth and Regulates Expression of Genes Associated With Drug Resistance and Interferon Responsiveness. Cancer Genomics Proteomics 2020; 16:491-503. [PMID: 31659103 DOI: 10.21873/cgp.20152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/AIM The FOXC2 transcription factor promotes the progression of several cancer types, but has not been investigated in the context of melanoma cells. To study FOXC2's influence on melanoma progression, we generated a FOXC2-deficient murine melanoma cell line and evaluated The Cancer Genome Atlas (TCGA) patient datasets. MATERIALS AND METHODS We compared tumor growth kinetics and RNA-seq/qRT-PCR gene expression profiles from wild-type versus FOXC2-deficient murine melanomas. We also performed Kaplan-Meier survival analysis of TCGA data to assess the influence of FOXC2 gene expression on melanoma patients' response to chemotherapy and immunotherapy. RESULTS FOXC2 promotes melanoma progression and regulates the expression of genes associated with multiple oncogenic pathways, including the oxidative stress response, xenobiotic metabolism, and interferon responsiveness. FOXC2 expression in melanoma correlates negatively with patient response to chemotherapy and immunotherapy. CONCLUSION FOXC2 drives a tumor-promoting gene expression program in melanoma and is a prognostic indicator of patient response to multiple cancer therapies.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A.
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Budapest, Hungary
| | - Elijah W Strong
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Brian D Tarnai
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Jefferson C Thompson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - David Z Bushhouse
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Coleman E Johnson
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| | - Corey J Williams
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, U.S.A
| |
Collapse
|
31
|
Hargadon KM, Williams CJ. RNA-seq Analysis of Wild-Type vs. FOXC2-Deficient Melanoma Cells Reveals a Role for the FOXC2 Transcription Factor in the Regulation of Multiple Oncogenic Pathways. Front Oncol 2020; 10:267. [PMID: 32175283 PMCID: PMC7056877 DOI: 10.3389/fonc.2020.00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| | - Corey J Williams
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| |
Collapse
|
32
|
Jian X, He H, Zhu J, Zhang Q, Zheng Z, Liang X, Chen L, Yang M, Peng K, Zhang Z, Liu T, Ye Y, Jiao H, Wang S, Zhou W, Ding Y, Li T. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol Cancer 2020; 19:20. [PMID: 32005118 PMCID: PMC6993513 DOI: 10.1186/s12943-020-1134-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that circular RNAs (circRNAs) act as microRNA (miRNA) sponges to directly inhibit specific miRNAs and alter their ability to regulate gene expression at the post-transcriptional level; this mechanism is believed to occur in various cancers. However, the expression level, precise function and mechanism of circ_001680 in colorectal carcinoma (CRC) are largely unknown. METHODS qRT-PCR was used to detect the expression of circ_001680 and miR-340 in human CRC tissues and their matched normal tissues. Bioinformatics analyses and dual-fluorescence reporter assays were used to evaluate whether circ_001680 could bind to miR-340. Circ_001680 overexpression and knockdown cell lines were constructed to investigate the proliferation and migration abilities in vivo and in vitro through function-based experiments, including CCK8, plate clone formation, transwell, and wounding healing assays. The relationships among circ_001680, miR-340 and BMI1 were investigated by bioinformatics analyses, dual-fluorescence reporter system, FISH, RIP and RNA pull down assays. Sphere forming assays and flow cytometry analyses were used to assess the effect of circ_001680 on the stemness characteristics of CRC cells. RESULTS Circ_001680 was more highly expressed in of CRC tissue than in matched adjacent normal tissues from the same patients. Circ_001680 was observed to enhance the proliferation and migration capacity of CRC cells. Furthermore, dual-fluorescence reporter assays confirmed that circ_001680 affects the expression of BMI1 by targeting miR-340. More importantly, we also found that circ_001680 could promote the cancer stem cell (CSC) population in CRC and induce irinotecan therapeutic resistance by regulating the miR-340 target gene BMI1. CONCLUSIONS Our results demonstrated that circ_001680 is a part of a novel strategy to induce chemotherapy resistance in CRC through BMI1 upregulation. Moreover, circ_001680 may be a promising diagnostic and prognostic marker to determine the success of irinotecan-based chemotherapy.
Collapse
Affiliation(s)
- Xiangyu Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiehong Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangjing Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liuyan Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyue Peng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaowen Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tengfei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Sec62 promotes early recurrence of hepatocellular carcinoma through activating integrinα/CAV1 signalling. Oncogenesis 2019; 8:74. [PMID: 31822656 PMCID: PMC6904485 DOI: 10.1038/s41389-019-0183-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Postsurgical recurrence within 2 years is the major cause of poor survival of hepatocellular carcinoma (HCC) patients. However, the molecular mechanism underlying HCC recurrence remains unclear. Here, we distinguish the function and mechanism of Sec62 in promoting HCC recurrence. The correlation between Sec62 and early recurrence was demonstrated in 60 HCC samples from a prospective study. HCC cells with Sec62 knockdown (Sec62KD) or overexpression (Sec62OE) were used to determine the potential of Sec62 in cell migration in vitro. Microarray analysis comparing Sec62KD or Sec62OE to their control counterparts was used to explore the mechanisms of Sec62-induced recurrence. A luciferase-labelled orthotopic nude mouse model of HCC with Sec62KD or Sec62OE was used to validate the potential of Sec62 in early HCC recurrence in vivo. We found that high expression of Sec62 was positively correlated with surgical recurrence in clinical HCC samples. Multivariate analysis revealed that Sec62 was an independent prognostic factor for early recurrence in postoperative HCC patients. Moreover, Sec62 promoted migration and invasion of HCC cells in vitro and postsurgical recurrence in vivo. Mechanically, integrinα/CAV1 signalling was identified as one of the targets of Sec62 in cell movement. Overexpression of integrin α partially rescued the Sec62 knockdown-induced inhibition of cell migration. Sec62 is a potentially prognostic factor for early recurrence in postoperative HCC patients and promotes HCC metastasis through integrinα/CAV1 signalling. Sec62 might be an attractive drug target for combating HCC postsurgical recurrence.
Collapse
|
34
|
Elie BT, Hubbard K, Pechenyy Y, Layek B, Prabha S, Contel M. Preclinical evaluation of an unconventional ruthenium-gold-based chemotherapeutic: RANCE-1, in clear cell renal cell carcinoma. Cancer Med 2019; 8:4304-4314. [PMID: 31192543 PMCID: PMC6675714 DOI: 10.1002/cam4.2322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are few effective treatments for patients with advanced clear cell renal cell carcinoma (CCRCC). Recent findings indicate that ruthenium-gold containing compounds exhibit significant antitumor efficacy against CCRCC in vitro affecting cell viability as well as angiogenesis and markers driving those 2 phenomena. However, no in vivo preclinical evaluation of this class of compounds has been reported. METHODS Following the dose-finding pharmacokinetic determination, NOD.CB17-Prkdc SCID/J mice bearing xenograft CCRCC Caki-1 tumors were treated in an intervention trial for 21 days at 10 mg/kg/72h of RANCE-1. At the end of the trial, tumor samples were analyzed for histopathological and changes in protein expression levels were assessed. RESULTS After 21 days of treatment there was no significant change in tumor size in the RANCE-1-treated mice as compared to the starting size (+3.87%) (P = 0.082) while the vehicle treated mice exhibited a significant tumor size increase (+138%) (P < 0.01). There were no signs of pathological complications as a result of treatment. Significant reduction in the expression of VEGF, PDGF, FGF, EGFR, and HGRF, all key to the proliferation of tumor cells and stromal cells serving protumorigenic purposes was observed. CONCLUSIONS The tumor growth inhibition displayed and favorable pathology profile of RANCE-1 makes it a promising candidate for further evaluation toward clinical use for the treatment of advanced CCRCC.
Collapse
Affiliation(s)
- Benelita T. Elie
- Department of ChemistryBrooklyn College, The City University of New YorkBrooklynNew York
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
| | - Karen Hubbard
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Department of BiologyCity College of New York, The City University of New YorkNew YorkNew York
| | - Yuriy Pechenyy
- Department of BiologyCity College of New York, The City University of New YorkNew YorkNew York
| | - Buddhadev Layek
- University of Minnesota College of PharmacyMinneapolisMinnesota
| | - Swayam Prabha
- University of Minnesota College of PharmacyMinneapolisMinnesota
| | - Maria Contel
- Department of ChemistryBrooklyn College, The City University of New YorkBrooklynNew York
- Biology PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Chemistry PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
- Biochemistry PhD Program, The Graduate CenterThe City University of New YorkNew YorkNew York
| |
Collapse
|
35
|
Guha Majumdar A, Subramanian M. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Pharmacol 2019; 166:274-291. [PMID: 31154000 DOI: 10.1016/j.bcp.2019.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is a major cause of cancer-related mortality around the world. Currently, options for diagnosis and treatment are extremely limited, which culminates in a very high mortality rate. Intensive research spanning more than four decades has met several roadblocks in terms of improvement in overall survival. In this study, we have evaluated the effect of Hydroxychavicol (HC), a naturally occurring and abundantly isolatable allylarene from Piper betle leaves on pancreatic cancer cells. Our investigation reveals that HC inhibits proliferation and epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. HC induces DNA damage, as evidenced by γ-H2AX, 53BP1 induction and comet assay, which further results in mitotic catastrophe and apoptosis. The apoptosis induced by HC is JNK pathway-dependent and caspase-mediated. HC also inhibits migration and invasion of pancreatic cancer cells via a generalized repression of genes involved in EMT. A quantitative real time PCR-based array revealed at least 14 different genes to be differentially expressed upon HC treatment in pancreatic cancer cells. These results show significant potential of HC as an anticancer agent against pancreatic cancer.
Collapse
Affiliation(s)
- Ananda Guha Majumdar
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
36
|
Zhao YL, Zhong SR, Zhang SH, Bi JX, Xiao ZY, Wang SY, Jiao HL, Zhang D, Qiu JF, Zhang LJ, Huang CM, Chen XL, Ding YQ, Ye YP, Liang L, Liao WT. UBN2 promotes tumor progression via the Ras/MAPK pathway and predicts poor prognosis in colorectal cancer. Cancer Cell Int 2019; 19:126. [PMID: 31110467 PMCID: PMC6511126 DOI: 10.1186/s12935-019-0848-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Ubinuclein-2 (UBN2) is a nuclear protein that interacts with many transcription factors. The molecular role and mechanism of UBN2 in the development and progression of cancers, including colorectal cancer (CRC), is not well understood. The current study explored the role of UBN2 in the development and progression CRC. Methods Oncomine network and The Cancer Genome Atlas (TCGA) database were downloaded and Gene Set Enrichment Analysis (GSEA) was performed to compare the UBN2′s expression between normal and tumor tissues, as well as the potential correlation of UBN2 expression with signaling pathways. Immunohistochemistry (IHC), qRT-PCR and Western blotting were performed to determine the expression of UBN2 in CRC tissues or cell lines. In vitro proliferation and invasion assays, and orthotopic mouse metastatic model were used to analyze the effect of UBN2 on the development and progression of CRC. Results The analysis of UBN2 expression using Oncomine network showed that UBN2 was upregulated in CRC tissues compared to matched adjacent normal intestinal epithelial tissues. IHC, qRT-PCR and Western blotting confirmed that UBN2 expression is higher in CRC tissues compared with matched adjacent normal intestinal epithelial tissues. In addition, analyses of TCGA data revealed that high UBN2 expression was associated with advanced stages of lymph node metastasis, distant metastasis, and short survival time in CRC patients. IHC showed that high UBN2 expression is correlated with advanced stages of CRC. Moreover, UBN2 is highly expressed in the liver metastatic lesions. Furthermore, knockdown of UBN2 inhibited the growth, invasiveness and metastasis of CRC cells via regulation of the Ras/MAPK signaling pathway. Conclusion The current study demonstrates that UBN2 promotes tumor progression in CRC. UBN2 may be used as a promising biomarker for predicting the prognosis of CRC patients. Electronic supplementary material The online version of this article (10.1186/s12935-019-0848-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Li Zhao
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Shen-Rong Zhong
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Shi-Hong Zhang
- 4Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Jia-Xin Bi
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Zhi-Yuan Xiao
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Shu-Yang Wang
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Hong-Li Jiao
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Dan Zhang
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Jun-Feng Qiu
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Ling-Jie Zhang
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Cheng-Mei Huang
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Xiao-Ling Chen
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Yan-Qing Ding
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Ya-Ping Ye
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Li Liang
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| | - Wen-Ting Liao
- 1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China.,2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong China.,3Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong China
| |
Collapse
|
37
|
AKIP1 promotes early recurrence of hepatocellular carcinoma through activating the Wnt/β-catenin/CBP signaling pathway. Oncogene 2019; 38:5516-5529. [PMID: 30936461 DOI: 10.1038/s41388-019-0807-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023]
Abstract
The early recurrence of hepatocellular carcinoma (HCC) is the main obstacle for long-term survival of patients. Wnt/β-catenin signaling has been involved in the development and progression of HCC. However, the molecular changes that link Wnt/β-catenin activation and HCC early recurrence remain poorly understood. Here we identified AKIP1 as a binding partner of β-catenin. AKIP1 interacted with and sustained β-catenin in the nuclear by blocking its interaction with adenomatous polyposis coli protein (APC). Moreover, AKIP1 enhanced the protein kinase A catalytic subunit (PKAc)-mediated phosphorylation of β-catenin, leading to recruitment of cyclic AMP response element-binding protein (CBP) and activation of β-catenin downstream transcription. Increased AKIP1 expression was observed in HCC clinical samples and correlated with early recurrence and poor prognosis of HCC. AKIP1 promoted invasion and colony outgrowth in vitro and increased intrahepatic and lung metastasis in vivo. Treatment with a CBP inhibitor ICG-001 effectively inhibited the metastatic progression of HCC tumors that had elevated AKIP1 in both cell line and patient-derived xenograft mouse models. Our findings not only establish AKIP1 as a novel regulator of Wnt/β-catenin signaling as well as HCC early recurrence but also highlight targeting the AKIP1/β-catenin/CBP axis as attractive therapies for combating HCC metastatic relapse.
Collapse
|
38
|
Fang Y, Sun B, Wang J, Wang Y. miR-622 inhibits angiogenesis by suppressing the CXCR4-VEGFA axis in colorectal cancer. Gene 2019; 699:37-42. [PMID: 30851425 DOI: 10.1016/j.gene.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis is essential for tumor metastasis. Our previous study has revealed that miR-622 inhibits colorectal cancer (CRC) metastasis. Here, we aimed to explore the effects and potential molecular mechanisms of action of miR-622 on angiogenesis. We found that overexpression of miR-622 inhibited CRC angiogenesis in vitro, according to suppression of proliferation, migration, tube formation, and invasiveness of human umbilical vein endothelial cells (HUVECs) treated with a tumor cell-conditioned medium derived from Caco-2 or HT-29 cells. Likewise, enhanced miR-622 expression suppressed CRC angiogenesis in vivo as determined by the measurement of Ki67 and VEGFA levels and microvessel density (by immunostaining). CXCR4, encoding a positive regulator of vascular endothelial growth factor A (VEGFA), was shown to be a direct target of miR-622. Overexpression of CXCR4 attenuated the inhibition of VEGFA expression by miR-622 and reversed the loss of tumor angiogenesis caused by miR-622. Taken together, these data show that miR-622 inhibits CRC angiogenesis by suppressing the CXCR4-VEGFA signaling axis, which represents a promising target for developing a new therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Yantian Fang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiangli Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
39
|
Penney ME, Parfrey PS, Savas S, Yilmaz YE. A genome-wide association study identifies single nucleotide polymorphisms associated with time-to-metastasis in colorectal cancer. BMC Cancer 2019; 19:133. [PMID: 30738427 PMCID: PMC6368959 DOI: 10.1186/s12885-019-5346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Differentiating between cancer patients who will experience metastasis within a short time and who will be long-term survivors without metastasis is a critical aim in healthcare. The microsatellite instability (MSI)-high tumor phenotype is such a differentiator in colorectal cancer, as patients with these tumors are unlikely to experience metastasis. Our aim in this study was to determine if germline genetic variations could further differentiate colorectal cancer patients based on the long-term risk and timing of metastasis. Methods The patient cohort consisted of 379 stage I-III Caucasian colorectal cancer patients with microsatellite stable or MSI-low tumors. We performed univariable analysis on 810,622 common single nucleotide polymorphisms (SNPs) under different genetic models. Depending on the long-term metastasis-free survival probability estimates, we applied a mixture cure model, Cox proportional hazards regression model, or log-rank test. For SNPs reaching Bonferroni-corrected significance (p < 6.2 × 10− 8) having valid genetic models, multivariable analysis adjusting for significant baseline characteristics was conducted. Results After adjusting for significant baseline characteristics, specific genotypes of ten polymorphisms were significantly associated with time-to-metastasis. These polymorphisms are three intergenic SNPs, rs5749032 (p = 1.28 × 10− 10), rs2327990 (p = 9.59 × 10− 10), rs1145724 (p = 3 × 10− 8), and seven SNPs within the non-coding sequences of three genes: FHIT (p = 2.59 × 10− 9), EPHB1 (p = 8.23 × 10− 9), and MIR7515 (p = 4.87 × 10− 8). Conclusions Our results suggest novel associations of specific genotypes of SNPs with early metastasis in Caucasian colorectal cancer patients. These associations, once replicated in other patient cohorts, could assist in the development of personalized treatment strategies for colorectal cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5346-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle E Penney
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Patrick S Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.,Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Yildiz E Yilmaz
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada. .,Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada. .,Department of Mathematics and Statistics, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada.
| |
Collapse
|
40
|
Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18:5. [PMID: 30621735 PMCID: PMC6325735 DOI: 10.1186/s12943-019-0938-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia.
| |
Collapse
|
41
|
Genomic and regulatory characteristics of significant transcription factors in colorectal cancer metastasis. Sci Rep 2018; 8:17836. [PMID: 30546056 PMCID: PMC6292939 DOI: 10.1038/s41598-018-36168-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
The dysregulation of transcription factors has an important impact on the oncogenesis and tumor progression. Nonetheless, its functions in colorectal cancer metastasis are still unclear. In this study, four transcription factors (HNF4A, HSF1, MECP2 and RAD21) were demonstrated to be associated with the metastasis of colorectal cancer in both RNA and protein levels. To comprehensively explore the intrinsic mechanisms, we profiled the molecular landscape of these metastasis-related transcription factors from multiple perspectives. In particular, as the crucial factors affecting genome stability, both copy number variation and DNA methylation exerted their strengths on the expression of these transcription factors (except MECP2). Additionally, based on a series of bioinformatics analyses, putative long non-coding RNAs were identified as functional regulators. Besides that, rely on the ATAC-Seq and ChIP-Seq profiles, we detected the target genes regulated by each transcription factor in the active chromatin zones. Finally, we inferred the associations between the target genes by Bayesian networks and identified LMO7 and ARL8A as potential clinical biomarkers. Taken together, our research systematically characterized the regulatory cascades of HNF4A, HSF1, MECP2 and RAD21 in colorectal cancer metastasis.
Collapse
|
42
|
Ye YP, Jiao HL, Wang SY, Xiao ZY, Zhang D, Qiu JF, Zhang LJ, Zhao YL, Li TT, Li-Liang, Liao WT, Ding YQ. Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:299. [PMID: 30514346 PMCID: PMC6277997 DOI: 10.1186/s13046-018-0958-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/12/2018] [Indexed: 01/20/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common digestive malignant tumors, and DMTN is a transcriptionally differentially expressed gene that was identified using CRC mRNA sequencing data from The Cancer Genome Atlas (TCGA). Our preliminary work suggested that the expression of DMTN was downregulated in CRC, and the Rac1 signaling pathway was significantly enriched in CRC tissues with low DMTN expression. However, the specific functions and underlying molecular mechanisms of DMTN in the progression of CRC and the upstream factors regulating the downregulation of the gene remain unclear. Methods DMTN expression was analyzed in CRC tissues, and the relationship between DMTN expression and the clinicopathological parameters was analyzed. In vitro and in vivo experimental models were used to detect the effects of DMTN dysregulation on invasion and metastasis of CRC cells. GSEA assay was performed to explore the mechanism of DMTN in invasion and metastasis of CRC. Westernblot, Co-IP and GST-Pull-Down assay were used to detect the interaction between DMTN and ARHGEF2, as well as the activation of the RAC1 signaling. Bisulfite genomic sequence (BSP) assay was used to test the degree of methylation of DMTN gene promoter in CRC tissues. Results We found that the expression of DMTN was significantly decreased in CRC tissues, and the downregulation of DMTN was associated with advanced progression and poor survival and was regarded as an independent predictive factor of CRC patient prognosis. The overexpression of DMTN inhibited, while the knockdown of DMTN promoted, invasion and metastasis in CRC cells. Moreover, hypermethylation and the deletion of DMTN relieved binding to the ARHGEF2 protein, activated the Rac1 signaling pathway, regulated actin cytoskeletal rearrangements, and promoted the invasion and metastasis of CRC cells. Conclusion Our study demonstrated that the downregulation of DMTN promoted the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through RAC1 signaling activation, potentially providing a new therapeutic target to enable cancer precision medicine for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0958-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ting-Ting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li-Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
43
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
He Y, Xie H, Yu P, Jiang S, Wei L. FOXC2 promotes epithelial–mesenchymal transition and cisplatin resistance of non-small cell lung cancer cells. Cancer Chemother Pharmacol 2018; 82:1049-1059. [DOI: 10.1007/s00280-018-3697-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
45
|
Keratin 80 promotes migration and invasion of colorectal carcinoma by interacting with PRKDC via activating the AKT pathway. Cell Death Dis 2018; 9:1009. [PMID: 30262880 PMCID: PMC6160410 DOI: 10.1038/s41419-018-1030-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Little is known about the function of Keratin 80 (KRT80), an epithelial keratin, in cancer. This study investigated the role of KRT80 in the prognosis of colorectal carcinoma (CRC) and the underlying mechanisms involved in CRC migration and invasion. We analyzed the expression of KRT80 using The Cancer Genome Atlas and Oncomine databases. Higher expression of KRT80 was found to be significantly associated with multiple pathological parameters, lower disease-free survival, and overall survival in CRC patients. Also, KRT80 was an independent prognostic indicator for CRC. Furthermore, altered KRT80 expression impacted migration and invasion of CRC cells, as well as the expression of epithelial–mesenchymal transition (EMT)-related markers and cell morphology via the AKT pathway. Inhibiting the expression of AKT could reverse these phenomena. Liquid Chromatograph Mass Spectrometer/Mass Spectromete, Co-immunoprecipitation, and laser scanning confocal microscopy techniques showed that KRT80 could interact with protein kinase, DNA-activated, catalytic polypeptide (PRKDC). Suppressing PRKDC could inhibit the expression of AKT and EMT, as well as the migration and invasion of CRC cells. Taken together, these results demonstrated that KRT80 was an independent prognostic biomarker for CRC and promoted CRC migration and invasion by interacting with PRKDC via activation of the AKT pathway.
Collapse
|
46
|
Li T, Jian X, He H, Lai Q, Li X, Deng D, Liu T, Zhu J, Jiao H, Ye Y, Wang S, Yang M, Zheng L, Zhou W, Ding Y. MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:238. [PMID: 30253791 PMCID: PMC6156870 DOI: 10.1186/s13046-018-0879-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Background Aberrant activation of Wnt/β-catenin signaling pathway is considered to be an important issue in progression and metastasis of various human cancers, especially in colorectal cancer (CRC). MiR-452 could activate of Wnt/β-catenin signaling. But the mechanism remains unclear. Methods The expression of miR-452 in CRC and normal tissues was detected by real-time quantitative PCR. The effect of miR-452 on CRC growth and invasion was conducted by functional experiments in vitro and in vivo. Bioinformatics and cell luciferase function studies verified the direct regulation of miR-452 on the 3’-UTR of the GSK3β, which leads to the activation of Wnt/β-catenin signaling. Results MiR-452 was upregulated in CRC compared with normal tissues and was correlated with clinical significance. The luciferase reporter system studies affirmed the direct regulation of miR-452 on the 3’-UTR of the GSK3β, which activate the Wnt/β-catenin signaling. The ectopic upregulation of miR-452 significantly inhibited the expression of GSK3β and enhanced CRC proliferation and invasion in vitro and in vivo. Meanwhile, knockdown of miR-452 significantly recovered the expression of GSK3β and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. More important, T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors, which are crucial downstream molecules of the Wnt/β-catenin signaling pathway was verified as a valid transcription factor of miR-452’s promoter. Conclusions Our findings first demonstrate that miR-452-GSK3β-LEF1/TCF4 positive feedback loop induce CRC proliferation and migration. Electronic supplementary material The online version of this article (10.1186/s13046-018-0879-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Xiangyu Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzheng Li
- Medical genetic center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Danling Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Tengfei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Jiehong Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Minhui Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Bydoun M, Sterea A, Weaver ICG, Bharadwaj AG, Waisman DM. A novel mechanism of plasminogen activation in epithelial and mesenchymal cells. Sci Rep 2018; 8:14091. [PMID: 30237490 PMCID: PMC6148250 DOI: 10.1038/s41598-018-32433-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer dissemination is initiated by the movement of cells into the vasculature which has been reported to be triggered by EMT (epithelial to mesenchymal transition). Cellular dissemination also requires proteases that remodel the extracellular matrix. The protease, plasmin is a prominent player in matrix remodeling and invasion. Despite the contribution of both EMT and the plasminogen activation (PA) system to cell dissemination, these processes have never been functionally linked. We reveal that canonical Smad-dependent TGFβ1 signaling and FOXC2-mediated PI3K signaling in cells undergoing EMT reciprocally modulate plasminogen activation partly by regulating the plasminogen receptor, S100A10 and the plasminogen activation inhibitor, PAI-1. Plasminogen activation and plasminogen-dependent invasion were more prominent in epithelial-like cells and were partly dictated by the expression of S100A10 and PAI-1.
Collapse
Affiliation(s)
- Moamen Bydoun
- Department of Pathology, Halifax, Nova Scotia, Canada
| | - Andra Sterea
- Department of Physiology and Biophysics, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Halifax, Nova Scotia, Canada
- Department of Psychology and Neuroscience, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alamelu G Bharadwaj
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Halifax, Nova Scotia, Canada.
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada.
| |
Collapse
|
48
|
Wang S, Yan S, Zhu S, Zhao Y, Yan J, Xiao Z, Bi J, Qiu J, Zhang D, Hong Z, Zhang L, Huang C, Li T, Liang L, Liao W, Jiao H, Ding Y, Ye Y. FOXF1 Induces Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis by Transcriptionally Activating SNAI1. Neoplasia 2018; 20:996-1007. [PMID: 30189360 PMCID: PMC6134153 DOI: 10.1016/j.neo.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Forkhead Box F1 (FOXF1) has been recently implicated in cancer progression and metastasis of lung cancer and breast cancer. However, the biological functions and underlying mechanisms of FOXF1 in the regulation of the progression of colorectal cancer (CRC) are largely unknown. We showed that FOXF1 was up-regulated in 93 paraffin-embedded archived human CRC tissue, and both high expression and nuclear location of FOXF1 were significantly associated with the aggressive characteristics and poorer survival of CRC patients. The GSEA analysis showed that the higher level of FOXF1 was positively associated with an enrichment of EMT gene signatures, and exogenous overexpression of FOXF1 induced EMT by transcriptionally activating SNAI1. Exogenous overexpression FOXF1 functionally promoted invasion and metastasis features of CRC cells, and inhibition of SNAI1 attenuates the invasive phenotype and metastatic potential of FOXF1-overexpressing CRC cells. Furthermore, the results of the tissue chip showed that the expression of FOXF1 was positively correlated with SNAI1 in CRC tissues chip. These results suggested that FOXF1 plays a critical role in CRC metastasis by inducing EMT via transcriptional activation of SNAI1, highlighting a potential new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shanshan Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shaowei Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junyu Yan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jiaxin Bi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zexuan Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lingjie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Chengmei Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
49
|
Hallmarks of Cancer-Related Newly Prognostic Factors of Oral Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19082413. [PMID: 30115834 PMCID: PMC6121568 DOI: 10.3390/ijms19082413] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer, including oral squamous cell carcinoma (OSCC), is the sixth leading malignancy worldwide. OSCC is an aggressive tumor and its prognosis has exhibited little improvement in the last three decades. Comprehensive elucidation of OSCC's molecular mechanism is imperative for early detection and treatment, improving patient survival. Based on broadly accepted notions, OSCC arises from multiple genetic alterations caused by chronic exposure to carcinogens. In 2011, research revealed 10 key alterations fundamental to cancer cell development: sustaining proliferative signaling, evading growth suppressors, avoiding immune destruction, activating invasion and metastasis, tumor-promoting inflammation, enabling replicative immortality, inducing angiogenesis, genome instability and mutation, resisting cell death, and deregulating energetics. This review describes molecular pathological findings on conventional and novel hallmarks of OSCC prognostic factors. In addition, the review summarizes the functions and roles of several molecules as novel OSCC prognosticators.
Collapse
|
50
|
Shimoda Y, Ubukata Y, Handa T, Yokobori T, Watanabe T, Gantumur D, Hagiwara K, Yamanaka T, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Araki K, Harimoto N, Katayama A, Hikino T, Sano T, Ogata K, Kuwano H, Shirabe K, Oyama T. High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. BMC Cancer 2018; 18:597. [PMID: 29801468 PMCID: PMC5970457 DOI: 10.1186/s12885-018-4503-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the major causes of tumor death; thus, the identification of markers related to its diagnosis and prognosis is critical. Previous studies have revealed that epithelial-to-mesenchymal transition (EMT) is involved in tumor invasion and metastasis, and the forkhead box protein C2 (FOXC2) has been shown to promote tumor cell proliferation, invasion, and EMT. In the present study, we examined the clinicopathological significance of FOXC2 and EMT-related markers in clinical HCC specimens and identified factors related to the diagnosis and prognosis of HCC. Methods The expression of FOXC2 and EMT-related markers was evaluated by immunohistochemistry in 84 cases of hepatocellular carcinoma. Results A high expression of FOXC2 was observed in 26 of 84 cases, and expression was significantly correlated with background liver cirrhosis, poor tumor differentiation, high serum AFP, and elevated cell proliferation markers. In addition, this high expression was related to the induction of the Cadherin switch and vimentin expression and was an independent predictor for poor prognosis. Conclusion The high expression of FOXC2 in HCC is correlated with tumor malignancy and poor prognosis, suggesting that FOXC2 may be an important prognostic factor for HCC.
Collapse
Affiliation(s)
- Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yasunari Ubukata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tadashi Handa
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Takayoshi Watanabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Dolgormaa Gantumur
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kei Hagiwara
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Yamanaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mariko Tsukagoshi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takamichi Igarashi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Akira Watanabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norio Kubo
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kenichiro Araki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norifumi Harimoto
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshiaki Hikino
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takaaki Sano
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|