1
|
Abam F, Ghorbian S. The dual role of LncRNAs in hepatocellular carcinoma: Friend and foe. GASTROENTEROLOGY & ENDOSCOPY 2024; 2:186-195. [DOI: 10.1016/j.gande.2024.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
2
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Liang W, Zhao Y, Meng Q, Jiang W, Deng S, Xue J. The role of long non-coding RNA in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:4052-4073. [PMID: 38334963 PMCID: PMC10929815 DOI: 10.18632/aging.205523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver malignancy with complex etiology and generally poor prognosis. Recently, long non-coding RNAs (lncRNAs), non-protein-coding RNA molecules exceeding 200 nucleotides, have emerged as pivotal players in HCC, influencing its initiation, progression, invasion, and metastasis. These lncRNAs modulate gene expression at epigenetic, transcriptional, and post-transcriptional levels, actively participating in the pathological and physiological processes of HCC. Understanding the intricate relationship between lncRNAs and HCC is important for improving prognosis and reducing mortality. This review summarizes advancements in elucidating the role of lncRNAs in HCC pathogenesis.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Yan Zhao
- Department of Mathematics and Computer Science, Free University Berlin, Berlin 14195, Germany
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
4
|
Dong B, Li C, Xu X, Wang Y, Li Y, Li X. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA. Genes Genomics 2024; 46:231-239. [PMID: 37728844 DOI: 10.1007/s13258-023-01440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a critical role in the development of ovarian cancer (OC). OBJECTIVE The study aimed to determine the role of LncRNA LINC01123 in OC bio-progression, which is upregulated in OC tissues during OC progression. METHODS Bioinformatics methods, GEPIA, and qRT-PCR were used to reveal the level and correlation of LINC01123, hsa-miR-516b-5p, and VEGFA, in OC cell lines. MTT, EdU, TUNEL, and Transwell assays were performed to assess the bioactivity of OC cell. Target sites of LINC01123 and hsa-miR-516b-5p were predicted using Starbase, and the potential linkage points of VEGFA and hsa-miR-516b-5p were predicted using TargetScan. These sites and linkage points were confirmed by double luciferase reporter assay. RESULTS LINC01123 was upregulated in OC cell lines and LINC01123 silencing suppressed the proliferation and metastasis of OC cells, but promoted cell apoptosis. hsa-miR-516b-5p was linked to LINC01123 and. VEGFA was downstream of hsa-miR-516b-5p. Importantly, silencing of hsa-miR-516b-5p reversed the inhibitory impact of si-LINC01123. The result of hsa-miR-516b-5p inhibitor + si-LINC01123 co-transfection were rescued by si-VEGFA. CONCLUSION LINC01123 promotes OC development by dampening miR-516b-5p function, and may be a novel target for treating OC.
Collapse
Affiliation(s)
- Bing Dong
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China.
| | - Cuiping Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xiaomeng Xu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yan Wang
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yuewen Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xingmei Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| |
Collapse
|
5
|
Zhang H, Jiang F, Ling X, Zhong B, Han Y, Pan Z, Yuan Q, Meng J, Zheng D, Chen X, Zhong Q, Liu L. PARP-1 inhibits DNMT1-mediated promoter methylation and promotes linc01132 expression in benzene-exposed workers and hydroquinone-induced malignant transformed cells. Toxicol Mech Methods 2023; 33:646-655. [PMID: 37264554 DOI: 10.1080/15376516.2023.2220389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Hydroquinone (HQ), one of the main active metabolites of benzene, can induce the abnormal expression of long non-coding RNA (lncRNA). Studies have shown that lncRNA plays an important role in the occurrence of hematologic tumors induced by benzene or HQ. However, the molecular mechanism remains to be elucidated. Here, we investigated the molecular mechanism by which poly(ADP-ribose)polymerase 1 (PARP-1) interacts with DNA methyltransferase 1 (DNMT1) to regulate promoter methylation mediated linc01132 expression in HQ-induced TK6 malignant transformed cells (HQ-MT). The results revealed that the expression of linc01132 was increased in benzene-exposed workers and HQ-MT cells. The methylation of linc01132 promoter region was inhibited. Furthermore, in HQ-MT cells treated with 5-Aza-2'-deoxycytidine (5-AzaC) (DNA methyltransferase inhibitor) or trichostatin A (TSA) (histone deacetylation inhibitor), the expression of linc01132 was increased due to the regulation of DNA promoter methylation level by inhibiting DNMT1 expression. The methylation level of linc01132 promoter was correlated negatively with the expression of linc01132 in benzene-exposed workers, indicating that DNA methylation may contribute the expression of linc01132. Knockout of DNMT1, not DNMT3b, increased the expression of linc01132 as well as the demethylation of linc01132 promoter in HQ-MT cells. It was found that by knockdown PARP-1, the expression of DNMT1 in the nucleus was increased by immunofluorescence confocal microscopy, leading to the inhibition of hypermethylation in the promoter region of linc01132. Therefore, PARP-1 inhibits DNA methyltransferase (DNMT)-mediated promoter methylation and plays a role in linc01132 expression in benzene-exposed workers or HQ-MT cells, and is associated with benzene or HQ induced leukemia progression.
Collapse
Affiliation(s)
- Haiqiao Zhang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Fengzhi Jiang
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China
| | - Xiaoxuan Ling
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Bohuan Zhong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Yali Han
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Zhijie Pan
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Qian Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, China
- Shenzhen Luohu Hospital Group Social Management Center, Shenzhen, PR China
| | - Jinxue Meng
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Dongyan Zheng
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Xiaobing Chen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Qinghua Zhong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| | - Linhua Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, PR China
| |
Collapse
|
6
|
Liangyu Z, Bochao Z, Guoquan Y, Yuan Z, Heng L, Hanyu Z. Bioinformatics prediction and experimental verification identify cuproptosis-related lncRNA as prognosis biomarkers of hepatocellular carcinoma. Biochem Biophys Rep 2023; 35:101502. [PMID: 37426702 PMCID: PMC10322676 DOI: 10.1016/j.bbrep.2023.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Cuproptosis is a form of cell death caused by intracellular copper excess, which plays an important regulatory role in the development and progression of cancers, including hepatocellular carcinoma (HCC), a prevalent malignancy with high morbidity and mortality. This study aimed to create a cuproptosis associated long non-coding RNAs (CAlncRNAs)signature to predict HCC patient survival and immunotherapy response. Firstly, we identified 509 CAlncRNAs using Pearson correlation analysis in The Cancer Genome Atlas (TCGA) datasets, before the three CAlncRNAs (MKLN1-AS, FOXD2-AS1, LINC02870) with the most prognostic value were further screened. Then, we constructed a prognostic risk model for HCCwas using univariate and LASSO Cox regression analyses. Multivariate Cox regression analyses illustrated that this model was an independent prognostic factor for overall survival (OS) prediction, outperforming traditional clinicopathological factors. And the risk score not only could be prognostic factors independent of other factors but also suited for patients with diverse ages, stages, and grades. The 1-, 3-, and 5- years areas under the curves (AUC) values of the model were 0.759, 0.668 and 0.674 respectively. Pathway analyses showed that the high-risk groupenriched in immune-related pathways. Importantly, patients with higher risk scores exhibited higher mutation frequency, higher TMB scores, and lower TIDE scores. Besides, we screened for two chemical drugs (A-443654 and Pyrimethamine) with the greatest value for high-risk HCC patients. Finally, the abnormal high expression of the three CAlncRNAs were confirmed in HCC tissues and cells by Real Time Quantitative PCR (RT-qPCR). And proliferative, migratory and invasion abilities of HCC cell were restrained via silencing CAlncRNAs expression in vitro. In summary, we built a CAlncRNAs-based risk score model, which can be a candidate for HCC patients prognostic prediction and offer some useful information for immunotherapies.
Collapse
Affiliation(s)
- Zhu Liangyu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhang Bochao
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yin Guoquan
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhang Yuan
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Li Heng
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhou Hanyu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
7
|
Weng H, Feng W, Li F, Huang D, Lin L, Wang Z. Transcription factor ETV1-induced lncRNA MAFG-AS1 promotes migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells by recruiting IGF2BP2 to stabilize ETV1 expression. Growth Factors 2023:1-13. [PMID: 37428861 DOI: 10.1080/08977194.2023.2227272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2023] [Indexed: 07/12/2023]
Abstract
We investigated the mechanism of ETS-translocation variant 1 (ETV1)/lncRNA-MAFG-AS1 in pancreatic cancer (PC). MAFG-AS1 and ETV1 levels in PC cell lines and HPNE cells were determined using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). After transfection with sh-MAFG-AS1, PC cell invasion, migration, proliferation, and epithelial-mesenchymal transition (EMT)-related proteins were measured by 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, and WB. The binding between ETV1 and MAFG-AS1 was studied using dual-luciferase assay and chromatin immunoprecipitation. The interactions between MAFG-AS1, IGF2BP2, and ETV1 were tested. Combined experiments were further performed using sh-MAFG-AS1 and pcDNA-ETV1 simultaneously. ETV1/MAFG-AS1 was highly expressed in PC cells. Blocking MAFG-AS1 inhibited the malignant behaviors of PC cells. ETV1 induced MAFG-AS1 transcription in PC cells. MAFG-AS1 stabilized ETV1 mRNA by recruiting IGF2BP2. ETV1 overexpression partially antagonized the suppression of silencing MAFG-AS1 on PC cells. ETV1-induced MAFG-AS1 stabilized the ETV1 expression by recruiting IGF2BP2 and promoted PC cell migration, invasion, proliferation, and EMT.
Collapse
Affiliation(s)
- Hanqin Weng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Weijian Feng
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Fengling Li
- Department of Anesthesiology, Dongguan People's Hospital, Dongguan, China
| | - Dong Huang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Liangyi Lin
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| | - Zaiguo Wang
- Department of Hepatobiliary Surgery, Dongguan People's Hospital, Dongguan, China
| |
Collapse
|
8
|
Wang H, Teng J, Wang M, Zhang Y, Liu X, Liu Z. Expression and significant roles of the lncRNA NEAT1/miR-493-5p/Rab27A axis in ulcerative colitis. Immun Inflamm Dis 2023; 11:e814. [PMID: 37249278 PMCID: PMC10187010 DOI: 10.1002/iid3.814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to play regulatory roles in ulcerative colitis (UC). In this study, we aimed to determine the specific roles and action mechanism of the nuclear paraspeckle assembly transcript 1 (NEAT1) in UC. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the lncRNA NEAT1 and miR-493-5p expression levels in patients with UC and healthy volunteers. We determine the forecast linkage points of NEAT1 and miR-493-5p using Starbase and those of miR-493-5p and Rab27A using TargetScan, and further verified them using a double luciferase gene reporter kit. RT-qPCR and Western blot analysis were used to determine the lncRNA NEAT1, miR-493-5p, and Rab27A expression levels in lipopolysaccharide (LPS)-induced Caco-2 cells. Flow cytometry and cell counting kit-8 were used to assess Caco-2 cell viability. Tumor necrosis factor-α, interleukin (IL)-6, IL-8, and IL-1β levels were determined via an enzyme-linked immunosorbent assay. RESULTS Expression levels of NEAT1 were upregulated and those of miR-493-5p were downregualted in 10 ng/mL LPS-treated Caco-2 cells and patients with UC. Dual-luciferase gene reporter assay revealed that miR-493-5p is linked to NEAT1, and Rab27A is a downstream target of miR-493-5p. Overexpression of miR-493-5p inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells. Moreover, downregulation of lncRNA NEAT1 expression also inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells, which was reversed by Rab27A plasmid cotransfection. CONCLUSION Our results revealed that NEAT1 participates in UC progression by inhibiting miR-493-5p expression.
Collapse
Affiliation(s)
- Hecheng Wang
- Department of Clinical Skills Experiment CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Jiadan Teng
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Mingtao Wang
- Department of GastroenterologyThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Yuhang Zhang
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Xiaoshuang Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Zhuya Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| |
Collapse
|
9
|
Rey F, Maghraby E, Messa L, Esposito L, Barzaghini B, Pandini C, Bordoni M, Gagliardi S, Diamanti L, Raimondi MT, Mazza M, Zuccotti G, Carelli S, Cereda C. Identification of a novel pathway in sporadic Amyotrophic Lateral Sclerosis mediated by the long non-coding RNA ZEB1-AS1. Neurobiol Dis 2023; 178:106030. [PMID: 36736597 DOI: 10.1016/j.nbd.2023.106030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Deregulation of transcription in the pathogenesis of sporadic Amyotrophic Lateral Sclerosis (sALS) is taking central stage with RNA-sequencing analyses from sALS patients tissues highlighting numerous deregulated long non-coding RNAs (lncRNAs). The oncogenic lncRNA ZEB1-AS1 is strongly downregulated in peripheral blood mononuclear cells of sALS patients. In addition, in cancer-derived cell lines, ZEB1-AS1 belongs to a negative feedback loop regulation with hsa-miR-200c, acting as a molecular sponge for this miRNA. The role of the lncRNA ZEB1-AS1 in sALS pathogenesis has not been characterized yet, and its study could help identifying a possible disease-modifying target. METHODS the implication of the ZEB1-AS1/ZEB1/hsa-miR-200c/BMI1 pathway was investigated in multiple patients-derived cellular models (patients-derived peripheral blood mononuclear cells and induced pluripotent stem cells-derived neural stem cells) and in the neuroblastoma cell line SH-SY5Y, where its function was inhibited via RNA interference. Molecular techniques such as Real Time PCR, Western Blot and Immunofluorescence were used to assess the pathway dysregulation. RESULTS Our results show a dysregulation of a signaling pathway involving ZEB1-AS1/hsa-miR-200c/β-Catenin in peripheral blood mononuclear cells and in induced pluripotent stem cells-derived neural stem cells from sALS patients. These results were validated in vitro on the cell line SH-SY5Y with silenced expression of ZEB1-AS1. Moreover, we found an increase for ZEB1-AS1 during neural differentiation with an aberrant expression of β-Catenin, highlighting also its aggregation and possible impact on neurite length. CONCLUSIONS Our results support and describe the role of ZEB1-AS1 pathway in sALS and specifically in neuronal differentiation, suggesting that an impairment of β-Catenin signaling and an alteration of the neuronal phenotype are taking place.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Erika Maghraby
- Pediatric Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Letizia Esposito
- Pediatric Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Cecilia Pandini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Stephana Carelli
- Pediatric Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
10
|
Zhao H, Liu C, Zhao C, Che C, Liu W, Mei Y. Alternatively-spliced lncRNA-PNUTS promotes HCC cell EMT via regulating ZEB1 expression. TUMORI JOURNAL 2023; 109:28-37. [PMID: 35139713 DOI: 10.1177/03008916211072585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long non-coding RNAs have been implicated in various cancers as they regulate critical cellular processes such as proliferation, migration, invasion, and apoptosis in tumorous tissues. lncRNA-PNUTS is newly reported as an alternatively-spliced lncRNA from PNUTS pre-mRNA that promotes oncogenesis in breast cancer. However, whether LncRNA-PNUTS plays a role in other forms of cancers, such as liver cancer, remains unknown. METHOD In the current study, we investigated the potential role of lncRNA-PNUTS in hepatocellular carcinoma (HCC). The levels of lncRNA-PNUTS in tumorous tissues obtained from HCC patients were measured. The potential impacts of lncPNUTS on metastasis and invasion were investigated through gain- or loss- of function experiments in cell models of liver cancers, as well as other cellular assays such as trans-well assays and wound-healing assays. RESULTS Here, we report that lncPNUTS was upregulated in human HCC tissues. Loss- and gain-of-function experiments indicated lncPNUTS promoted metastasis and invasion. In addition, ZEB1, which is involved in the activation of epithelial-mesenchymal-transition (EMT), was identified as a downstream target of lncPNUTS. CONCLUSION Our findings indicated lncPNUTS promotes HCC cancer cell metastasis and invasion via targeting ZEB1 to activate the EMT pathway, suggesting that lncPNUTS is a potential prognostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Haiyan Zhao
- Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chang Liu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chongyu Zhao
- The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chi Che
- The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wuguang Liu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Mei
- Medical Faculty of Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
11
|
Qiu J, Guo Y, Wang S, Ren Q, Dong Z, Gao M, Ma J, Chen S, Liu S. Newly identified lncRNA-45 promotes breast cancer metastasis through activating the mTOR signaling pathway. Biochem Biophys Res Commun 2023; 640:40-49. [PMID: 36502630 DOI: 10.1016/j.bbrc.2022.11.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Metastasis, a complex multi-stage process, is the primary cause of breast cancer-related death. Unfortunately, the molecular mechanisms underlying tumor metastasis have not been fully elucidated thus far. Long noncoding RNAs (lncRNAs) dictate the behaviours of tumor cells via multiple signaling pathways, resulting in tumor cell migration and invasion, as well as all stages of cancer progression. LncRNAs function as regulators in shaping cellular activities directly through influencing key genes involved in biological processes of the tumor, and representing promising novel targets in cancer diagnosis and therapy. We therefore sought to define the correlations between lncRNA expression and breast cancer metastasis, especially to investigate the functional pathway underlying lncRNA-mediated tumor invasion and metastasis process. RESULTS In this study, we compared the lncRNA transcriptome profiles between primary breast cancer 4T1 cells and high metastatic 4T1-LG12 cells. We found that many differently expressed lncRNAs greatly correlated to the metastatic propensity of 4T1-LG12 cells, particularly lncRNA-45, a new lncRNA without functional annotations, which was found to be the most upregulated lncRNA transcribed by an internal region within the regulatory associated with protein of mechanistic target of rapamycin kinase (mTOR) complex 1 (Rptor) gene. LncRNA-45 was uncovered to be involved in the epithelial-to-mesenchymal transition process of breast cancer cells, as evidenced by the observation that lncRNA-45 knockdown significantly suppressed the invasive capability of parental 4T1-LG12 cells. Molecular mechanistic investigation showed that reduced activity of mTORC1-associated pathway led to a decrease of total ribosomal protein S6 kinase, polypeptide 1 (S6K1) content and enhancement of autophagy, consequently compromising the metastatic propensity in lncRNA-45 knockdown cells. CONCLUSIONS Overall, our experiments uncovered that the newly identified lncRNA-45 played a regulatory role in breast cancer cell metastasis.
Collapse
Affiliation(s)
- Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Xun Z, Wang Y, Long J, Li Y, Yang X, Sun H, Zhao H. Development and validation of a genomic instability-related lncRNA prognostic model for hepatocellular carcinoma. Front Genet 2023; 13:1034979. [PMID: 36712850 PMCID: PMC9877230 DOI: 10.3389/fgene.2022.1034979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Genomic instability is a characteristic of tumors, and recent studies have shown that it is related to a poor prognosis of multiple cancers. Long non-coding RNAs (lncRNAs) have become a research hotspot in recent years, and many unknown biological functions are being explored. For example, some lncRNAs play a critical role in the initiation and progression of multiple cancer types by modulating genomic instability. However, the role of genomic instability-related lncRNAs in liver cancer remains unclear. Therefore, we screened genomic instability-related lncRNAs by combining somatic mutation data and RNA-Seq data in The Cancer Genome Atlas (TCGA) database. We established a genomic instability-related lncRNA model (GLncM) involving ZFPM2-AS1 and MIR210HG to predict the hepatocellular carcinoma (HCC) prognosis and further explore the clinical significance of these lncRNAs, and the robustness of the model was validated in the verification set. Thereafter, we calculated the immune score for each patient and explored the relationship between genome instability and the immune microenvironment. The analysis indicated that this model was better than the immune microenvironment in predicting the prognosis of HCC patients, suggesting that the GLncM may be an effective indicator of HCC prognosis and providing a new direction and strategy for estimating the prognosis of HCC patients.
Collapse
|
13
|
Shao A, Hu W, Li C, Yang Y, Zhu J. Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
Affiliation(s)
- Anjing Shao
- Department of Gastroenterology, Chongqing Wanzhou Shanghai Hospital, Chongqing, 404100, People's Republic of China
| | - Wei Hu
- Department of Gastroenterology, Chongqing Jiulongpo District People's Hospital, 7 Metallurgical Third Village, Shipingqiao, Jiulongpo, Chongqing, 400000, People's Republic of China.
| | - Chunxia Li
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Yang Yang
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Jianru Zhu
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Tan K, Hu W, Hou Y, Yang G. LncRNA AC026401.3 interacts with OCT1 to intensify sorafenib and lenvatinib resistance by activating E2F2 signaling in hepatocellular carcinoma. Exp Cell Res 2022; 420:113335. [PMID: 36084669 DOI: 10.1016/j.yexcr.2022.113335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
Multitargeted kinase inhibitors (MKIs) including sorafenib and lenvatinib, are applied for first-line treatment for inoperable hepatocellular carcinoma (HCC) patients, but the therapeutic effect is limited because of drug resistance. Therefore, we sought potential biomarkers to indicate sorafenib and lenvatinib resistance in HCC. In this article, we report a novel long non-coding RNA (lncRNA), AC026401.3, in promoting sorafenib and lenvatinib resistance of HCC cells. AC026401.3 is upregulated in HCC tissues and is positively relevant to HCC patients with large tumor size, cancer recurrence, advanced TNM stage, and poor prognosis. AC026401.3 knockdown or knockout enhances the sensitivity of HCC cells to sorafenib and lenvatinib, respectively. Moreover, AC026401.3 upregulates the expression of the transcription factor E2F2. Mechanistically, AC026401.3 interacts with OCT1 and promotes the recruitment of OCT1 to the promoter region of E2F2, intensifying sorafenib and lenvatinib resistance in HCC by activating the transcription of E2F2. In conclusion, our results reveal that lncRNA AC026401.3 is a risk factor for HCC patients by enhancing sorafenib and lenvatinib resistance of HCC cells, and targeting the AC026401.3-OCT1-E2F2 signaling axis would be a promising strategy for HCC therapeutics.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Kai Tan
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Wen Hu
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Yan Hou
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Guang Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
15
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
16
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Wang J, Chen X, Sun L, Chen X, Li H, Xiong B, Wang H. [Long noncoding RNA ZEB1-AS1 aggravates cerebral ischemia/reperfusion injury in rats through the HMGB1/TLR-4 signaling axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1134-1142. [PMID: 36073211 DOI: 10.12122/j.issn.1673-4254.2022.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of long non-coding RNA ZEB1-AS1 in cerebral ischemia/reperfusion injury (CI/RI). METHODS We detected the temporal changes of ZEB1-AS1 and HMGB1 expression using qPCR and Western blotting in SD rats following CI/RI induced by middle cerebral artery occlusion (MCAO). The rat models of CI/RI were subjected to injections of vectors for ZEB1-AS1 overexpression or knockdown into the lateral ventricle, and the changes in cognitive function, brain water content, blood-brain barrier integrity, and IL-1β and TNF-α levels in the cerebrospinal fluid (CSF) and serum were observed. Neuronal loss and cell apoptosis in the cortex of the rat models were detected by FJC and TUNEL methods, and HMGB1 and TLR-4 expressions were analyzed with Western blotting. We also examined the effects of ZEB1-AS1 knockdown on apoptosis and expressions of HMGB1 and TLR-4 in SH-SY5Y cells with oxygen-glucose deprivation/reoxygenation (OGD/R). RESULTS In CI/RI rats, the expressions of ZEB1-AS1 and HMGB1 in the brain tissue increased progressively with the extension of reperfusion time, reaching the peak levels at 24 h followed by a gradual decline. ZEB1-AS1 overexpression significantly aggravated icognitive impairment and increased brain water content, albumin content in the CSF, and IL-1β and TNF-α levels in the CSF and serum in CI/RI rats (P < 0.05), while ZEB1-AS1 knockdown produced the opposite effects (P < 0.05 or 0.01). ZEB1-AS1 overexpression obviously increased the number of FJC-positive neurons in the cortex and enhanced the expressions of HMGB1 and TLR-4 in the rat models (P < 0.01); ZEB1-AS1 knockdown significantly reduced the number of FJC-positive neurons and lowered HMGB1 and TLR-4 expressions (P < 0.01). In SH-SY5Y cells with OGD/R, ZEB1-AS1 knockdown significantly suppressed cell apoptosis and lowered the expressions of HMGB1 and TLR-4 (P < 0.01). CONCLUSION ZEB1-AS1 overexpression aggravates CI/RI in rats through the HMGB1/TLR-4 signaling axis.
Collapse
Affiliation(s)
- J Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - L Sun
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - X Chen
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - H Li
- Graduate School, Wannan Medical College, Wuhu 241002, China
| | - B Xiong
- College of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - H Wang
- College of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
18
|
The Efficacy of Combined Therapy of Regorafenib with Detoxicating and Stasis Softening Chinese Herbal Spleen Tonics in Mid-/Late-Stage Hepatocellular Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9316873. [PMID: 35800233 PMCID: PMC9192279 DOI: 10.1155/2022/9316873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
Objective To explore the efficacy of combined therapy of Regorafenib with detoxicating and stasis softening Chinese herbal spleen tonics (DSS-splenic tonics) in mid-/late-stage hepatocellular carcinoma. Methods Retrospective observational data of 120 patients were obtained, 60 of which received combined therapy of DSS-splenic tonics and regorafenib. Adverse event, overall survival (OS), and time-to-progress (TTP) were analyzed. Synergistic effect of DSS-spleen tonics was found and validated in human hepatocellular carcinoma HCCLM3 cell line and xenograft mouse models. Results Combination of regorafenib and DSS-splenic tonics also slightly extended the TTP and OS compared with treatment of regorafenib alone, suggesting DSS-splenic tonics has synergistic effect with regorafenib. Both Regorafenib and DSS-spleen tonics exerted inhibitory effect on cell viability and invasion capability of HCCLM3 cells, and combining both could enhance the antitumor effect. At molecular level, we found that VEGF, HIF-1α, MVD, and VEGF2 were all suppressed by regorafenib and DSS-splenic tonics. These results suggest that DSS-spleen tonics function synergistically with regorafenib in HCC by enhancing the regulation of regorafenib on VEGF, MMP-2, HIF-1α, and MVD, and may diminish angiogenesis during HCC progression. Conclusion DSS-spleen tonics could exert synergistic antitumor effect with regorafenib via targeting VEGF.
Collapse
|
19
|
Yuan X, Zhuang M, Zhu X, Cheng D, Liu J, Sun D, Qiu X, Lu Y, Sartorius K. Emerging Perspectives of Bone Metastasis in Hepatocellular Carcinoma. Front Oncol 2022; 12:943866. [PMID: 35847843 PMCID: PMC9277479 DOI: 10.3389/fonc.2022.943866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/09/2022] Open
Abstract
Recent evidence suggests the global incidence and mortality of hepatocellular carcinoma (HCC) are increasing. Although the highest incidence of HCC remains entrenched in WHO regions with high levels of HBV-HCV infection, the etiology of this disease is rapidly changing to include other lifestyle risk factors. Extrahepatic metastasis is a frequent feature of advanced HCC and most commonly locates in the lungs and bone. Bone metastasis in HCC (HCC-BM) signals a more aggressive stage of disease and a poorer prognosis, simultaneously HCC-BM compromises the function and integrity of bone tissue. HCC induced osteolysis is a prominent feature of metastasis that complicates treatment needed for pathologic fractures, bone pain and other skeletal events like hypercalcemia and nerve compression. Early detection of bone metastases facilitates the treatment strategy for avoiding and relieving complications. Although recent therapeutic advances in HCC like targeting agents and immunotherapy have improved survival, the prognosis for patients with HCC-BM remains problematic. The identification of critical HCC-BM pathways in the bone microenvironment could provide important insights to guide future detection and therapy. This review presents an overview of the clinical development of bone metastases in HCC, identifying key clinical features and identifying potential molecular targets that can be deployed as diagnostic tools or therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Zhuang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xi Zhu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Infectious Diseases, The First Peoples’ Hospital of Kunshan, Kunshan, China
| | - Dong Cheng
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Donglin Sun
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xubin Qiu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Xubin Qiu, ; Yunjie Lu, ; Kurt Sartorius,
| | - Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Xubin Qiu, ; Yunjie Lu, ; Kurt Sartorius,
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- School of Laboratory Medicine and Molecular Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Xubin Qiu, ; Yunjie Lu, ; Kurt Sartorius,
| |
Collapse
|
20
|
Predictive Potentials of ZEB1-AS1 in Colorectal Cancer Prognosis and Their Correlation with Immunotherapy. JOURNAL OF ONCOLOGY 2022; 2022:1084555. [PMID: 35794981 PMCID: PMC9252708 DOI: 10.1155/2022/1084555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Background CRC is the third most common cancer globally. The tumor immune microenvironment is closely associated with the overexpressed lncRNA ZEB1-AS1. However, in individuals with CRC, the ZEB1-AS1 gene's ability to predict immune response is a mystery. Materials and Methods The ZEB1-AS1 gene's prognostic potential was thoroughly investigated. We analyzed and included into the TCGA database all ZEB1-AS1 and ZEB1-AS1-related genes using LASSO-Cox regression. Researchers examined the link among ZEB1-AS1 and the tumor immune microenvironment, immune checkpoint, and tumor mutation burden (TMB) in CRC through the TCGA database. Using a predictive model, researchers were able to determine the link between ZEB1-AS1 and NUDT3 and CRC prognosis. Result According to our findings, individuals with reduced ZEB1-AS1 expression had a better prognosis in CRC. Based on the expression of two genes in the TCGA database, patients were divided into two cohorts. The B lymphocytes and macrophages are less likely to be recruited by tissues with a low-risk score. TMB and immunological checkpoints were shown to have a connection. Based on these genes, a predictive nomogram was built and confirmed, with a C-index of 0.78. Conclusion Prognostic models based on ZEB1-AS1 and ZEB1-AS1-related genes are more accurate for CRC patients when it comes to the prognosis and immune checkpoint responsiveness.
Collapse
|
21
|
Jiang X, Chen X, Guo J, Zhou F, Pu J, Mutti L, Niu X. Identification and Validation of lncRNA-AC087588.2 in Lung Adenocarcinoma: A Novel Prognostic and Diagnostic Indicator. Front Mol Biosci 2022; 9:923584. [PMID: 35769906 PMCID: PMC9234292 DOI: 10.3389/fmolb.2022.923584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC087588.2 (ENSG00000274976) is a novel lncRNA that is abnormally expressed in diverse cancer types, including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and the potential biological function of AC087588.2 LUAD remain elusive. In this study, we found that AC087588.2 was upregulated and associated with a poor prognosis in LUAD. In addition, univariate and multivariate Cox regression analysis indicated that AC087588.2 could be an independent prognostic factor for LUAD. Functionally, the knockdown of AC087588.2 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a ceRNA network that included hsa-miR-30a-5p and four mRNAs (ANLN, POLR3G, EHBP1, and ERO1A) specific to AC087588.2 in LUAD. The Kaplan–Meier survival analysis showed that lower expression of hsa-miR-30a-5p and higher expression of ANLN, POLR3G, EHBP1, and ERO1A were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC087588.2-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu’er People’s Hospital, Puer, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Luciano Mutti, ; Xiaoqun Niu,
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Luciano Mutti, ; Xiaoqun Niu,
| |
Collapse
|
22
|
Long non-coding RNAs involved in different steps of cancer metastasis. Clin Transl Oncol 2022; 24:997-1013. [PMID: 35119654 DOI: 10.1007/s12094-021-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Non-proteincoding transcripts bearing 200 base pairs known as long non-coding RNAs (lncRNAs) play a role in a variety of molecular mechanisms, including cell differentiation, apoptosis and metastasis. Previous studies have suggested that frequently dysregulated lncRNAs play a crucial role in various aspects of cancer metastasis. Metastasis is the main leading cause of death in cancer. The role of lncRNAs in different stages of metastasis is the subject of this review. Based on in vitro and in vivo investigations on metastasis, we categorized lncRNAs into distinct stages of metastasis including angiogenesis, invasion, intravasation, survival in circulation, and extravasation. The involvement of lncRNAs in angiogenesis and invasion has been extensively studied. Here, we comprehensively discuss the role and functions of these lncRNAs with a particular focus on the molecular mechanisms.
Collapse
|
23
|
Razavi H, Katanforosh A. Identification of novel key regulatory lncRNAs in gastric adenocarcinoma. BMC Genomics 2022; 23:352. [PMID: 35525925 PMCID: PMC9080188 DOI: 10.1186/s12864-022-08578-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common and deadly cancers worldwide. Recent evidence has demonstrated that dysregulation of long noncoding RNAs (lncRNA) is associated with different hallmarks of cancer. lncRNAs also were suggested as novel promising biomarkers for cancer diagnosis and prognosis. Despite these previous investigations, the expression pattern, diagnostic role, and hallmark association of lncRNAs in STAD remain unclear. Results In this study, The STAD lncRNA-mRNA network was constructed based on RNAs that differentially expressed among tumor and normal samples and had a strong expression correlation with others. The high degree nodes of the network were associated with overall survival. In addition, we found that the hubs’ regulatory roles have previously been confirmed in different types of cancers by literature. For example, the HCG22 hub inhibited cell proliferation and invasion and induced apoptosis in oral squamous cell carcinoma (OSCC) cells. The levels of PCNA, Vimentin, and Bcl2 were decreased and E-cadherin and Bax expression was elevated in OSCC cells after HCG22 overexpression. Additionally, HCG22 overexpression inhibited the Akt, mTOR, and Wnt/β-catenin pathways. Then lncRNAs were mapped to their related GO terms and cancer hallmarks. Based on these mappings, we predict the hallmarks that might be associated with each lncRNA. Finally, the literature review confirmed our prediction. Among the 20 lncRNAs of the STAD network, 11 lncRNAs (LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1, ENSG00000262756) demonstrated expression correlation with overall survival (OS). Based on expression analysis, survival analysis, hallmark associations, and literature review, LINC02560, SOX21-AS1, C5orf66-AS1, HCG22, PGM5-AS1, NALT1, ENSG00000241224.2, TINCR, MIR205HG, HNF4A-AS1 plays a regulatory role in STAD. For example, our prediction of association between C5orf66-AS1 expression dysregulation and “sustaining proliferative signal” and “Activating invasion and metastasis” has been confirmed in STAD, OSCC and cervical cancer. Finally, we developed a lncRNA signature with SOX21-AS1 and LINC02560, which classified patients into high and low-risk subgroups with significantly different survival outcomes. The mortality rate of the high-risk patients was significantly higher compared to the low-risk patients (28/1% vs 60.13). Conclusion These findings help in designing more precise and detailed experimental studies to find STAD biomarkers and therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08578-6.
Collapse
Affiliation(s)
- Houri Razavi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Ali Katanforosh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
The E6 Oncoprotein of HPV16 AA-c Variant Regulates Cell Migration through the MINCR/miR-28-5p/RAP1B Axis. Viruses 2022; 14:v14050963. [PMID: 35632705 PMCID: PMC9143115 DOI: 10.3390/v14050963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/03/2023] Open
Abstract
The E6 oncoprotein of HPV16 variants differentially alters the transcription of the genes involved in migration and non-coding RNAs such as lncRNAs. The role of the lncRNA MINCR in cervical cancer and its relationship with variants of oncogenic HPV remain unknown. Therefore, the objective of this study was to analyze the effect of the E6 oncoprotein of the AA-c variant of HPV16 in cell migration through the MINCR/miR-28-5p/RAP1B axis. To explore the functional role of MINCR in CC, we used an in vitro model of C33-A cells with exogenous expression of the E6 oncoprotein of the AA-c variant of HPV16. Interfering RNAs performed MINCR silencing, and the expression of miR-28-5p and RAP1B mRNA was analyzed by RT-qPCR. We found that C33-A/AA-c cells expressed MINCR 8-fold higher compared to the control cells. There is an inverse correlation between the expression of miR-28-5p and RAP1B in C33-A/AA-c cells. Our results suggest that MINCR might regulate the expression of RAP1B through the inhibition of miR-28-5p in CC cells expressing the E6 oncoprotein of HPV16 AA-c. We report, for the first time, that the MINCR/miR-28-5p/RAP1B axis positively regulates cell migration in CC-derived cells that express the E6 oncoprotein of the AA-c variant of HPV16.
Collapse
|
25
|
Baek M, Chai JC, Choi HI, Yoo E, Binas B, Lee YS, Jung KH, Chai YG. Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One 2022; 17:e0266966. [PMID: 35486664 PMCID: PMC9053788 DOI: 10.1371/journal.pone.0266966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poor prognosis. Emerging evidence suggests that epigenetic alterations play a crucial role in HCC, suggesting epigenetic inhibition as a promising therapeutic approach. Indeed, the bromodomain and extra-terminal (BET) inhibitors inhibit the proliferation and invasion of various cancers but still lack a strong mechanistic rationale. Here, we identified the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in human HCC cell line HepG2 treated with the BET inhibitors, JQ1, OTX015, or ABBV-075. We analyzed the correlation between DEmRNAs and DElncRNAs in common for the three inhibitors based on their expression profiles and performed functional annotation pathway enrichment analysis. Most of these shared DEmRNAs and DElncRNAs, including some novel transcripts, were downregulated, indicating decreased proliferation/adhesion and increased apoptosis/inflammation. Our study suggests that BET proteins play a crucial role in regulating cancer progression-related genes and provide a valuable resource for novel putative biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| | - Kyoung Hwa Jung
- Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Incheon, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| |
Collapse
|
26
|
Wu Y, Hayat K, Hu Y, Yang J. Long Non-Coding RNAs as Molecular Biomarkers in Cholangiocarcinoma. Front Cell Dev Biol 2022; 10:890605. [PMID: 35573683 PMCID: PMC9093656 DOI: 10.3389/fcell.2022.890605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary system cancer that has the characteristics of strong invasiveness, poor prognosis, and few therapy choices. Furthermore, the absence of precise biomarkers for early identification and prognosis makes it hard to intervene in the early phase of initial diagnosis or recurring cholangiocarcinoma following surgery. Encouragingly, previous studies found that long non-coding RNA (lncRNA), a subgroup of RNA that is more than 200 nucleotides long, can affect cell proliferation, migration, apoptosis, and even drug resistance by altering numerous signaling pathways, thus reaching pro-cancer or anti-cancer outcomes. This review will take a retrospective view of the recent investigations on the work of lncRNAs in cholangiocarcinoma progression and the potential of lncRNAs serving as promising clinical biomarkers and therapeutic targets for CCA.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Khizar Hayat
- Department of Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianfeng Yang,
| |
Collapse
|
27
|
Zhang Z, Wang F, Zhang J, Zhan W, Zhang G, Li C, Zhang T, Yuan Q, Chen J, Guo M, Xu H, Yu F, Wang H, Wang X, Kong W. An m6A-Related lncRNA Signature Predicts the Prognosis of Hepatocellular Carcinoma. Front Pharmacol 2022; 13:854851. [PMID: 35431958 PMCID: PMC9006777 DOI: 10.3389/fphar.2022.854851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The purpose of this study was to establish an N6-methylandenosine (m6A)-related long non-coding RNA (lncRNA) signature to predict the prognosis of hepatocellular carcinoma (HCC). Methods: Pearson correlation analysis was used to identify m6A-related lncRNAs. We then performed univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct an m6A-related lncRNA signature. Based on the cutoff value of the risk score determined by the X-title software, we divided the HCC patients into high -and low-risk groups. A time-dependent ROC curve was used to evaluate the predictive value of the model. Finally, we constructed a nomogram based on the m6A-related lncRNA signature. Results: ZEB1-AS1, MIR210HG, BACE1-AS, and SNHG3 were identified to comprise an m6A-related lncRNA signature. These four lncRNAs were upregulated in HCC tissues compared to normal tissues. The prognosis of patients with HCC in the low-risk group was significantly longer than that in the high-risk group. The M6A-related lncRNA signature was significantly associated with clinicopathological features and was established as a risk factor for the prognosis of patients with HCC. The nomogram based on the m6A-related lncRNA signature had a good distinguishing ability and consistency. Conclusion: We identified an m6A-related lncRNA signature and constructed a nomogram model to evaluate the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fangkai Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianlin Zhang
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjing Zhan
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Gaosong Zhang
- Department Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chong Li
- Department Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tongyuan Zhang
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianqian Yuan
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Guo
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng Yu
- Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengyi Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingyu Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and precision medicine. Genes Dis 2022; 9:358-369. [PMID: 35224152 PMCID: PMC8843871 DOI: 10.1016/j.gendis.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
29
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
30
|
BOZGEYİK E, EGE B, KOPARAL M, CEYLAN O. Clinical significance of Vimentin antisense RNA 1 and its correlation with other epithelial to mesenchymal transition markers in oral cancers. Pathol Res Pract 2022; 232:153807. [DOI: 10.1016/j.prp.2022.153807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022]
|
31
|
Lv C, Sun J, Ye Y, Lin Z, Li H, Liu Y, Mo K, Xu W, Hu W, Draz E, Wang S. LncRNA EIF1AX-AS1 promotes endometrial cancer cell apoptosis by affecting EIF1AX mRNA stabilization. Cancer Sci 2022; 113:1277-1291. [PMID: 35080085 PMCID: PMC8990785 DOI: 10.1111/cas.15275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play an important role in the occurrence and development of endometrial carcinoma (EC). Here, using RNA sequencing analysis, we systemically screened and identified the lncRNA EIF1AX-AS1, which is aberrantly down-regulated in clinical EC tissues and closely correlated with tumor type. EIF1AX-AS1 markedly inhibited EC cell proliferation and promoted apoptosis in vitro and in vivo. Mechanistically, EIF1AX-AS1 interacts with EIF1AX mRNA and poly C binding protein 1 (PCBP1), which promote eukaryotic translation initiation factor 1A, X-linked (EIF1AX) mRNA degradation. Intriguingly, interaction with IRES-related proteins Y-box binding protein 1 (YBX-1), EIF1AX promotes c-Myc translation through the internal ribosome enter site pathway. c-Myc promotes EIF1AX transcription and thus forms a feed-forward loop to regulate EC cell proliferation. Taken together, these data reveal new insights into the biology driving EC proliferation and highlights the potential of lncRNAs as biomarkers for prognosis and future therapeutic targets for cancer.
Collapse
Affiliation(s)
- Chengyu Lv
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Jiandong Sun
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Yuhong Ye
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Pathology, The First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, P. R.China
| | - Zihang Lin
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Hua Li
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Yue Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Kaien Mo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Weiwei Xu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Weitao Hu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Eman Draz
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China.,Human Anatomy and Embryology department, Suez Canal University, 12411, Egypt
| | - Shie Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine of Fujian Province University, Fujian Medical University, Fuzhou, 350122, P. R. China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P. R. China
| |
Collapse
|
32
|
Deng Y, Zhang F, Sun ZG, Wang S. Development and Validation of a Prognostic Signature Associated With Tumor Microenvironment Based on Autophagy-Related lncRNA Analysis in Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 8:762570. [PMID: 34970559 PMCID: PMC8712323 DOI: 10.3389/fmed.2021.762570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: The present study aimed to establish a prognostic signature based on the autophagy-related long non-coding RNAs (lncRNAs) analysis in patients with hepatocellular carcinoma (HCC). Methods: Patients with HCC from The Cancer Genome Atlas (TCGA) were taken as the training cohort, and patients from the International Cancer Genome Consortium (ICGC) were treated as the validation cohort. Autophagy-related lncRNAs were obtained via a co-expression network analysis. According to univariate and multivariate analyses, a multigene prognostic signature was constructed in the training cohort. The predictive power of the signature was confirmed in both cohorts. The detailed functions were investigated using functional analysis. The single-sample gene set enrichment analysis (ssGSEA) score was used to evaluate the tumor microenvironment. The expression levels of immunotherapy and targeted therapy targets between the two risk groups were compared. Finally, a nomogram was constructed by integrating clinicopathological parameters with independently predictive value and the risk score. Results: Four autophagy-related lncRNAs were identified to establish a prognostic signature, which separated patients into high- and low-risk groups. Survival analysis showed that patients in the high-risk group had a shorter survival time in both cohorts. A time-independent receiver-operating characteristic (ROC) curve and principal component analysis (PCA) confirmed that the prognostic signature had a robust predictive power and reliability in both cohorts. Functional analysis indicated that the expressed genes in the high-risk group are mainly enriched in autophagy- and cancer-related pathways. ssGSEA revealed that the different risk groups were associated with the tumor microenvironment. Moreover, the different risk groups had positive correlations with the expressions of specific mutant genes. Multivariate analysis showed that the risk score also exhibited excellent predictive power irrespective of clinicopathological characteristics in both cohorts. A nomogram was established. The nomogram showed good discrimination, with Harrell's concordance index (C-index) of 0.739 and good calibration. Conclusion: The four autophagy-related lncRNAs could be used as biological biomarkers and therapeutic targets. The prognostic signature and nomogram might aid clinicians in individual treatment optimization and clinical decision-making for patients with HCC.
Collapse
Affiliation(s)
- Yan Deng
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Feng Zhang
- Department of Ophthalmology, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| |
Collapse
|
33
|
Liu Y, Liu J, Cui J, Zhong R, Sun G. Role of lncRNA LINC01194 in hepatocellular carcinoma via the miR-655-3p/SMAD family member 5 axis. Bioengineered 2022; 13:1115-1125. [PMID: 34978464 PMCID: PMC8805840 DOI: 10.1080/21655979.2021.2017678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in developing hepatocellular carcinoma (HCC). The present study explored the role of lncRNA LINC01194, which is upregulated in HCC tissues and might be a vital regulator in HCC progression. Levels of LINC01194, microRNA (miR)-655-3p, and SMAD family member 5 (SMAD5) were assessed using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The bioactivity of Huh-7 cells was assessed using cell counting kit-8 and transwell assays and flow cytometry. Western blotting was conducted to measure the expression of invasion- and apoptosis-related proteins. The relationships between lncRNA LINC01194 and miR-655-3p, and miR-655-3p and SMAD5 were predicted using StarBase and TargetScan, and further verified using a dual-luciferase reporter assay. LINC01194 was overexpressed in HCC cells and in clinical samples. ILINC01194 silencing suppressed proliferation and migration; however, it promoted apoptosis in HCC cell lines. We also confirmed that miR-655-3p could bind to LINC01194, and miR-655-3p was downregulated in HCC. The upregulation of miR-655-3p suppressed HCC cell invasion and migration, and enhanced the number of apoptotic cells. SMAD5, which was overexpressed in HCC cell lines, was directly targeted by miR-655-3p. Therefore, LINC01194 promoted HCC development by decreasing miR-655-3p expression and may serve as a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Junkai Cui
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ruolei Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Guoyang Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
34
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
35
|
Jin Y, Zhang Z, Yu Q, Zeng Z, Song H, Huang X, Kong Q, Hu H, Xia Y. Positive Reciprocal Feedback of lncRNA ZEB1-AS1 and HIF-1α Contributes to Hypoxia-Promoted Tumorigenesis and Metastasis of Pancreatic Cancer. Front Oncol 2021; 11:761979. [PMID: 34881179 PMCID: PMC8645903 DOI: 10.3389/fonc.2021.761979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Many studies have reported the roles of the extracellular hypoxia microenvironment in the tumorigenesis and metastasis of multiple cancers. However, long noncoding RNAs (lncRNAs) that induce cancer oncogenicity and metastasis of pancreatic cancer (PC) under hypoxia conditions remain unclear. Methods In PC cells, the expression levels of lncRNAs in different conditions (normoxia or hypoxia) were compared through RNA sequencing (RNA-seq). The effects of the zinc finger E-box-binding homeobox 1 (ZEB1-AS1) antisense lncRNA on PC cells cultured in normoxia/hypoxia medium were measured through gain and loss-of-function experiments. Fluorescence in situ hybridization and luciferase reporter assays in addition to in vivo studies were utilized to explore the adaptive mechanisms of ZEB1-AS1 in the hypoxia-promoted proliferation, migration, and invasion ability of PC cells. Moreover, the level of ZEB1-AS1 and its associated targets or pathways were investigated in both PC and pancreatic normal tissues. Results RNA-seq revealed that ZEB1-AS1 was significantly upregulated in PC cells under hypoxia conditions. The ZEB1-AS1 expression level was closely associated with poor prognosis of PC patients. Knockdown of ZEB1-AS1 suppressed the proliferation, migration, and invasion of PC cells in vitro as well as PC xenograft tumor growth in vivo. In PC cells, RNAi-mediated reduction of ZEB1-AS1 inhibited zinc finger E-box-binding homeobox 1 (ZEB1), while ZEB1-AS1 overexpression rescued ZEB1 expression, indicating that ZEB1-AS1 promotes ZEB1 expression. Moreover, hypoxia-inducible factor-1α (HIF-1α)induced the expression of ZEB1-AS1 by binding to the ZEB1-AS1 promoter, which contains a putative hypoxia response element (HRE). Mechanistically, ZEB1-AS1 scaffolded the interaction among HIF-1α, ZEB1, and histone deacetylase 1 (HDAC1), leading to deacetylation-mediated stabilization of HIF-1α. We further revealed that ZEB1 induced the deacetylase capacity of HDAC1 to suppress the acetylation or degradation of HIF-1α, improving HIF-1α assembly. Thus, hypoxia-induced ZEB1-AS1 facilitated ZEB1 transcription and the stability of HIF-1α, which promoted the metastasis of PC cells. Clinically, dysregulated ZEB1 and HIF-1α expression was significantly correlated with histological grade, lymphatic metastasis, and distant metastasis in PC patients. Conclusions Our results emphasized that the positive reciprocal loop of HIF-1α/ZEB1-AS1/ZEB1/HDAC1 contributes to hypoxia-promoted oncogenicity and PC metastasis, indicating that it might be a novel therapeutic target for PC.
Collapse
Affiliation(s)
- Yan Jin
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhengming Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qiao Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Song
- Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qi Kong
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
36
|
Zhao W, Guo J, Li H, Cai L, Duan Y, Hou X, Diao Z, Shao X, Du H, Li C. FAM83H-AS1/miR-485-5p/MEF2D axis facilitates proliferation, migration and invasion of hepatocellular carcinoma cells. BMC Cancer 2021; 21:1310. [PMID: 34876040 PMCID: PMC8650424 DOI: 10.1186/s12885-021-08923-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Abundant evidence has manifested that long noncoding RNAs (lncRNAs) are closely implicated in human cancers, including hepatocellular carcinoma (HCC). Remarkably, lncRNA FAM83H antisense RNA 1 (FAM83H-AS1) has been reported to be a tumor-propeller in multiple cancers. However, its effect on HCC progression remains unknown. Methods FAM83H-AS1 expression was analyzed by RT-qPCR. Colony formation, EdU, and flow cytometry as well as transwell assays were implemented to analyze the biological functions of FAM83H-AS1 on HCC progression. Luciferase reporter, RIP and RNA pull-down assays were implemented to detect the interaction among FAM83H-AS1, microRNA-485-5p (miR-485-5p), and myocyte enhancer factor 2D (MEF2D) in HCC cells. Results FAM83H-AS1 expression in HCC cells was markedly elevated. FAM83H-AS1 accelerated cell proliferation, migration and invasion whereas inhibiting cell apoptosis in HCC. Besides, we confirmed that FAM83H-AS1 acts as a miR-485-5p sponge in HCC cells. Additionally, MEF2D was verified to be a direct target of miR-485-5p. FAM83H-AS1 could upregulate MEF2D expression via sponging miR-485-5p. Further, rescue experiments testified that MEF2D upregulation or miR-485-5p downregulation offset the repressive effect of FAM83H-AS1 depletion on HCC cell progression. Conclusions FAM83H-AS1 facilitates HCC malignant progression via targeting miR-485-5p/MEF2D axis, suggesting that FAM83H-AS1 may be a promising biomarker for HCC treatment in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08923-0.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Jiang Guo
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Honglu Li
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Liang Cai
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Youjia Duan
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Xiaopu Hou
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Zhenying Diao
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Xihong Shao
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Hongliu Du
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China
| | - Changqing Li
- Department of Oncology Interventional Radiology, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshundong Road, Beijing, 100015, China.
| |
Collapse
|
37
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 DOI: 10.1016/j.envexpbot.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. MATERIALS AND METHODS Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. RESULTS The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). CONCLUSIONS Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
39
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 PMCID: PMC8995546 DOI: 10.1155/2021/1395131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023]
Abstract
Background Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. Materials and Methods Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. Results The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). Conclusions Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
40
|
LncRNA ZEB1-AS1 knockdown alleviates oxidative low-density lipoprotein-induced endothelial cell injury via the miR-590-5p/HDAC9 axis. Cent Eur J Immunol 2021; 46:325-335. [PMID: 34764804 PMCID: PMC8574104 DOI: 10.5114/ceji.2021.108767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 01/17/2023] Open
Abstract
Oxidative low-density lipoprotein (ox-LDL) is thought to induce vascular endothelial cell injury, which contributes to the aetiopathogenesis of atherosclerosis (AS). Several previous reports have identified that lncRNA ZEB1-AS1 participates in the regulatory mechanisms of endothelial cell injury, but the potential interaction mechanism between ZEB1-AS1 and miR-590-5p in ox-LDL-induced endothelial cell damage is not clear. ZEB1-AS1 and miR-590-5p expression were tested by quantitative real-time polymerase chain reaction (qRT-PCR) in ox-LDL-treated endothelial cells. The proliferation and apoptosis were determined by MTT and Annexin V/PI double-staining assay, respectively. The protein expression of HDAC9, tumor necrosis factor α (TNF-α), cleaved caspase-3, and cleaved PARP were measured by western blot analysis. Dual-luciferase reporter and RIP assays affirmed the functional targets of ZEB1-AS1. ZEB1-AS1 expression was upregulated in ox-LDL-treated HUVECs, and miR-590-5p was lessened in a dose- or time-depended manner, respectively. Knockdown of ZEB1-AS1 facilitated ox-LDL-treated endothelial cell proliferation and inhibited cell apoptosis. Moreover, miR-590-5p was directly targeted via ZEB1-AS1 in ox-LDL-treated HUVECs. ZEB1-AS1 silencing attenuated ox-LDL-induced cell injury via regulation of miR-590-5p expression. Furthermore, HDAC9 reversed the influence of miR-590-5p on propagation and apoptosis of ox-LDL-induced endothelial cells. Knockdown of ZEB1-AS1 alleviates ox-LDL-induced endothelial cell injury by regulating the miR-590-5p/HDAC9 axis.
Collapse
|
41
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
42
|
Nishimoto Y, Nakagawa S, Okano H. NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochem Int 2021; 150:105175. [PMID: 34481908 DOI: 10.1016/j.neuint.2021.105175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a representative neurological disease that is known to devastate entire motor neurons within a period of just a few years. Discoveries of the specific pathologies of relevant RNA-binding proteins, including TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and the causative genes of both familial and sporadic ALS have provided crucial information that could lead to a cure. In recent ALS research the GGGGCC-repeat expansion in the C9orf72 gene was identified as one of the most important pathological findings, suggesting the significance of both nuclear dysfunction due to dipeptide repeat proteins (DPRs) and RNA toxicity (such as pathological alterations of non-coding RNAs). In research on model animals carrying ALS-related molecules, the determination of whether a factor is protective or toxic has been controversial. Herein, we review the findings regarding NEAT1 RNA and C9orf72 GGGGCC repeats associated with ALS, from the viewpoint of conversion from the protective stage in the nucleus in early-phase ALS to late-phase induction of cell death. This review will provide insights for the development of RNA effectors as novel ALS treatments.
Collapse
Affiliation(s)
- Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| |
Collapse
|
43
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
44
|
Mehrpour Layeghi S, Arabpour M, Shakoori A, Naghizadeh MM, Mansoori Y, Tavakkoly Bazzaz J, Esmaeili R. Expression profiles and functional prediction of long non-coding RNAs LINC01133, ZEB1-AS1 and ABHD11-AS1 in the luminal subtype of breast cancer. J Transl Med 2021; 19:364. [PMID: 34446052 PMCID: PMC8390237 DOI: 10.1186/s12967-021-03026-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Luminal breast cancer (BC) is the most frequent subtype accounting for more than 70% of BC. LncRNAs, a class of non-coding RNAs with more than 200 nucleotides, are involved in a variety of cellular processes and biological functions. Abberant expression is related to the development of various cancers, such as breast cancer. LINC01133, ZEB1-AS1, and ABHD11-AS1 were reported to be dysregulated in different cancers. However, their expression level in luminal BC remains poorly known. The aim of the present study was to evaluate the potential roles of these lncRNAs in BC, especially in luminal subtypes. Methods A comprehensive analysis was performed using the Lnc2Cancer database to identify novel cancer-associated lncRNA candidates. After conducting a literature review, three novel lncRNAs named LINC01133, ZEB1-AS1, and ABHD11-AS1 were chosen as target genes of the present study. Quantitative real‐time polymerase chain reaction (qRT-PCR) was used to evaluate the expression level of the mentioned lncRNAs in both luminal BC tissues and cell lines. Then, the correlation of the three mentioned lncRNAs expression with clinicopathological characteristics of the patients was studied. Moreover, several datasets were used to discover the potential roles and functions of LINC01133, ZEB1-AS1 and ABHD11-AS1 in luminal subtype of BC. Results According to the qRT-PCR assay, the expression levels of LINC01133 and ZEB1-AS1 were decreased in luminal BC tissues and cell lines. On the other hand, ABHD11-AS1 was upregulated in the above-mentioned samples. The expression levels of LINC01133, ZEB1-AS1, and ABHD11-AS1 were not associated with any of the clinical features. Also, the results obtained from the bioinformatics analyses were consistent with qRT-PCR data. Functional annotation of the co-expressed genes with the target lncRNAs, protein–protein interactions and significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways across luminal BC were also obtained using bioinformatics analysis. Conclusions Taken together, our findings disclosed the dysregulation of LINC01133, ZEB1-AS1, and ABHD11-AS1 in luminal BC. It was revealed that LINC01133 and ZEB1-AS1 expression was significantly downregulated in luminal BC tissues and cell lines, while ABHD11-AS1 was upregulated considerably in the mentioned tissues and cell lines. Also, bioinformatics and systems biology analyses have helped to identify the possible role of these lncRNAs in luminal BC. However, further analysis is needed to confirm the current findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03026-7.
Collapse
Affiliation(s)
- Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
45
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
46
|
Lasagna A, Cuzzocrea F, Maccario G, Mahagna A, Sacchi P, U Mondelli M. Bone metastases and hepatocellular carcinoma: some food for thought. Future Oncol 2021; 17:3777-3780. [PMID: 34313153 DOI: 10.2217/fon-2021-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Fabrizio Cuzzocrea
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Gaia Maccario
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Antonio Mahagna
- Orthopedics Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| | - Mario U Mondelli
- Division of Infectious Diseases & Immunology, Fondazione IRCCS Policlinico San Matteo, Piazzale C. Golgi 19, Pavia 27100, Italy
| |
Collapse
|
47
|
Chen T, Huang B, Pan Y. Long Non-coding RNA MAFG-AS1 Promotes Cell Proliferation, Migration, and EMT by miR-3196/STRN4 in Drug-Resistant Cells of Liver Cancer. Front Cell Dev Biol 2021; 9:688603. [PMID: 34386494 PMCID: PMC8353155 DOI: 10.3389/fcell.2021.688603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to participate in the development and progression of several different types of cancer. Past studies indicated that lncRNA MAFG-antisense 1 (AS1) promotes colorectal cancer. However, the role of MAFG-AS1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study is to examine the effect of lncRNA MAFG-AS1 on drug resistance HCC. The results indicated that MAFG-AS1 is upregulated in drug-resistant cells. Further, MAFG-AS1 promotes growth and migration of HCC by upregulating STRN4 through absorbing miR-3196. Thus, LncRNA MAFA-AS1 may become a novel target to treat HCC patients.
Collapse
Affiliation(s)
- Tianming Chen
- Department of Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Huang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yaozhen Pan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
48
|
Fratini L, Jaeger M, de Farias CB, Brunetto AT, Brunetto AL, Shaw L, Roesler R. Oncogenic functions of ZEB1 in pediatric solid cancers: interplays with microRNAs and long noncoding RNAs. Mol Cell Biochem 2021; 476:4107-4116. [PMID: 34292482 DOI: 10.1007/s11010-021-04226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The transcription factor Zinc finger E-box binding 1 (ZEB1) displays a range of regulatory activities in cell function and embryonic development, including driving epithelial-mesenchymal transition. Several aspects of ZEB1 function can be regulated by its functional interactions with noncoding RNA types, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Increasing evidence indicates that ZEB1 importantly influences cancer initiation, tumor progression, metastasis, and resistance to treatment. Cancer is the main disease-related cause of death in children and adolescents. Although the role of ZEB1 in pediatric cancer is still poorly understood, emerging findings have shown that it is expressed and regulates childhood solid tumors including osteosarcoma, retinoblastoma, neuroblastoma, and central nervous system tumors. Here, we review the evidence supporting a role for ZEB1, and its interplays with miRNAs and lncRNAs, in pediatric cancers.
Collapse
Affiliation(s)
- Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.,Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
49
|
Dang Q, Shao B, Zhou Q, Chen C, Guo Y, Wang G, Liu J, Kan Q, Yuan W, Sun Z. RNA N 6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Front Oncol 2021; 11:681781. [PMID: 34211849 PMCID: PMC8239292 DOI: 10.3389/fonc.2021.681781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer metastasis is a symptom of adverse prognosis, a prime origin of therapy failure, and a lethal challenge for cancer patients. N6-methyladenosine (m6A), the most prevailing modification in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) of higher eukaryotes, has attracted increasing attention. Growing studies have verified the pivotal roles of m6A methylation in controlling mRNAs and ncRNAs in diverse physiological processes. Remarkably, recent findings have showed that aberrant methylation of m6A-related RNAs could influence cancer metastasis. In this review, we illuminate how m6A modifiers act on mRNAs and ncRNAs and modulate metastasis in several cancers, and put forward the clinical application prospects of m6A methylation.
Collapse
Affiliation(s)
- Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Basic Medical, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Lu C, Luo X, Xing C, Mao Y, Xu Y, Gao W, Wang W, Zhan T, Wang G, Liu Z, Yu C. Construction of a novel mRNA-miRNA-lncRNA network and identification of potential regulatory axis associated with prognosis in colorectal cancer liver metastases. Aging (Albany NY) 2021; 13:14968-14988. [PMID: 34081622 PMCID: PMC8221294 DOI: 10.18632/aging.203049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Liver metastasis is a leading cause of death in patients with colorectal cancer (CRC). Increasing evidence demonstrates that competing endogenous RNA (ceRNA) networks play important roles in malignant cancers. The purpose of this study was to identify molecular markers and build a ceRNA network as a significant predictor of colorectal liver metastases (CRLM). By integrated bioinformatics analysis, we found that apolipoprotein C1 (APOC1) was upregulated in CRLM and associated with prognosis in patients with CRC and thereby established an APOC1-dependent ceRNA network. By survival analysis, expression analysis, and correlation analysis of each element in the ceRNA network, we identified that ZEB1-AS1, miR-335-5p and APOC1 regulated each other. We further experimentally confirmed that ZEB1-AS1 promoted a CRC progression via regulating the expression of miR-335-5p that controlled the expression of APOC1. Our findings indicate that the ZEB1-AS1-miR-335-5p-APOC1 ceRNA regulatory network is significantly valuable for better prognosis of patients with CRC and as a new therapeutic target for the treatment of CRLM.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Cheng Xing
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yonghuan Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yuting Xu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Wulin Wang
- Department of Gastrointestinal Surgery, Jingzhou Central Hospital, Jingzhou 434000, Hubei, China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| |
Collapse
|