1
|
Wang L, Pattnaik A, Sahoo SS, Stone EG, Zhuang Y, Benton A, Tajmul M, Chakravorty S, Dhawan D, Nguyen MA, Sirit I, Mundy K, Ricketts CJ, Hadisurya M, Baral G, Tinsley SL, Anderson NL, Hoda S, Briggs SD, Kaimakliotis HZ, Allen-Petersen BL, Tao WA, Linehan WM, Knapp DW, Hanna JA, Olson MR, Afzali B, Kazemian M. Unbiased discovery of cancer pathways and therapeutics using Pathway Ensemble Tool and Benchmark. Nat Commun 2024; 15:7288. [PMID: 39179644 PMCID: PMC11343859 DOI: 10.1038/s41467-024-51859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Correctly identifying perturbed biological pathways is a critical step in uncovering basic disease mechanisms and developing much-needed therapeutic strategies. However, whether current tools are optimal for unbiased discovery of relevant pathways remains unclear. Here, we create "Benchmark" to critically evaluate existing tools and find that most function sub-optimally. We thus develop the "Pathway Ensemble Tool" (PET), which outperforms existing methods. Deploying PET, we identify prognostic pathways across 12 cancer types. PET-identified prognostic pathways offer additional insights, with genes within these pathways serving as reliable biomarkers for clinical outcomes. Additionally, normalizing these pathways using drug repurposing strategies represents therapeutic opportunities. For example, the top predicted repurposed drug for bladder cancer, a CDK2/9 inhibitor, represses cell growth in vitro and in vivo. We anticipate that using Benchmark and PET for unbiased pathway discovery will offer additional insights into disease mechanisms across a spectrum of diseases, enabling biomarker discovery and therapeutic strategies.
Collapse
Affiliation(s)
- Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Aryamav Pattnaik
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Subhransu Sekhar Sahoo
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Ella G Stone
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yuxin Zhuang
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Annaleigh Benton
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Md Tajmul
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Immunoregulation Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Srishti Chakravorty
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - My An Nguyen
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabella Sirit
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Kyle Mundy
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch of Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Marco Hadisurya
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Garima Baral
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Samantha L Tinsley
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Nicole L Anderson
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Scott D Briggs
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Brittany L Allen-Petersen
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - W Andy Tao
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - W Marston Linehan
- Urologic Oncology Branch of Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Deborah W Knapp
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jason A Hanna
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R Olson
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Takamiya R, Takahashi M, Maeno T, Saito A, Kato M, Shibata T, Uchida K, Ariki S, Nakano M. Acrolein in cigarette smoke attenuates the innate immune responses mediated by surfactant protein D. Biochim Biophys Acta Gen Subj 2020; 1864:129699. [PMID: 32738274 DOI: 10.1016/j.bbagen.2020.129699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Surfactant proteins (SP) A and D belong to collectin family proteins, which play important roles in innate immune response in the lung. We previously demonstrated that cigarette smoke (CS) increases the acrolein modification of SP-A, thereby impairing the innate immune abilities of this protein. In this study, we focused on the effects of CS and its component, acrolein, on the innate immunity role of another collectin, SP-D. METHODS To determine whether aldehyde directly affects SP-D, we examined the lungs of mice exposed to CS for 1 week and detected aldehyde-modified SP-D using an aldehyde reactive probe. The structural changes in CS extract (CSE) or acrolein-exposed recombinant human (h)SP-D were determined by western blot, liquid chromatography-electrospray ionization tandem mass spectrometry, and blue native-polyacrylamide gel electrophoresis analyses. Innate immune functions of SP-D were determined by bacteria growth and macrophage phagocytosis. RESULTS Aldehyde-modified SP-D as well as SP-A was detected in the lungs of mice exposed to CS for 1 week. Exposure of hSP-D to CSE or acrolein induced an increased higher-molecular -weight of hSP-D and acrolein induced modification of five lysine residues in hSP-D. These modifications led to disruption of the multimer structure of SP-D and attenuated its ability to inhibit bacterial growth and activate macrophage phagocytosis. CONCLUSION CS induced acrolein modification in SP-D, which in turn induced structural and functional defects in SP-D. GENERAL SIGNIFICANCE These results suggest that CS-induced structural and functional defects in SP-D contribute to the dysfunction of innate immune responses in the lung following CS exposure.
Collapse
Affiliation(s)
- Rina Takamiya
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan.
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Toshitaka Maeno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masaki Kato
- Data Knowledge Organization Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Saitama, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
5
|
Li B, Meng YQ, Li Z, Yin C, Lin JP, Zhu DJ, Zhang SB. MiR-629-3p-induced downregulation of SFTPC promotes cell proliferation and predicts poor survival in lung adenocarcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3286-3296. [PMID: 31379200 DOI: 10.1080/21691401.2019.1648283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The long-term prognosis of patients with lung cancer remains poor and thus it is imminent to further elucidate the molecular mechanism for the oncogenesis of lung cancer. In this study, we observed that surfactant protein C (SFTPC) expression was downregulated in human lung adenocarcinoma tissues and cell lines, and low SFTPC expression correlated with poor overall survival of lung adenocarcinoma patients. Moreover, we found that overexpression of SFTPC could inhibit lung cancer cell proliferation in vitro and in vivo, but downregulation of SFTPC showed the opposite results. Besides, it was observed that miR-629-3p expression was upregulated in human lung adenocarcinoma tissues and cell lines. More importantly, we found that miR-629-3p could downregulate SFTPC expression by directly binding to the SFTPC 3'-UTR and inhibit the regulatory effect of SFTPC on lung adenocarcinoma cell proliferation. In conclusion, these data suggested that miR-629-3p-meditated downregulation of SFTPC may promote lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Bin Li
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Yu-Qi Meng
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Zheng Li
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Ci Yin
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Jun-Ping Lin
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Duo-Jie Zhu
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| | - Shao-Bo Zhang
- a Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College , Lanzhou , Gansu , China
| |
Collapse
|
6
|
Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, Gil Bazo I, Weder W, Jungraithmayr W. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019; 40:324-334. [PMID: 30698677 DOI: 10.1093/carcin/bgz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
CD26/dipeptidyl peptidase 4 (DPP4) is a transmembrane protein which is expressed by various malignant cells. We found that the expression of CD26/DPP4 was significantly higher in lung adenocarcinoma samples in our own patient cohort compared to normal lung tissue. We therefore hypothesize that the inhibition of CD26/DPP4 can potentially suppress lung cancer growth. The CD26/DPP4 inhibitor vildagliptin was employed on Lewis Lung Carcinoma (LLC) cell line and a human lung adenocarcinoma (H460) cell line. Two weeks after subcutaneous injection of tumor cells into C57BL/6 and CD1/nude mice, the size of LLC and H460 tumors was significantly reduced by vildagliptin. Immunohistochemically, the number of macrophages (F4/80+) and NK cells (NKp46+) was significantly increased in vildagliptin-treated tumor samples. Mechanistically, we found in vitro that lung cancer cell lines expressed increased levels of surfactant protein upon vildagliptin treatment thereby promoting the pro-inflammatory activity of macrophages. By the depletion of macrophages with clodronate and by using NK cell deficient (IL-15-/-) mice, tumors reversed to the size of controls, suggesting that indeed macrophages and NK cells were responsible for the observed tumor-suppressing effect upon vildagliptin treatment. FACS analysis showed tumor-infiltrating NK cells to express tumor necrosis-related apoptosis-inducing ligand (TRAIL) which induced the intra-cellular stress marker γH2AX. Accordingly, we found upregulated γH2AX in vildagliptin-treated tumors and TRAIL-treated cell lines. Moreover, the effect of vildagliptin-mediated enhanced NK cell cytotoxicity could be reversed by antagonizing the TRAIL receptor. Our data provide evidence that the CD26/DPP4-inhibitor vildagliptin reduces lung cancer growth. We could demonstrate that this effect is exerted by surfactant-activated macrophages and NK cells that act against the tumor via TRAIL-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingrid De Meester
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ignacio Gil Bazo
- Department of Oncology, University Hospital Navarra, Pamplona, Spain
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
7
|
Ardá A, Jiménez-Barbero J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem Commun (Camb) 2018; 54:4761-4769. [PMID: 29662983 DOI: 10.1039/c8cc01444b] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, sugars) are everywhere. In fact, glycan-protein interactions are involved in many essential processes of life and disease. The understanding of the key structural details at the atomic and molecular level is of paramount importance to effectively design molecules for therapeutic purposes. Different approximations may be employed to decipher these molecular recognition processes with high resolution. Advances in cryo-electron microscopy are providing exquisite details on different biological mechanisms involving sugars, while better and better protocols for structural refinement in the application of X-ray methods for protein-sugar complexes and glycoproteins are also permitting fantastic advances in the glycoscience arena. Alternatively, NMR spectroscopy remains as one of the most rewarding techniques to explore protein-carbohydrate interactions. In fact, given the intrinsic dynamic nature of saccharides, NMR can afford exquisite structural information at the atomic detail, not accessible by other techniques. However, the access to this information is sometimes intricate, and requires careful analysis and well-defined strategies. In this review, we have highlighted these issues and presented an overview of different modern NMR approaches with a focus on the latest developments and challenges.
Collapse
Affiliation(s)
- Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.
| | | |
Collapse
|
8
|
Kaur A, Riaz MS, Singh SK, Kishore U. Human Surfactant Protein D Suppresses Epithelial-to-Mesenchymal Transition in Pancreatic Cancer Cells by Downregulating TGF-β. Front Immunol 2018; 9:1844. [PMID: 30158928 PMCID: PMC6104167 DOI: 10.3389/fimmu.2018.01844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Human surfactant protein-D (SP-D), an innate immune pattern recognition soluble factor, is known to modulate a range of cytokines and chemokines, such as TNF-α and TGF-β at mucosal surfaces during infection, allergy, and inflammation. A recent study has shown that treatment with a recombinant fragment of human SP-D (rfhSP-D) for 48 h induces apoptosis in pancreatic cancer cells. Our hypothesis is that at earlier time points, SP-D can also influence key cytokines as a part of its putative role in the immune surveillance against pancreatic cancer, where the inflammatory tumor microenvironment contributes to the epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Here, we provide the first evidence that rfhSP-D can suppress the invasive-mesenchymal properties of highly aggressive pancreatic cancer cells. Mechanistically, rfhSP-D inhibited TGF-β expression in a range of pancreatic cancer cell lines, Panc-1, MiaPaCa-2, and Capan-2, thereby reducing their invasive potential. Smad2/3 expression diminished in the cytoplasm of rfhSP-D-treated cells as compared to the untreated control, suggesting that an interrupted signal transduction negatively affected the transcription of key mesenchymal genes. Thus, expressions of Vimentin, Zeb1, and Snail were found to be downregulated upon rfhSP-D treatment in the pancreatic cancer cell lines. Furthermore, blocking TGF-β with neutralizing antibody showed similar downregulation of mesenchymal markers as seen with rfhSP-D treatment. This study highlights yet another novel innate immune surveillance role of SP-D where it interferes with EMT induction by attenuating TGF-β pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Anuvinder Kaur
- Biosciences Division, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Muhammad Suleman Riaz
- Biosciences Division, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Shiv K Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Gottingen, Germany
| | - Uday Kishore
- Biosciences Division, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
9
|
Kaur A, Riaz MS, Murugaiah V, Varghese PM, Singh SK, Kishore U. A Recombinant Fragment of Human Surfactant Protein D induces Apoptosis in Pancreatic Cancer Cell Lines via Fas-Mediated Pathway. Front Immunol 2018; 9:1126. [PMID: 29915574 PMCID: PMC5994421 DOI: 10.3389/fimmu.2018.01126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/03/2018] [Indexed: 12/24/2022] Open
Abstract
Human surfactant protein D (SP-D) is a potent innate immune molecule, which is emerging as a key molecule in the recognition and clearance of altered and non-self targets. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis via p53-mediated apoptosis pathway in an eosinophilic leukemic cell line, AML14.3D10. Here, we report the ability of rfhSP-D to induce apoptosis via TNF-α/Fas-mediated pathway regardless of the p53 status in human pancreatic adenocarcinoma using Panc-1 (p53mt), MiaPaCa-2 (p53mt), and Capan-2 (p53wt) cell lines. Treatment of these cell lines with rfhSP-D for 24 h caused growth arrest in G1 cell cycle phase and triggered transcriptional upregulation of pro-apoptotic factors such as TNF-α and NF-κB. Translocation of NF-κB from the cytoplasm into the nucleus of pancreatic cancer cell lines was observed via immunofluorescence microscopy following treatment with rfhSP-D as compared to the untreated cells. The rfhSP-D treatment caused upregulation of pro-apoptotic marker Fas, as analyzed via qPCR and western blot, which then triggered caspase cascade, as evident from cleavage of caspase 8 and 3 analyzed via western blot at 48 h. The cell number following the rfhSP-D treatment was reduced in the order of Panc-1 (~67%) > MiaPaCa-2 (~60%) > Capan-2 (~35%). This study appears to suggest that rfhSP-D can potentially be used to therapeutically target pancreatic cancer cells irrespective of their p53 phenotype.
Collapse
Affiliation(s)
- Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Muhammad Suleman Riaz
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
10
|
Ledford JG, Voelker DR, Addison KJ, Wang Y, Nikam VS, Degan S, Kandasamy P, Tanyaratsrisakul S, Fischer BM, Kraft M, Hollingsworth JW. Genetic variation in SP-A2 leads to differential binding to Mycoplasma pneumoniae membranes and regulation of host responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:6123-32. [PMID: 25957169 DOI: 10.4049/jimmunol.1500104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/19/2015] [Indexed: 01/14/2023]
Abstract
Mycoplasma pneumoniae is an extracellular pathogen that colonizes mucosal surfaces of the respiratory tract and is associated with asthma exacerbations. Previous reports demonstrate that surfactant protein-A (SP-A) binds live M. pneumoniae and mycoplasma membrane fractions (MMF) with high affinity. Humans express a repertoire of single-amino acid genetic variants of SP-A that may be associated with lung disease, and our findings demonstrate that allelic differences in SP-A2 (Gln223Lys) affect the binding to MMF. We show that SP-A(-/-) mice are more susceptible to MMF exposure and have significant increases in mucin production and neutrophil recruitment. Novel humanized SP-A2-transgenic mice harboring the hSP-A2 223K allele exhibit reduced neutrophil influx and mucin production in the lungs when challenged with MMF compared with SP-A(-/-) mice. Conversely, mice expressing hSP-A2 223Q have increased neutrophil influx and mucin production that are similar to SP-A(-/-) mice. Using tracheal epithelial cell cultures, we show that enhanced mucin production to MMF occurs in the absence of SP-A and is not dependent upon neutrophil recruitment. Increased phosphorylation of the epidermal growth factor receptor (EGFR) was evident in the lungs of MMF-challenged mice when SP-A was absent. Pharmacologic inhibition of EGFR prior to MMF challenge dramatically reduced mucin production in SP-A(-/-) mice. These findings suggest a protective role for SP-A in limiting MMF-stimulated mucin production that occurs through interference with EGFR-mediated signaling. SP-A interaction with the EGFR signaling pathway appears to occur in an allele-specific manner that may have important implications for SP-A polymorphisms in human diseases.
Collapse
Affiliation(s)
- Julie G Ledford
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; Department of Medicine, University of Arizona, Tucson, AZ 85721;
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, CO 80206
| | - Kenneth J Addison
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Ying Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Vinayak S Nikam
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Simone Degan
- Department of Radiology, Duke University Medical Center, Durham, NC 27710
| | | | | | - Bernard M Fischer
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; and
| | - Monica Kraft
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - John W Hollingsworth
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|