1
|
Zhang P, Sun C, Yin T, Guo J, Chong D, Tang Y, Liu Y, Li Y, Gu Y, Lu L. ESF1 positively regulates MDM2 and promotes tumorigenesis. Int J Biol Macromol 2024; 276:133652. [PMID: 38971273 DOI: 10.1016/j.ijbiomac.2024.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Eighteen S rRNA factor 1 (ESF1) is a predominantly nucleolar protein essential for embryogenesis. Our previous studies have suggested that Esf1 is a negative regulator of the tumor suppressor protein p53. However, it remains unclear whether ESF1 contributes to tumorigenesis. In this current research, we find that increased ESF1 expression correlates with poor survival in multiple tumors including pancreatic cancer. ESF1 is able to regulate cell proliferation, migration, DNA damage-induced apoptosis, and tumorigenesis. Mechanistically, ESF1 physically interacts with MDM2 and is essential for maintaining the stability of MDM2 protein by inhibiting its ubiquitination. Additionally, ESF1 also prevented stress-induced stabilization of p53 in multiple cancer cells. Hence, our findings suggest that ESF1 is a potent regulator of the MDM2-p53 pathway and promotes tumor progression.
Collapse
Affiliation(s)
- Pei Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Changning Sun
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tiantian Yin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Daochen Chong
- Pathology Department, Navy 971 Hospital of PLA, Qingdao, China
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ling Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Biological Products, Laoshan Laboratory, Qingdao, China.
| |
Collapse
|
2
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
3
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Li F, Du Z, Huang X, Dong C, Ren J. Analyses of p73 Protein Oligomerization and p73-MDM2 Interaction in Single Living Cells Using In Situ Single Molecule Spectroscopy. Anal Chem 2021; 93:886-894. [PMID: 33393764 DOI: 10.1021/acs.analchem.0c03521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein oligomerization and protein-protein interaction are crucial to regulate protein functions and biological processes. p73 protein is a very important transcriptional factor and can promote apoptosis and cell cycle arrest, and its transcriptional activity is regulated by p73 oligomerization and p73-MDM2 interaction. Although extracellular studies on p73 oligomerization and p73-MDM2 interaction have been carried out, it is unclear how p73 oligomerization and p73-MDM2 interaction occur in living cells. In our study, we described an in situ method for studying p73 oligomerization and p73-MDM2 interaction in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. Lentiviral transfection was used to transfect cells with a plasmid for either p73 or MDM2, each fused to a different fluorescent protein. p73 oligomerization was evaluated using brightness per particle, and the p73-MDM2 interaction was quantified using the cross-correlation value. We constructed a series of p73 mutants in three domains (transactivation domain, DNA binding domain, and oligomerization domain) and MDM2 mutants. We systematically studied p73 oligomerization and the effects of p73 oligomerization and the p73 and MDM2 structures on the p73-MDM2 interaction in single living cells. We have found that the p73 protein can form oligomers and that the p73 structure changes in the oligomerization domain significantly influence its oligomerization. p73 oligomerization and the structure changes significantly affect the p73-MDM2 interaction. Furthermore, the effects of inhibitors on p73 oligomerization and p73-MDM2 interaction were studied.
Collapse
Affiliation(s)
- Fucai Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
6
|
Wang B, Liang C, Liu H, Lin J, Wang B, Fan K, Ren Z, Wang B, Li T, Qi K, Tian X. The expression of mouse double minute 2 homolog and P73 had no correlation with growth arrest DNA damage-inducible gene 45α in patients with non-small-cell lung carcinoma: A STROBE-compliant study. Medicine (Baltimore) 2019; 98:e17944. [PMID: 31860949 PMCID: PMC6940057 DOI: 10.1097/md.0000000000017944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To investigate the difference in messenger ribonucleic acid (mRNA) and protein expression of growth arrest DNA damage-inducible gene 45α (GADD45α), mouse double minute 2 homolog (MDM2), and P73 in cancer and cancer-adjacent tissues in patients with non-small-cell lung carcinoma (NSCLC).We compared the mRNA expression of GADD45α and MDM2 and the protein expression of GADD45α, MDM2, and P73 in lung cancer and cancer-adjacent tissues in NSCLC patients by quantitative real-time PCR, immunohistochemistry (IHC), and Western Blot (WB). We analyzed GADD45α, MDM2, and P73 expression in patients with different pathological types of NSCLC, and the correlation of these genes with gender, smoking history, and TNM/T stages.IHC results suggested that MDM2 protein expression significantly increased in cancer tissues in female patients (P = .01), but not in male patients. In addition, WB results indicated that P73 protein expression significantly decreased in cancer tissues in patients with adenocarcinoma (P = .03), but not squamous carcinoma.MDM2 and P73 protein levels were differentially regulated in cancer and cancer-adjacient tissues in patients with sub types of NSCLC. There was no significant difference in GADD45α expression between cancer and cancer-adjacent tissues in NSCLC patients.
Collapse
Affiliation(s)
- Bo Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Chaoyang Liang
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Haitangwan, Sanya
| | - Huifeng Liu
- Department of Thoracic Surgery, PLA 309 Hospital, Haidian District, Beijing, China
| | - Jixing Lin
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Haitangwan, Sanya
| | - Bailin Wang
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Haitangwan, Sanya
| | - Kaijie Fan
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Zhipeng Ren
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Bin Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Tong Li
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Kang Qi
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing
| | - Xiaodong Tian
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Haitangwan, Sanya
| |
Collapse
|
7
|
Zhao L, Fu L, Xu Z, Fan R, Xu R, Fu R, Zou S, Wang C, Zhang Y, Wang J, Bao J, Wang Z, Hou X, Zheng Y, Dai E, Wang F. The anticancer effects of cinobufagin on hepatocellular carcinoma Huh‑7 cells are associated with activation of the p73 signaling pathway. Mol Med Rep 2019; 19:4119-4128. [PMID: 30942456 PMCID: PMC6471725 DOI: 10.3892/mmr.2019.10108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
The Na+/K+-ATPase inhibitor cinobufagin exhibits numerous anticancer effects on hepatocellular carcinoma (HCC) cells expressing wild-type p53 via inhibition of aurora kinase A (AURKA) and activation of p53 signaling. However, the effects of cinobufagin on HCC cells expressing mutant p53 remain unclear. In the present study, the anticancer effects of cinobufagin were investigated on HCC Huh-7 cells with mutant p53, and the effects of AURKA overexpression or inhibition on the anticancer effects of cinobufagin were analyzed. Viability, cell cycle progression and apoptosis of cells were determined using an MTT assay, flow cytometry and Hoechst 33342 staining, respectively. The expression levels of p53 and p73 signaling-associated proteins were investigated via western blot analysis. The results demonstrated that the expression levels of AURKA, B-cell lymphoma 2 (Bcl-2), cyclin-dependent kinase 1, cyclin B1, proliferating cell nuclear antigen and heterogeneous nuclear ribonucleoprotein K, as well as the phosphorylation of p53 and mouse double minute 2 homolog, were significantly decreased in Huh-7 cells treated with 5 µmol/l cinobufagin for 24 h. Conversely, the expression levels of Bcl-2-associated X protein, p21, p53 upregulated modulator of apoptosis and phorbol-12-myristate-13-acetate-induced protein 1, were significantly increased by cinobufagin treatment. Overexpression or inhibition of AURKA suppressed or promoted the anticancer effects of cinobufagin on Huh-7 cells, respectively. These results indicated that cinobufagin may induce anticancer effects on Huh-7 cells via the inhibition of AURKA and p53 signaling, and via the activation of p73 signaling, in an AURKA-dependent manner.
Collapse
Affiliation(s)
- Lei Zhao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Lina Fu
- Department of Gastroenterology, Tianjin Fourth Central Hospital, Tianjin 300140, P.R. China
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Rong Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Ruicheng Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Rong Fu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Congcong Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Jiabao Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Jun Bao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Zhimei Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Xiaojie Hou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P.R. China
| | - Yupiao Zheng
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| | - Erqing Dai
- Hepatology Department of Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| |
Collapse
|
8
|
Cao Z, Xue J, Cheng Y, Wang J, Liu Y, Li H, Jiang W, Li G, Gui Y, Zhang X. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene 2019; 38:4835-4855. [PMID: 30816344 PMCID: PMC6756050 DOI: 10.1038/s41388-019-0761-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/09/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
Genome instability is a common feature of tumor cells, and the persistent presence of genome instability is a potential mechanism of tumorigenesis. The E3 ubiquitin ligase MDM2 is intimately involved in genome instability, but its mechanisms are unclear. Our data demonstrated that the transcription factor HBP1 is a target of MDM2. MDM2 facilitates HBP1 proteasomal degradation by ubiquitinating HBP1, regardless of p53 status, thus attenuating the transcriptional inhibition of HBP1 in the expression of its target genes, such as the DNA methyltransferase DNMT1 and histone methyltransferase EZH2, which results in global DNA hypermethylation and histone hypermethylation and ultimately genome instability. The repression of HBP1 by MDM2 finally promotes cell growth and tumorigenesis. Next, we thoroughly explored the regulatory mechanism of the MDM2/HBP1 axis in DNA damage repair following ionizing radiation. Our data indicated that MDM2 overexpression-mediated repression of HBP1 delays DNA damage repair and causes cell death in a p53-independent manner. This investigation elucidated the mechanism of how MDM2 promotes genome instability and enhances tumorigenesis in the absence of p53, thus providing a theoretical and experimental basis for targeting MDM2 as a cancer therapy.
Collapse
Affiliation(s)
- Zhengyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Junhui Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Jiyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yujuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, P. R. China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, P. R. China.
| |
Collapse
|
9
|
Wang B, Liu X, Liu H, Guo J, Zhang T, Zhou N, Ma Y, Yu H, Chen L, Ren Z, Fan K, Tian X. Differential expressions of MDM2 and TAP73 in cancer and cancer-adjacent tissues in patients with non-small-cell lung carcinoma. Pulmonology 2018; 24:S2173-5115(17)30153-7. [PMID: 29452959 DOI: 10.1016/j.rppnen.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 01/15/2023] Open
Abstract
AIM To investigate the differences in mRNA and protein expressions of MDM2 (mouse double minute 2 homolog) and P73 in cancer and cancer-adjacent tissues in patients with non-small-cell lung carcinoma (NSCLC). MATERIALS AND METHODS We compared the protein expressions of MDM2 and P73 in lung cancer and cancer-adjacent tissues in NSCLC patients by IHC (immunohistochemistry) and WB (Western blot). We divided the NSCLC patients into two subgroups, adenocarcinoma and squamous carcinoma. The mRNA expressions of two main isoforms of P73, TAP73 and DNP73, as well as the ratio of DNP73/TAP73 were analyzed by qPCR (quantitative real-time PCR) in the two tissues in all NSCLC patients and in patients with adenocarcinoma or squamous carcinoma, respectively. RESULTS WB results did not show significant differences in MDM2 and P73 protein expressions in lung cancer and cancer-adjacent tissues. However, IHC results indicated that MDM2 expression significantly increased in cancer tissues in female patients, but not male patients. In addition, TAP73 mRNA expression significantly increased in cancer tissues in all NSCLC patients (p=0.002) and in patients with adenocarcinoma (p=0.01); while there was no significant difference in DNP73 mRNA expression. Hence the fold-change of DNP73/TAP73 ratio significantly decreased (p=0.0003) in cancer tissues in all NSCLC patients and in patients with adenocarcinoma. CONCLUSIONS TAP73 mRNA expression significantly increased in cancer tissues than cancer-adjacent tissues in all NSCLC patients and in patients with adenocarcinoma. Meanwhile, the fold-change of DNP73/TAP73 ratio was similar to TAP73. MDM2 protein expression significantly increased in cancer tissues in female NSCLC patients.
Collapse
Affiliation(s)
- B Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - X Liu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - H Liu
- Department of Thoracic Surgery, PLA 309 Hospital, Beijing, China
| | - J Guo
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - T Zhang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - N Zhou
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Y Ma
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - H Yu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - L Chen
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Z Ren
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - K Fan
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - X Tian
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing. Oncotarget 2017; 9:901-914. [PMID: 29416665 PMCID: PMC5787522 DOI: 10.18632/oncotarget.22868] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
Baicalin hydrate (BH), a natural compound, has been investigated for many years because of its traditional medicinal properties. However, the anti-tumor activities of BH and its epigenetic role in NPC have not been elucidated. In this study, we identified that BH inhibits NPC cell growth in vivo and in vitro by inducing apoptosis and cell cycle arrest. BH epigenetically regulated genome instability by up-regulating the expression of satellite 2 (Sat2), alpha satellite (α-Sat), and major satellite (Major-Sat). BH also increased the level of IKKα, Suv39H1, and H3K9me3 and decreased LSH expression. Interestingly, BH promoted the splicing of Suv39H1 via the enhancement of m6A RNA methylation, rather than DNA methylation. Taken together, our results demonstrated that BH has an anti-tumor role in NPC and revealed a unique role of BH in genome instability and splicing in response to DNA damage.
Collapse
|
12
|
Apoptosis in inner ear sensory hair cells. J Otol 2017; 12:151-164. [PMID: 29937851 PMCID: PMC6002637 DOI: 10.1016/j.joto.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023] Open
Abstract
Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer some form of hearing loss, while 360 million suffer debilitating hearing loss as a direct result of the absence of these cochlear hair cells (Worldwide Hearing, 2014). Much is known about apoptosis in other systems and in other cell types thanks to studies done since the mid-20th century. Here we review current literature on apoptosis in general, and causes of deafness and cochlear hair cells loss as a result of apoptosis. The family of B-cell lymphoma (Bcl) proteins are among the most studied and characterized. We will review current literature on the Bcl2 and Bcl6 protein interactions in relation to apoptosis and their possible roles in vulnerability and survival of cochlear hair cells.
Collapse
|
13
|
Trino S, De Luca L, Laurenzana I, Caivano A, Del Vecchio L, Martinelli G, Musto P. P53-MDM2 Pathway: Evidences for A New Targeted Therapeutic Approach in B-Acute Lymphoblastic Leukemia. Front Pharmacol 2016; 7:491. [PMID: 28018226 PMCID: PMC5159974 DOI: 10.3389/fphar.2016.00491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor p53 is a canonical regulator of different biological functions, like apoptosis, cell cycle arrest, DNA repair, and genomic stability. This gene is frequently altered in human tumors generally by point mutations or deletions. Conversely, in acute lymphoblastic leukemia (ALL) genomic alterations of TP53 are rather uncommon, and prevalently occur in patients at relapse or with poor prognosis. On the other hand, p53 pathway is often compromised by the inactivation of its regulatory proteins, as MDM2 and ARF. MDM2 inhibitor molecules are able to antagonize p53-MDM2 interaction allowing p53 to exert tumor suppressor transcriptional regulation and to induce apoptotic pathways. Recent preclinical and clinical studies propose that MDM2 targeted therapy represents a promising anticancer strategy restoring p53 dependent mechanisms in ALL disease. Here, we discussed the use of new small molecule targeting p53 pathways as a promising drug target therapy in ALL.
Collapse
Affiliation(s)
- Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata Rionero in Vulture (PZ), Italy
| | - Luciana De Luca
- Laboratory of Pre-Clinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata Rionero in Vulture (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata Rionero in Vulture (PZ), Italy
| | - Antonella Caivano
- Laboratory of Pre-Clinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata Rionero in Vulture (PZ), Italy
| | - Luigi Del Vecchio
- CEINGE - Biotecnologie Avanzate S.C.a R.L.Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, Universita' degli Studi di Napoli Federico IINaples, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. and A. Seràgnoli," University of Bologna Bologna, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS - Referral Cancer Center of Basilicata Rionero in Vulture (PZ), Italy
| |
Collapse
|
14
|
Abstract
It is now clear that functional p53 is critical to protect the genome from alterations that lead to tumorigenesis. However, with the myriad of cellular stresses and pathways linked to p53 activation, much remains unknown about how p53 maintains genome stability and the proteins involved. The current understanding of the multiple ways p53 contributes to genome stability and how two of its negative regulators, Mdm2 and Mdmx, induce genome instability will be described.
Collapse
Affiliation(s)
- Christine M Eischen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212
| |
Collapse
|
15
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
16
|
Tashakori M, Zhang Y, Xiong S, You MJ, Lozano G. p53 Activity Dominates That of p73 upon Mdm4 Loss in Development and Tumorigenesis. Mol Cancer Res 2015; 14:56-65. [PMID: 26527653 DOI: 10.1158/1541-7786.mcr-15-0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Mdm4 negatively regulates the p53 tumor suppressor. Mdm4 loss in mice leads to an embryonic lethal phenotype that is p53-dependent. Biochemical studies indicate that Mdm4 also binds p73, a member of the p53 family, with higher affinity than p53. In this study, the significance of the Mdm4 and p73 interaction in vivo during embryogenesis and tumorigenesis was examined. The data revealed that p73 loss did not rescue either the early Mdm4-deficient embryonic lethality or the runted phenotype of Mdm4(Δ2/Δ2) p53(+/-) embryos. Furthermore, studies in the developing central nervous system wherein both genes have prominent roles indicated that loss of p73 also did not rescue the Mdm4-null brain phenotype as did p53 loss. This p53 dependency occurred despite evidence for p73-specific transcriptional activity. In tumor studies, the combination of Mdm4 overexpression and p73 loss did not alter survival of mice or the tumor spectrum as compared with Mdm4 overexpression alone. In summary, these data demonstrate that the Mdm4-p73 axis cannot override the dominant role of p53 in development and tumorigenesis. IMPLICATIONS Genetic characterization of the Mdm4 and p73 interaction during development and tumorigenesis suggests new insight into the role of p53 family members, which may influence treatment options for patients.
Collapse
Affiliation(s)
- Mehrnoosh Tashakori
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Program in Genes and Development
| | - Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas Graduate School of Biomedical Sciences, Program in Genes and Development.
| |
Collapse
|