1
|
Yang J, Qin L, Zhou S, Li J, Tu Y, Mo M, Liu X, Huang J, Qin X, Jiao A, Wei W, Yang P. Network pharmacology, molecular docking and experimental study of CEP in nasopharyngeal carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117667. [PMID: 38159821 DOI: 10.1016/j.jep.2023.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Stephania cephalantha Hayata is an important traditional medicinal plant widely used in traditional medicine to treat cancer. Cepharanthine (CEP) was extracted from the roots of Stephania cephalantha Hayata. It has been found to exhibit anticancer activity in different types of cancer cells. Nevertheless, the activity of CEP against nasopharyngeal carcinoma (NPC) and its underlying mechanism warrant further investigation. AIMS OF THE STUDY NPC is an invasive and highly metastatic malignancy that affects the head and neck region. This research aimed to investigate the pharmacological properties and underlying mechanism of CEP against NPC, aiming to offer novel perspectives on treating NPC using CEP. MATERIALS AND METHODS In vitro, the pharmacological activity of CEP against NPC was evaluated using the CCK-8 assay. To predict and elucidate the anticancer mechanism of CEP against NPC, we employed network pharmacology, conducted molecular docking analysis, and performed Western blot experiments. In vivo validation was performed through a nude mice xenograft model of human NPC, Western blot and immunohistochemical (IHC) assays to confirm pharmacological activity and the mechanism. RESULTS In a dose-dependent manner, the proliferation and clonogenic capacity of NPC cells were significantly inhibited by CEP. Additionally, NPC cell migration was suppressed by CEP. The results obtained from network pharmacology experiments revealed that anti-NPC effect of CEP was associated with 8 core targets, including EGFR, AKT1, PIK3CA, and mTOR. By performing molecular docking, the binding capacity of CEP to the candidate core proteins (EGFR, AKT1, PIK3CA, and mTOR) was predicted, resulting in docking energies of -10.0 kcal/mol for EGFR, -12.4 kcal/mol for PIK3CA, -10.8 kcal/mol for AKT1, and -8.6 kcal/mol for mTOR. The Western blot analysis showed that CEP effectively suppressed the expression of EGFR and the phosphorylation levels of downstream signaling proteins, including PI3K, AKT, mTOR, and ERK. After CEP intervention, a noteworthy decrease in tumor size, without inducing any toxicity, was observed in NPC xenograft nude mice undergoing in vivo treatment. Additionally, IHC analysis demonstrated a significant reduction in the expression levels of EGFR and Ki-67 following CEP treatment. CONCLUSION CEP exhibits significant pharmacological effects on NPC, and its mechanistic action involves restraining the activation of the EGFR/PI3K/AKT pathway. CEP represents a promising pharmaceutical agent for addressing and mitigating NPC.
Collapse
Affiliation(s)
- Jiangping Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Liujie Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Shouchang Zhou
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jixing Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yu Tu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Minfeng Mo
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xuenian Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jinglun Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiumei Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Aijun Jiao
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Wei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Peilin Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Vimalraj S, Sekaran S. Exploring the potential of MiRNAs as predictive biomarkers for radioresistance in nasopharyngeal carcinoma. Oral Oncol 2023; 145:106521. [PMID: 37467682 DOI: 10.1016/j.oraloncology.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
6
|
Tang Q, Wang X, Zhou Q, Li Q, Yang X, Xu M, Wang R, Chen J, Wu W, Wang S. Fuzheng Kang-Ai inhibits NSCLC cell proliferation via regulating hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154819. [PMID: 37062135 DOI: 10.1016/j.phymed.2023.154819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Current treatments for lung cancer have their own deficiencies, such as severe adverse effect. Therefore, more safe and effective drugs are needed. PURPOSE Fuzheng Kang-Ai (FZKA for short) has been applied as an adjuvant treatment in advanced Non-Small Cell Lung Cancer (NSCLC) patients for decades in China, showing a definitive effect with minimal toxicities. However, the underlying mechanism is yet to be identified. STUDY DESIGN Both in vitro and in vivo experiments were performed in this study to identify the exact mechanism by which FZKA inhibits NSCLC cell proliferation. METHODS MTT and CCK-8 assays were used to detect cell viability. Xenograft model was performed for in vivo experiments. CircRNA and miRNA sequencing were used to find the differentially expressed circRNAs and miRNAs, respectively. qRT-PCR was performed to check the expression levels of circRNA, miRNA and mRNA. BaseScope was carried out to observe the expression of circRNA in situ. Actinomycin D and RNase R experiments were done to show the stability of circRNA. Nuclear-cytoplasmic fractionation and FISH were used to identify the localization of circRNA and miRNA. Pull-down, RIP, and luciferase activity assays were performed to show the biding ability of circRNA, miRNA and target proteins. Flow cytometry was done to observe cell apoptosis. Western blot and IHC were done to detect the protein expression. TCGA database was used to analyze the survival rate. RESULTS FZKA inhibits NSCLC cell proliferation both in vitro and in vivo. Hsa_circ_0048091 and hsa-miR-378g were the most differentially expressed circRNA and miRNA, respectively, after FZKA treatment. Silencing hsa_circ_0048091 and overexpressing hsa-miR-378g promoted cell proliferation and reversed the inhibition effect of FZKA on NSCLC, respectively. Hsa-miR-378g was sponged by hsa_circ_0048091, and the overexpression of miR-378g reversed the inhibition effect of hsa_ circ_0048091 on NSCLC. ARRDC3, as a target of hsa-miR-378g, was increased by FZKA treatment. Silencing ARRDC3 reversed both the inhibition effect of FZKA and miR-378g inhibitor on NSCLC. CONCLUSION This study, for the first time, has established the function of hsa_circ_0048091, hsa- miR-378g, and ARRDC3 in lung cancer. It also shows that FZKA inhibits NSCLC cell proliferation through hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway, uncovering a novel mechanism by which FZKA controls human NSCLC cell growth.
Collapse
Affiliation(s)
- Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qiuping Li
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xiaobing Yang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Jixin Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
7
|
Jenni R, Chikhaoui A, Nabouli I, Zaouak A, Khanchel F, Hammami-Ghorbel H, Yacoub-Youssef H. Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24087181. [PMID: 37108343 PMCID: PMC10138907 DOI: 10.3390/ijms24087181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Imen Nabouli
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Fatma Khanchel
- Anatomopathology Department, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Hammami-Ghorbel
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| |
Collapse
|
8
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
The Long Noncoding RNA Cytoskeleton Regulator RNA (CYTOR)/miRNA-24-3p Axis Facilitates Nasopharyngeal Carcinoma Progression by Modulating GAD1 Expression. JOURNAL OF ONCOLOGY 2023; 2023:6027860. [PMID: 36814556 PMCID: PMC9940962 DOI: 10.1155/2023/6027860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck epithelial carcinoma that is unusually prevalent in Southeast Asia. Noncoding RNAs, including lncRNA and miRNA, and their target genes are considered vital regulators of tumorigenesis and the progression of NPC. However, the detailed underlying mechanisms of GAD1 involved in the regulation of NPC need to be further elucidated. In the present study, we identified that GAD1 was significantly upregulated in NPC tissues. GAD1 overexpression is promoted, while genetic knockdown of GAD1 suppresses proliferation, colony formation, migration, and invasion of NPC cells. Bioinformatics analysis and a luciferase reporter assay demonstrated that GAD1 is a direct target gene of miR-24-3p. In NPC tissues, miR-24-3p was downregulated and the lncRNA CYTOR was upregulated. CYTOR was sponged to suppress the function of miR-24-3p. CYTOR regulates GAD1 expression via modulating miR-24-3p. The CYTOR/miR-24-3p/GAD1 axis is converged to modulate the growth, migration, and invasion of NPC cells. In conclusion, the study identified a novel axis for the regulation of NPC cell growth, providing new insights into the understanding of NPC.
Collapse
|
10
|
Liu H, Chen Q, Zheng W, Zhou Y, Bai Y, Pan Y, Zhang J, Shao C. LncRNA CASC19 Enhances the Radioresistance of Nasopharyngeal Carcinoma by Regulating the miR-340-3p/FKBP5 Axis. Int J Mol Sci 2023; 24:ijms24033047. [PMID: 36769373 PMCID: PMC9917593 DOI: 10.3390/ijms24033047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance remains a serious obstacle encountered in the radiotherapy of nasopharyngeal carcinoma (NPC). Both mRNAs and non-coding RNAs (ncRNAs), including long ncRNA (lncRNA) and microRNA (miRNA), play essential roles in radiosensitivity. However, the comprehensive expression profiles and competing endogenous RNA (ceRNA) regulatory networks among lncRNAs, miRNAs, and mRNAs in NPC radioresistance are still bewildering. In this study, we performed an RNA-sequencing (RNA-seq) assay in the radioresistant NPC cells CNE2R and its parental cells CNE2 to identify the differentially expressed lncRNAs, miRNAs, and mRNAs. The ceRNA networks containing lncRNAs, miRNAs, and mRNAs were predicted on the basis of the Pearson correlation coefficients and authoritative miRanda databases. In accordance with bioinformatic analysis of the data of the tandem mass tag (TMT) assay of CNE2R and CNE2 cells and the gene chip assay of radioresistant NPC samples in pre- and post-radiotherapy, the radioresistance-related signaling network of lncRNA CASC19, miR-340-3p, and FKBP5 was screened and further verified using an RT-qPCR assay. CASC19 was positively associated with FKBP5 expression while negatively correlated with miR-340-3p, and the target binding sites of CASC19/miR-340-3p and miR-340-3p/FKBP5 were confirmed using a dual-luciferase reporter assay. Moreover, using an mRFP-GFP-LC3 maker, it was found that autophagy contributed to the radioresistance of NPC. MiR-340-3p inhibition or FKBP5 overexpression could rescue the suppression of autophagy and radioresistance induced by CASC19 knockdown in CNE2R cells. In conclusion, the CASC19/miR-340-3p/FKBP5 network may be instrumental in regulating NPC radioresistance by enhancing autophagy, which provides potential new therapeutic targets for NPC.
Collapse
Affiliation(s)
- Hongxia Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- School of Stomatology, Henan University, Kaifeng 475001, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
11
|
Wang W, Zhao J, Zhang C, Zhang W, Jin M, Shao Y. Current advances in the selection of adjuvant radiotherapy regimens for keloid. Front Med (Lausanne) 2022; 9:1043840. [DOI: 10.3389/fmed.2022.1043840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Keloid is a common benign skin tumor in the outpatient department, and patients are often accompanied by itching and pain. Since the pathogenesis is unknown, the effect of single method treatment is unsatisfactory, and therefore the recurrence rate is high. Therefore, comprehensive treatment is mostly used in clinical treatment. Adjuvant radiotherapy is currently one of the most effective treatments for keloid. After long-term clinical practice, brachytherapy and electron beam radiotherapy has increasingly become the gold standard of treatment, because brachytherapy provides more focused radiation treatment to focal tissue to significantly reduce recurrence rate, and better preserve normal tissue. With the development of new radiotherapy techniques, more options for the treatment of keloid. Currently, adjuvant radiotherapy has been widely recognized, but there is no consensus on the optimal protocol for adjuvant radiotherapy for keloids. This review provides a review of published treatment options and new radiotherapy techniques for adjuvant radiotherapy of keloids and gives a comprehensive evaluation for clinical treatment.
Collapse
|
12
|
Feitosa RM, Prieto-Oliveira P, Brentani H, Machado-Lima A. MicroRNA target prediction tools for animals: Where we are at and where we are going to - A systematic review. Comput Biol Chem 2022; 100:107729. [DOI: 10.1016/j.compbiolchem.2022.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
|
13
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
14
|
Liu J, Liang Y, Qiao L, Xia D, Pan Y, Liu W. MiR-128-1-5p regulates differentiation of ovine stromal vascular fraction by targeting the KLF11 5'-UTR. Domest Anim Endocrinol 2022; 80:106711. [PMID: 35338828 DOI: 10.1016/j.domaniend.2022.106711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Fat content is an important index to evaluate the individual performance of livestock animals such as sheep for meat production purposes. Reducing the subcutaneous and visceral fat while increasing the intramuscular fat is a valuable goal to achieve for the meat production industry. Here, we investigated the effect of miR-128-1-5p on adipogenesis of subcutaneous fat by targeting 5'-UTR in KLF11, a rare mechanism where most miRNAs bind the 3'-UTR of mRNAs. A dual fluorescence reporter assay was conducted to validate the binding sites of miR-128-1-5p on 5'-UTR of KLF11 mRNA. Roles of miR-128-1-5p in KLF11 expression were measured through co-transfecting miRNA mimics with KLF11-expressing vectors (CDSs together with or without the 5'-UTR) into ovine stromal vascular fractions (SVF). Additionally, functional roles of miR-128-1-5p, and KLF11 in adipogenesis of ovine subcutaneous fat were investigated. Results showed that miR-128-1-5p targeted KLF11 5'-UTR, reduced the fluorescence activity of the dual fluorescent reporter vector, as well as KLF11 mRNA, and protein expression levels. During the differentiation of SVF, disturbing the expression of miR-128-1-5p and KLF11 changed the adipogenic differentiation of SVF as observed in the lipid formation, and adipogenic marker genes. This study indicates that miR-128-1-5p promotes the expression of lipogenic marker genes and the formation of lipid droplets by targeting KLF11 5'-UTR. Furthermore, overexpression, and inhibition of KLF11 indicate that KLF11 inhibited SVF differentiation. In summary, the 5'-UTR binding mechanism discovered in this study extends the understanding of miRNA functions. Key roles of miR-128-1-5p and KLF11 in the adipogenesis of sheep subcutaneous fat have potential values for improving the meat and/or fat ratio of domestic animals.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Dong Xia
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
15
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
16
|
Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The Role of microRNA in the Inflammatory Response of Wound Healing. Front Immunol 2022; 13:852419. [PMID: 35386721 PMCID: PMC8977525 DOI: 10.3389/fimmu.2022.852419] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing, a highly complex pathophysiological response to injury, includes four overlapping phases of hemostasis, inflammation, proliferation, and remodeling. Initiation and resolution of the inflammatory response are the primary requirements for wound healing, and are also key events that determines wound quality and healing time. Currently, the number of patients with persistent chronic wounds has generally increased, which imposes health and economic burden on patients and society. Recent studies have found that microRNA(miRNA) plays an essential role in the inflammation involved in wound healing and may provide a new therapeutic direction for wound treatment. Therefore, this review focused on the role and significance of miRNA in the inflammation phase of wound healing.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiang Xu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Sheng Qiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
17
|
Tai Y, Chen J, Tao Z, Ren J. Non-coding RNAs: New players in mitophagy and neurodegeneration. Neurochem Int 2021; 152:105253. [PMID: 34864089 DOI: 10.1016/j.neuint.2021.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Mitophagy controls mitochondrial quality to maintain cellular homeostasis, while aberrations in this process are responsible for neurodegenerative diseases. Mitophagy is initiated through the recruitment of autophagosomes in a ubiquitin-dependent or ubiquitin-independent manner under different stress conditions. Although the detailed molecular mechanisms of how mitophagy processes influence neurodegeneration remain largely uncharacterized, there is mounting evidence indicating that non-coding RNAs (ncRNAs), a variety of endogenous regulators, including microRNAs and long non-coding RNAs, extensively participate in mitophagy processes and play pivotal roles in the aging process and neurodegenerative diseases. Here, we reviewed the major mitophagy pathways modulated by some classical and newly found ncRNAs and summarized the diverse mechanisms in a regulatory network. We also discussed the generalizability of ncRNAs in the development of common neurodegenerative diseases related to proteotoxicity and the importance of mitophagy in the pathogenesis of these diseases. In summary, we propose that ncRNAs act as linkers between mitophagy and neurodegeneration, showing the potential therapeutic application of mitophagy regulation mediated by ncRNAs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Wang XX, Wu LH, Ai L, Pan W, Ren JY, Zhang Q, Zhang HM. Construction of an HCC recurrence model based on the investigation of immune-related lncRNAs and related mechanisms. MOLECULAR THERAPY - NUCLEIC ACIDS 2021; 26:1387-1400. [PMID: 34900397 PMCID: PMC8626812 DOI: 10.1016/j.omtn.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in immune regulation. Growing evidence suggests that immune-related genes and lncRNAs can serve as markers to predict the prognosis of patients with cancers, including hepatocellular carcinoma (HCC). This study aimed to contract an immune-related lncRNA (IR-lncRNA) signature for prospective assessment to predict early recurrence of HCC. A total of 319 HCC samples under radical resection were randomly divided into a training cohort (161 samples) and a testing cohort (158 samples). In the training dataset, univariate, lasso, and multivariate Cox regression analyses identified a 9-IR-lncRNA signature closely related to disease-free survival. Kaplan-Meier analysis, principal component analysis, gene set enrichment analysis, and nomogram were used to evaluate the risk model. The results were further confirmed in the testing cohort. Furthermore, we constructed a competitive endogenous RNA regulatory network. The results of the present study indicated that this 9-IR-lncRNA signature has important clinical implications for improving predictive outcomes and guiding individualized treatment in HCC patients. These IR-lncRNAs and regulated genes may be potential biomarkers associated with the prognosis of HCC.
Collapse
Affiliation(s)
- Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Hong Wu
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liping Ai
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wei Pan
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Yi Ren
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Corresponding author: Hong-Mei Zhang, Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
19
|
Xiao J, He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res 2021; 13:8781-8794. [PMID: 34849030 PMCID: PMC8627240 DOI: 10.2147/cmar.s336265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
The crucial treatment for nasopharyngeal carcinoma (NPC) is radiation therapy supplemented by chemotherapy. However, long-term radiation therapy can cause some genetic and proteomic changes to produce radiation resistance, leading to tumour recurrence and poor prognosis. Therefore, the search for new markers that can overcome the resistance of tumor cells to drugs and radiotherapy and improve the sensitivity of tumor cells to drugs and radiotherapy is one of the most important goals of pharmacogenomics and cancer research, which is important for predicting treatment response and prognosis. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), may play important roles in regulating chemo- and radiation resistance in nasopharyngeal carcinoma by controlling the cell cycle, proliferation, apoptosis, and DNA damage repair, as well as other signalling pathways. Recent research has suggested that selective modulation of ncRNA activity can improve the response to chemotherapy and radiotherapy, providing an innovative antitumour approach based on ncRNA-related gene therapy. Therefore, ncRNAs can serve as biomarkers for tumour prediction and prognosis, play a role in overcoming drug resistance and radiation resistance in NPC, and can also serve as targets for developing new therapeutic strategies. In this review, we discuss the involvement of ncRNAs in chemotherapy and radiation resistance in NPC. The effects of these molecules on predicting therapeutic cancer are highlighted.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumour Cellular & Molecular Pathology Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, People’s Republic of China
| |
Collapse
|
20
|
Wang Y, Tong D, Sun Y, Sun H, Liu F, Zou M, Luo R, Peng X. DF-1 cells prevent MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis. Res Vet Sci 2021; 141:164-173. [PMID: 34749101 DOI: 10.1016/j.rvsc.2021.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed gga-miR-24-3p expression level was significantly increased in MG-infected chicken lungs. The aim of this study is to reveal the cellular mechanism behind the MG-HS infection. We found that gga-miR-24-3p was significantly upregulated and Ras-related protein-B (RAP1B) was downregulated in chicken fibroblast cells (DF-1) with MG infection. Dual luciferase reporting assay and rescue assay confirmed that RAP1B was the target gene of gga-miR-24-3p. Meanwhile, overexpressed gga-miR-24-3p increased the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), and significantly inhibited cell proliferation as well as promoted MG-infected DF-1 cell apoptosis, whereas inhibition of gga-miR-24-3p had the opposite effect. More importantly, the results of overexpression and knockdown of target gene RAP1B demonstrated that the presence of RAP1B promoted cell proliferation and it saved the reduced or increased cell proliferation caused by overexpression or inhibition of gga-miR-24-3p. Furthermore, the overexpression of gga-miR-24-3p could significantly inhibit the expression of MG-HS adhesion protein. Taken together, these findings demonstrate that DF-1 cells can resist MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis, which provides a new mechanism of resistance to MG infection in vitro.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Deng Tong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Fule Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
21
|
Mamidi MK, Samsa WE, Danielpour D, Chan R, Zhou G. The transcription co-factor JAB1/COPS5, serves as a potential oncogenic hub of human chondrosarcoma cells in vitro. Am J Cancer Res 2021; 11:5063-5075. [PMID: 34765312 PMCID: PMC8569363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Chondrosarcoma (CS) is the second most common skeletal malignancy in humans. High-grade CS is aggressive and extremely resistant to chemo- and radio-therapies. The lack of effective treatment options warrants the development of novel therapies. The evolutionarily conserved transcriptional co-factor JAB1 (also known as COPS5/CSN5) has emerged as a novel regulator of tumorigenesis. JAB1 overexpression occurs in many common cancers and is associated with poor prognosis. However, the role of JAB1 in CS pathogenesis was completely unknown. To study JAB1's function in CS, we performed shRNA knockdown (KD) of JAB1 in two high-grade human CS cell lines, SW1353 and Hs819.T, and observed significantly decreased proliferation and colony formations, and increased apoptosis in both CS cell lines upon JAB1-KD. Interestingly, we found that endogenous JAB1 interacted with endogenous SOX9, a potent oncogene and a master regulator of skeletogenesis, in chondrosarcoma cells, but not in primary chondrocytes. JAB1 also binds to the same SOX9-mediated chondrocyte-specific enhancer elements in CS cells. Furthermore, we found that a recently developed, novel, potent, and JAB1-specific small molecule inhibitor, CSN5i-3, can significantly increase apoptosis, drastically alter the activities of several signaling pathways, and modulates the expression of specific Cullin-ring-ligases (CRLs) in CS cells. Finally, our RNA-sequencing analysis in JAB1-KD CS cells identified a total of 2945 differentially expressed genes. Gene set enrichment analysis revealed that JAB1 regulates several essential pathways such as DNA damage response and cell cycle regulation. In conclusion, our study showed that JAB1 might regulate a distinct pro-tumorigenic regulatory network to promote chondrosarcoma pathogenesis.
Collapse
Affiliation(s)
- Murali K Mamidi
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma, USA
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - David Danielpour
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Xie F, Xiao W, Tian Y, Lan Y, Zhang C, Bai L. MicroRNA-195-3p inhibits cyclin dependent kinase 1 to induce radiosensitivity in nasopharyngeal carcinoma. Bioengineered 2021; 12:7325-7334. [PMID: 34585634 PMCID: PMC8806460 DOI: 10.1080/21655979.2021.1979356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are revealed to participate in the progression of multiple malignancies, including nasopharyngeal carcinoma (NPC). This work is intended to decipher the function of microRNA-195-3p (miR-195-3p) in regulating the radiosensitivity of NPC cells and its mechanism. MiR-195-3p and cyclin-dependent kinase 1 (CDK1) expressions were detected in NPC tissues and cells using qRT-PCR and Western blot, respectively. Moreover, radiation-resistant cell lines were induced by continuous irradiation with different doses. Furthermore, the CCK-8 experiment, colony formation assay and flow cytometry were utilized to examine the growth, apoptosis and cell cycle of radioresistant cells. Bioinformatics prediction and dual-luciferase reporter gene assay were applied to prove the targeting relationship between miR-195-3p and CDK1 mRNA 3ʹUTR. The data showed that miR-195-3p was remarkably down-modulated in NPC tissues and was associated with increased tumor grade, lymph node metastasis and clinical stage of the patients. MiR-195-3p expression was significantly down-modulated in radiation-resistant NPC tissues and NPC cell lines relative to radiation-sensitive NPC tissues and human nasopharyngeal epithelial cells, while CDK1 expression was notably up-modulated. MiR-195-3p overexpression inhibited the growth of NPC cells, decreased radioresistance, promoted apoptosis, and impeded the cell cycle progression. CDK1 was a target gene of miR-195-3p, and CDK1 overexpression counteracted the effects of miR-195-3p on NPC cell growth, apoptosis, cell cycle progression and radiosensitivity. In summary, miR-195-3p improves the radiosensitivity of NPC cells by targeting and regulating CDK1.
Collapse
Affiliation(s)
- Fuchuan Xie
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Wei Xiao
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Yunming Tian
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Yuhong Lan
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Chi Zhang
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| | - Li Bai
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Guangdong, China
| |
Collapse
|
23
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
24
|
Gil-Gómez G, Fassan M, Nonell L, Garrido M, Climent M, Anglada R, Iglesias M, Guzzardo V, Borga C, Grande L, de Bolós C, Pera M. miR-24-3p regulates CDX2 during intestinalization of cardiac-type epithelium in a human model of Barrett's esophagus. Dis Esophagus 2021; 34:6131383. [PMID: 33558874 DOI: 10.1093/dote/doab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac-type epithelium has been proposed as the precursor of intestinal metaplasia in the development of Barrett's esophagus. Dysregulation of microRNAs (miRNAs) and their effects on CDX2 expression may contribute to intestinalization of cardiac-type epithelium. The aim of this study was to examine the possible effect of specific miRNAs on the regulation of CDX2 in a human model of Barrett's esophagus. METHODS Microdissection of cardiac-type glands was performed in biopsy samples from patients who underwent esophagectomy and developed cardiac-type epithelium in the remnant esophagus. OpenArray™ analysis was used to compare the miRNAs profiling of cardiac-type glands with negative or fully positive CDX2 expression. CDX2 was validated as a miR-24 messenger RNA target by the study of CDX2 expression upon transfection of miRNA mimics and inhibitors in esophageal adenocarcinoma cell lines. The CDX2/miR-24 regulation was finally validated by in situ miRNA/CDX2/MUC2 co-expression analysis in cardiac-type mucosa samples of Barrett's esophagus. RESULTS CDX2 positive glands were characterized by a unique miRNA profile with a significant downregulation of miR-24-3p, miR-30a-5p, miR-133a-3p, miR-520e-3p, miR-548a-1, miR-597-5p, miR-625-3p, miR-638, miR-1255b-1, and miR-1260a, as well as upregulation of miR-590-5p. miRNA-24-3p was identified as potential regulator of CDX2 gene expression in three databases and confirmed in esophageal adenocarcinoma cell lines. Furthermore, miR-24-3p expression showed a negative correlation with the expression of CDX2 in cardiac-type mucosa samples with different stages of mucosal intestinalization. CONCLUSION These results showed that miRNA-24-3p regulates CDX2 expression, and the downregulation of miRNA-24-3p was associated with the acquisition of the intestinal phenotype in esophageal cardiac-type epithelium.
Collapse
Affiliation(s)
- Gabriel Gil-Gómez
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Garrido
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Climent
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roger Anglada
- Genomics Core Facility, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mar Iglesias
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Pathology, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Chiara Borga
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Luis Grande
- Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme de Bolós
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Manuel Pera
- Gastroesophageal Carcinogenesis Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Section of Gastrointestinal Surgery, Hospital Universitario del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Lei F, Lei T, Huang Y, Yang M, Liao M, Huang W. Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs. Curr Mol Pharmacol 2021; 13:192-205. [PMID: 31880267 DOI: 10.2174/1874467213666191227104646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.
Collapse
Affiliation(s)
- Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Tongda Lei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingchu Liao
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
26
|
Gao S, Wang Z. Comprehensive Analysis of Regulatory Network for LINC00472 in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3533608. [PMID: 34221297 PMCID: PMC8211516 DOI: 10.1155/2021/3533608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Renal cell carcinoma (RCC) accounts for about 2% to 3% of adult malignancies, and clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of kidney cancer. It accounts for 75% of all kidney tumors. Although new targeted drugs continue to appear, they are still not suitable for all patients. Therefore, an in-depth study of the molecular mechanism of the development of ccRCC and exploration of new targets for the treatment of ccRCC will help to achieve precise treatment for ccRCC. With the development of molecular research, the study of long noncoding RNA (LncRNA) has given us a new understanding of tumors. Although LncRNA does not encode proteins, it directly interacts with proteins in various signaling pathways and affects cell functions. Therefore, it is of great significance to study the mechanism of LncRNA in ccRCC. The expression level of Linc00472 in ccRCC tissues is significantly lower than adjacent normal tissues, and its low expression is closely related to Furman's high grade. The low expression of Linc00472 is associated with poor prognosis in patients with ccRCC. The results of protein interaction and functional enrichment analysis indicate that genes upregulated in renal clear cell carcinoma may play a major role. Analysis of target gene prediction results showed that Linc00472 may be used as ceRNA in the miR-24-3p-HLA-DPB1 pathway, miR-24-3p-CXCL9 pathway, miR-221-3p-C3aR1-VEGFR2 pathway, miR-17-5p-HLA-DQA1/HLA-DQB1 pathway, and miR-17-5p-C3aR1/C5aR1-VEGFR2 pathway which play important functions. In addition, the regulatory relationship between miR-24-3p and TNFR2 (TNFRSF1B), CD36, and COL4A1 should also be noted. The value of Linc00472 in the diagnosis and treatment of ccRCC is worthy of further study.
Collapse
Affiliation(s)
- Shuoze Gao
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiping Wang
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
27
|
Ruan Q, Yang XZ, Zhu L, He QJ, Zhu SY, Wen YF, Ma L. High miR-3650 expression in nasopharyngeal carcinoma and its clinical prognostic values. Pathol Res Pract 2021; 224:153506. [PMID: 34091390 DOI: 10.1016/j.prp.2021.153506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND A recent study has reported that miR-3650 expression was significant reduced in hepatocellular carcinoma and predicted poor prognosis. However, the role of miR-3650 in nasopharyngeal carcinoma (NPC) remains indefinite. METHODS Total 140 cases of NPCs were included in this study. The expression of miR-3650 was determined in NPC tissues and adjacent nontumor tissues using qRT-PCR. Then the relationship between miR-3650 expression and clinicopathological features as well as survival were analyzed. RESULTS The expression of miR-3650 was significant higher in NPC tissues than that in adjacent nontumor tissues (P < 0.001). High expression of miR-3650 was significant correlated with tumor progression and distant metastasis of NPC patients. And patients with high miR-3650 expression have much worse 5-year overall survival (OS) and 5-year progression-free survival (PFS) than those with low expression (all P < 0.0001). Furthermore, Cox regression analysis showed that miR-3650 was an independent risk predictor for OS and PFS in NPC patients (all P = 0.000). CONCLUSION Our results demonstrated for the first time that miR-3650 was markedly upregulated in NPC tissues and positively associated with tumor progression and poor survival, suggesting that miR-3650 may be a potential novel prognostic biomarker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Qiang Ruan
- The First Affiliated Hospital of Jinan University, the First Clinical Medical College of Jinan University, Guangzhou, 510630, China; Department of the second area of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Xian-Zi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lin Zhu
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China.
| | - Qing-Jun He
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Si-Yu Zhu
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Yue-Feng Wen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lei Ma
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
28
|
Jab1/Cops5: a promising target for cancer diagnosis and therapy. Int J Clin Oncol 2021; 26:1159-1169. [PMID: 34019195 DOI: 10.1007/s10147-021-01933-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
C-Jun activation domain-binding protein1 (Jab1), the fifth component of the constitutive photomorphogenic-9 signalosome (COPS5/Csn5) complex, functions in several cellular processes to affect different signaling pathways. Dysregulation of Jab1/Csn5 both restrains tumor suppressors and activates oncogenes to contribute oncogenesis. Jab1 overexpressed in various tumors and played an essential part in cancer initiation, progression and prognosis, which has spurred strong research interest in developing inhibitors for cancer therapy. Here, we summarize the multiple signaling pathways and functions of Jab1/Csn5 in tumorigenesis. By querying the Oncomine database, a cancer microarray database and web-based data-mining platform aimed at facilitating discovery from genome-wide expression analyses, we investigated statistically the differential expression of Jab1/Csn5 between different cancer samples and the corresponding normal tissue samples, cancer samples with different histological types, different cancer types, and different clinical outcomes. These statistical data confirmed the significant role of Jab1/Csn5 in carcinogenesis, indicating Jab1/Csn5 as a biomarker and a therapeutic target in different cancers.
Collapse
|
29
|
MiR-24-3p as a prognostic indicator for multiple cancers: from a meta-analysis view. Biosci Rep 2021; 40:226991. [PMID: 33206184 PMCID: PMC7711065 DOI: 10.1042/bsr20202938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
A growing number of researches suggest that microRNAs (miRNAs) as oncogene or tumor suppressor genes play a fundamental role in various kinds of cancers. Among them, miR-24-3p, as a star molecule, is widely studied. However, the prognostic value of miR-24-3p is unclear and controversial. We conducted this meta-analysis to evaluate the prognostic value of miR-24-3p in a variety of cancers by integrated existing articles from four databases. PubMed, Embase, Web of Science, and Cochrane Library (last update in March 2020) were searched for approach literature. Hazard ratios (HRs) and odds ratios (ORs) were used to evaluate the association between miR-24-3p expression levels and prognostic value or clinicopathological characteristics, respectively. A total of 15 studies from 14 literature were finally qualified and concluded in the present meta-analysis. A significantly worse overall survival was observed in higher expression of miR-24-3p cancer group for OS (overall survival) of log-rank tests and Cox multivariate regression by fixed effects model. Also, we found a significant correlation between elevated miR-24-3p levels to RFS (recurrence-free survival) and DFS (disease-free survival). In addition, the pooled odds ratios (ORs) showed that evaluated miR-24-3p was also associated with the larger tumor size (≥5 cm) and advanced TNM stage (III and IV). Built on the above findings, elevated expression levels of miR-24-3p may serve as a promising biomarker used to predict the worse prognosis of cancer patients.
Collapse
|
30
|
Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. MicroRNA: a novel implication for damage and protection against ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15584-15596. [PMID: 33533004 PMCID: PMC7854028 DOI: 10.1007/s11356-021-12509-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/12/2021] [Indexed: 04/16/2023]
Abstract
Ionizing radiation (IR) is a form of high energy. It poses a serious threat to organisms, but radiotherapy is a key therapeutic strategy for various cancers. It is significant to reduce radiation injury but maximize the effect of radiotherapy. MicroRNAs (miRNAs) are posttranscriptionally regulatory factors involved in cellular radioresponse. In this review, we show how miRNAs regulate important genes on cellular response to IR-induced damage and how miRNAs participate in IR-induced carcinogenesis. Additionally, we summarize the experimental and clinical evidence for miRNA involvement in radiotherapy and discuss their potential for improvement of radiotherapy. Finally, we highlight the role that miRNAs play in accident exposure to IR or radiotherapy as predictive biomarker. miRNA therapeutics have shown great perspective in radiobiology; miRNA may become a novel strategy for damage and protection against IR.
Collapse
Affiliation(s)
- Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yaqi Gong
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Shuang Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yuanyun Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
31
|
Xiao ZS, Zhao L, Zhang XN, Li HX, Yin ZH. Effect of rs67085638 in long non-coding RNA (CCAT1) on colon cancer chemoresistance to paclitaxel through modulating the microRNA-24-3p and FSCN1. J Cell Mol Med 2021; 25:3744-3753. [PMID: 33709519 PMCID: PMC8051717 DOI: 10.1111/jcmm.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 11/01/2020] [Indexed: 12/21/2022] Open
Abstract
It has been reported that rs67085638 in long non-coding RNAs (lncRNA)-CCAT1 was associated with the risk of tumorigenesis. Also, CCAT1 could affect chemoresistance of cancer cells to paclitaxel (PTX) via regulating miR-24-3p and FSCN1 expression. In this study, we aimed to investigate the effect of rs67085638 on the expression of CCAT1/miR-24-3p/FSCN1 and the response of colon cancer to the treatment of PTX. 48 colon cancer patients were recruited and grouped by their genotypes of rs67085638 polymorphism as a CC group (N = 28) and a CT group (N = 20). PCR analysis, IHC assay and Western blot, TUNEL assay and flow cytometry were conducted. LncRNA-CCAT1 and FSCN1 mRNA/protein were overexpressed, whereas miR-24-3p was down-regulated in the CT-genotyped patients and cells compared with those in the CC-genotyped patients and cells. The survival of colon cancer cells was decreased, whereas the apoptosis of colon cancer cells was increased by PTX treatment in a dose-dependent manner. MiR-24-3p was validated to target lncRNA-CCAT1 and FSCN1 mRNA, and the overexpression of CCAT1 could reduce the expression of miR-24-3p although elevating the expression of FSCN1. Knockdown of lncRNA-CCAT1 partly reversed the suppressed growth of CT-genotyped tumours. And the knockdown of lncRNA-CCAT1 partly reversed the dysregulation of lncRNA-CCAT1 and FSCN1 mRNA/protein in rs67085638-CT + NC shRNA mice. The findings of this study demonstrated that the presence of the minor allele of rs67085638 increased the expression of CCAT1 and accordingly enhanced the resistance to PTX. Down-regulation of CCAT1 significantly re-stored the sensitivity to PTX of colon cancer cells.
Collapse
Affiliation(s)
- Zhong-Sheng Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lei Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiao-Ning Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Han-Xian Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Hui Yin
- Department of Anorectal Disease, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
32
|
Zhang X, Yang J. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance of Head and Neck Cancer: From Basic Research to Clinical Application. Front Cell Dev Biol 2021; 8:637435. [PMID: 33644038 PMCID: PMC7905100 DOI: 10.3389/fcell.2020.637435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers (HNCs) rank as the sixth common and the seventh leading cause of cancer-related death worldwide, with an estimated incidence of 600,000 cases and 40-50% mortality rate every year. Radiotherapy is a common local therapeutic modality for HNC mainly through the function of ionizing radiation, with approximately 60% of patients treated with radiotherapy or chemoradiotherapy. Although radiotherapy is more advanced and widely used in clinical practice, the 5-year overall survival rates of locally advanced HNCs are still less than 40%. HNC cell resistance to radiotherapy remains one of the major challenges to improve the overall survival in HNC patients. Non-coding RNAs (ncRNAs) are newly discovered functional small RNA molecules that are different from messenger RNAs, which can be translated into a protein. Many previous studies have reported the dysregulation and function of ncRNAs in HNC. Importantly, researchers reported that several ncRNAs were also dysregulated in radiotherapy-sensitive or radiotherapy-resistant HNC tissues compared with the normal cancer tissues. They found that ectopically elevating or knocking down expression of some ncRNAs could significantly influence the response of HNC cancer cells to radiotherapy, indicating that ncRNAs could regulate the sensitivity of cancer cells to radiotherapy. The implying mechanism for ncRNAs in regulating radiotherapy sensitivity may be due to its roles on affecting DNA damage sensation, inducing cell cycle arrest, regulating DNA damage repair, modulating cell apoptosis, etc. Additionally, clinical studies reported that in situ ncRNA expression in HNC tissues may predict the response of radiotherapy, and circulating ncRNA from body liquid serves as minimally invasive therapy-responsive and prognostic biomarkers in HNC. In this review, we aimed to summarize the current function and mechanism of ncRNAs in regulating the sensitivity of HNC cancer cells to radiotherapy and comprehensively described the state of the art on the role of ncRNAs in the prognosis prediction, therapy monitoring, and prediction of response to radiotherapy in HNC.
Collapse
Affiliation(s)
- Xixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Zhou M, Yang Z, Wang D, Chen P, Zhang Y. The circular RNA circZFR phosphorylates Rb promoting cervical cancer progression by regulating the SSBP1/CDK2/cyclin E1 complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:48. [PMID: 33516252 PMCID: PMC7846991 DOI: 10.1186/s13046-021-01849-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Background As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change > 2, and P < 0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR. Results Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01849-2.
Collapse
Affiliation(s)
- Mingyi Zhou
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China.
| | - Peng Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| |
Collapse
|
34
|
Ma R, Gao P, Yang H, Hu J, Xiao JJ, Shi M, Zhao LN. Inhibition of cell proliferation and radioresistance by miR-383-5p through targeting RNA binding protein motif (RBM3) in nasopharyngeal carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:123. [PMID: 33569425 PMCID: PMC7867938 DOI: 10.21037/atm-20-6881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background RNA binding protein motif (RBM3) is associated with radioresistance in nasopharyngeal carcinoma (NPC), and miR-383-5p was predicted to target the 3'-untranslated region (3'UTR) of RBM3 messenger RNA (mRNA). Our study aimed to investigate the role and the mechanisms of miR-383-5p targeting RBM3 in NPC cell proliferation and radioresistance (RR). Methods The expression of miR-383-5p was detected by Real-time quantitative PCR (qRT-PCR) between RS (Radiosensitivity) and RR (Radioresistance) NPC patient- tissue specimens and cell lines. Cell Counting Kit-8 (CCK-8) and Clonogenic survival assay were applied to analyze the effect of miR-383-5p on NPC cell proliferation and radioresistance. Possible downstream target of miR-383-5p in NPC cells, RBM3was evaluated by luciferase assay and qRT-PCR. miR-383-5p inhibited NPC cell proliferation and radioresistance through RBM3 by rescue experiments. The effect of miR-383-5p on radiation-induced apoptosis was explored through Flow cytometric analysis and Western blotting. Western blotting was analyzed the molecular of RBM3-mediated Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) signaling pathways Results The expression of miR-383-5p was decreased in radioresistant NPC tissues and cells. miR-383-5p inhibited cell proliferation and radioresistance in CNE1/IR cells. We also observed that therapeutic administration of a miR-383-5p agomir dramatically sensitized NPC xenografts to radiation in a mouse model. Conversely, in the same xenograft model, administration of a miR-383-5p antagomir dramatically increased NPC resistance to radiation. miR-383-5p targeted the 3'UTR of RBM3. miR-383-5p inhibited NPC cell proliferation and radioresistance through RBM3. Finally, we found that miR-383-5p increased radiation-induced apoptosis, activated JNK signaling, and inhibited ERK signaling. Conclusions Our study revealed that miR-383-5p targeted the 3'UTR of RBM3 and contributed to the efficacy of NPC radiation therapy by altering the RBM3-mediated JNK and ERK signaling pathways.
Collapse
Affiliation(s)
- Rui Ma
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng Gao
- Department of Radiation Medicine, The Faculty of Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Hua Yang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jing Hu
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jing-Jing Xiao
- Department of Thyroid-breast-vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mei Shi
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Li-Na Zhao
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
35
|
Ebahimzadeh K, Shoorei H, Mousavinejad SA, Anamag FT, Dinger ME, Taheri M, Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract 2020; 218:153327. [PMID: 33422780 DOI: 10.1016/j.prp.2020.153327] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Radiotherapy is an effective method for treatment of a large proportion of human cancers. Yet, the efficacy of this method is precluded by the induction of radioresistance in tumor cells and the radiation-associated injury of normal cells surrounding the field of radiation. These restrictions necessitate the introduction of modalities for either radiosensitization of cancer cells or protection of normal cells against adverse effects of radiation. Non-coding RNAs (ncRNAs) have essential roles in the determination of radiosensitivity. Moreover, ncRNAs can modulate radiation-induced side effects in normal cells. Several microRNAs (miRNAs) such as miR-620, miR-21 and miR-96-5p confer radioresistance, while other miRNAs including miR-340/ 429 confer radiosensitivity. The expression levels of a number of miRNAs are associated with radiation-induced complications such as lung fibrosis or oral mucositis. The expression patterns of several long non-coding RNAs (lncRNAs) such as MALAT1, LINC00630, HOTAIR, UCA1 and TINCR are associated with response to radiotherapy. Taken together, lncRNAs and miRNAs contribute both in modulation of response of cancer cells to radiotherapy and in protection of normal cells from the associated side effects. The current review provides an overview of the roles of these transcripts in these aspects.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Jia J, Li T, Yao C, Chen J, Feng L, Jiang Z, Shi L, Liu J, Chen J, Lou J. Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. CHEMOSPHERE 2020; 260:127546. [PMID: 32758765 DOI: 10.1016/j.chemosphere.2020.127546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium [Cr (Ⅵ)] has extensive applications in industries, and long-term occupational exposure to Cr (Ⅵ) may lead to lung carcinoma and other cancers. While microRNA (miRNA) can take part in carcinogenesis, little is known about its expression profile in the population with Cr (Ⅵ) exposure. Thus, this study aimed to explore miRNA expression profiles in Cr (Ⅵ) exposed workers and to identify the potential biological function of differentially expressed miRNAs. A total of 45 significant differentially expressed miRNAs were identified by the miRNA array. The results of validation showed that miR-19a-3p, miR-19b-3p, and miR-142-3p were downregulated and miR-590-3p and miR-941 were upregulated in the exposure group. Multivariate analysis demonstrated that age, exposure duration and urinary chromium level were associated with one or more miRNAs expression. Target gene analysis indicated that these miRNAs might participate in the regulation of DNA damage-related signaling pathways. Taken together, Cr (Ⅵ) exposure can result in differential expression of miRNAs in occupational workers, and the expression of these miRNAs is correlated with the level and duration of Cr (Ⅵ) exposure, and the differentially expressed miRNAs may participate in DNA damage response.
Collapse
Affiliation(s)
- Junlin Jia
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Tao Li
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Chunji Yao
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Junfei Chen
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Lingfang Feng
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Zhaoqiang Jiang
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Li Shi
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jiaqi Liu
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Junqiang Chen
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jianlin Lou
- Hangzhou Medical College, Hangzhou, 310053, China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
37
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
38
|
Wei M, Li L, Zhang Y, Zhang M, Su Z. Downregulated circular RNA zRANB1 mediates Wnt5a/β-Catenin signaling to promote neuropathic pain via miR-24-3p/LPAR3 axis in CCI rat models. Gene 2020; 761:145038. [DOI: 10.1016/j.gene.2020.145038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
|
39
|
Wang S, Liu N, Tang Q, Sheng H, Long S, Wu W. MicroRNA-24 in Cancer: A Double Side Medal With Opposite Properties. Front Oncol 2020; 10:553714. [PMID: 33123467 PMCID: PMC7566899 DOI: 10.3389/fonc.2020.553714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-24 (miR-24) has been widely studied in a variety of human cancers, which plays different roles in specific type of cancers. In the present review, we summarized the recent surveys regarding the role of miR-24 in different human cancers. On the one hand, miR-24 was reported to be down-regulated in some types of cancer, indicating its role as a tumor suppressor. On the other hand, it has shown that miR-24 was up-regulated in some other types of cancer, even in the same type of cancer, suggesting the role of miR-24 being as an oncogene. Firstly, miR-24 was dysregualted in human cancers, which is related to the clinical performance of cancer patients. Thus miR-24 could be used as a potential non-invasive diagnostic marker in human cancers. Secondly, miR-24 was associated with the tumor initiation and progression, being as a promoter or inhibitor. Therefore, miR-24 might be an effective prognostic biomarker in different type of cancers. Lastly, the abnormal expression of miR-24 was involved in the chemo- and radio- therapies of cancer patients, indicating the role of miR-24 being as a predictive biomarker to cancer treatment. Totally, miR-24 contributes to tumorigenesis, tumor progression, and tumor therapy, which closely related to clinic. The present review shows that miR-24 plays a double role in human cancers and provides plenty of evidences to apply miR-24 as a potential novel therapeutic target in treating human cancers.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Nayan Liu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
40
|
Huang Z, Su B, Liu F, Zhang N, Ye Y, Zhang Y, Zhen Z, Liang S, Liang S, Chen L, Luo W, Claret FX, Huang Y, Xu T. YAP1 Promotes Tumor Invasion and Metastasis in Nasopharyngeal Carcinoma with Hepatitis B Virus Infection. Onco Targets Ther 2020; 13:5629-5642. [PMID: 32606777 PMCID: PMC7306475 DOI: 10.2147/ott.s247699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) patients with HBsAg (+) commonly present with high frequencies of distant metastasis and poor survival rate; however, the mechanism has not been elucidated. MATERIALS AND METHODS We analyzed the yes-associated protein 1 (YAP1) expression between HBsAg (+) and HBsAg (-) of NPC patients, then analyzed the relationship of YAP1 with survival. We further explored the anti-tumor role in NPC cell lines using YAP1 siRNA technique, and checked whether YAP1 regulatesepithelial-mesenchymal transition ( EMT). The relationship between HBV X protein (HBx) and YAP1 was also tested using Dual-Luciferase reporter assay. Finally, we explored anti-YAP1 to inhibit tumor metastasis using the xenograft mice model. RESULTS In the current study, we found that YAP1 expression was higher in HBsAg (+) samples than in the HBsAg (-) samples, as a clinical signature, suggesting that YAP1 could be used as a prognostic factor for NPC. Our results showed that the HBx could regulate YAP1, further promoting cellular invasiveness through EMT. Anti-YAP1 can also decrease metastasis in vivo. CONCLUSION Our findings suggest that YAP1 is a promising prognostic factor in NPC and could be used as a potential treatment target for NPC with HBV infection.
Collapse
Affiliation(s)
- Zeli Huang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Bojin Su
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, Guangdong Province, People’s Republic of China
| | - Fang Liu
- Department of Pathology, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Ning Zhang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Yilong Ye
- Department of Infection, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Zhenghe Zhen
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Shaoqiang Liang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Shaobo Liang
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Lushi Chen
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - Weijun Luo
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| | - François X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Experimental Therapeutics Academic Program and Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX77030, USA
| | - Ying Huang
- Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou510080, Guangdong Province, People’s Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Tao Xu
- Department of Radiation Oncology, Cancer Center, First People’s Hospital of Foshan, Foshan528000, Guangdong Province, People’s Republic of China
| |
Collapse
|
41
|
Shuai M, Huang L. High Expression of hsa_circRNA_001387 in Nasopharyngeal Carcinoma and the Effect on Efficacy of Radiotherapy. Onco Targets Ther 2020; 13:3965-3973. [PMID: 32440159 PMCID: PMC7217304 DOI: 10.2147/ott.s249202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most difficult cancers to be detected and treated. Hunting for novel cancer-specific biomarkers for NPC patients is helpful for timely diagnosis and clinical treatment of NPC. Methods In this study, high-throughput circRNA sequencing was used to screen the circRNAs with expression variation in NPC patients. qRT-PCR was used to detect the expression level of hsa_circRNA_001387 in the cancer tissues from 100 surgical patients, the peripheral blood samples from 100 radiotherapy patients and NPC cell lines. Based on clinical data of the patients, the relationship between hsa_circRNA_001387 and radiotherapy as well as antibody to Epstein-Barr (EB) virus was investigated. The use of this circRNA as a biomarker for NPC was also discussed. Results Expression of hsa_circRNA_001387 was significantly increased in the tumor tissues of NPC surgical patients, in the peripheral blood samples of NPC radiotherapy patients and in the NPC cell lines (P<0.01). Expression of hsa_circRNA_001387 was significantly elevated in patients with well-differentiated tumors, lymph node metastasis and distant metastases, stage III-IV, positive EB virus, or family history of NPC. hsa_circRNA_001387 was closely associated with the prognosis of the patients. The overall survival and progression-free survival were shorter in patients with high expression. Through univariate and multivariate analyses, it was found that hsa_circRNA_001387 was considered as an independent factor for the prognosis of NPC patients. Conclusion This study reported for the first time that expression of hsa_circRNA_001387 is significantly upregulated, and it was also indicated that hsa_circRNA_001387 can be used as a novel biomarker for NPC.
Collapse
Affiliation(s)
- Mingxia Shuai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Liang Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
42
|
Zhan Y, Fan S. Multiple Mechanisms Involving in Radioresistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:4193-4204. [PMID: 32368302 PMCID: PMC7196263 DOI: 10.7150/jca.39354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the malignant tumor with ethnic and geographical distribution preference. Although intensity-modulated radiotherapy (IMRT)-based radiotherapy combined with chemotherapy and targeted therapy has dramatically improved the overall survival of NPC patients, there are still some patients suffering from recurrent tumors and the prognosis is poor. Multiple mechanisms may be responsible for radioresistance of NPC, such as cancer stem cells (CSCs) existence, gene mutation or aberrant expression of genes, epigenetic modification of genes, abnormal activation of certain signaling pathways, alteration of tumor microenvironment, stress granules (SGs) formation, etc. We conduct a comprehensive review of the published literatures focusing on the causes of radioresistance, retrospect the regulation mechanisms following radiation, and discuss future directions of overcoming the resistance to radiation.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Tian Y, Tang L, Yi P, Pan Q, Han Y, Shi Y, Rao S, Tan S, Xia L, Lin J, Oyang L, Tang Y, Liang J, Luo X, Liao Q, Wang H, Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer 2020; 11:3976-3985. [PMID: 32328201 PMCID: PMC7171507 DOI: 10.7150/jca.42734] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck in Southeast Asia and southern China. Although the comprehensive treatment based on intensity-modulated radiation therapy improves outcomes, the five-year survival rate of NPC patients is low, and the recurrence remains high. Radiotherapy resistance is the main cause of poor prognosis in NPC patients. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs regulating various biological functions in eukaryotes. These miRNAs can regulate the development and progression of nasopharyngeal carcinoma by affecting the proliferation, apoptosis, movement, invasion and metastasis of NPC cells. The abnormal expression of miRNAs is closely related to radiotherapy sensitivity and prognosis of NPC patients, which can affect the transmission of related signaling pathways by regulating the expression of tumor suppressor genes and / or oncogenes, and therefore participate in radiotherapy resistance in nasopharyngeal carcinoma. Here, we review the mechanisms by which miRNAs may be involved in the radiotherapy resistance of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lu Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Pin Yi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yingrui Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
44
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D, Tao Y. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19:47. [PMID: 32122355 PMCID: PMC7050132 DOI: 10.1186/s12943-020-01171-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
As the standard treatments for cancer, chemotherapy and radiotherapy have been widely applied to clinical practice worldwide. However, the resistance to cancer therapies is a major challenge in clinics and scientific research, resulting in tumor recurrence and metastasis. The mechanisms of therapy resistance are complicated and result from multiple factors. Among them, non-coding RNAs (ncRNAs), along with their modifiers, have been investigated to play key roles in regulating tumor development and mediating therapy resistance within various cancers, such as hepatocellular carcinoma, breast cancer, lung cancer, gastric cancer, etc. In this review, we attempt to elucidate the mechanisms underlying ncRNA/modifier-modulated resistance to chemotherapy and radiotherapy, providing some therapeutic potential points for future cancer treatment.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Kai Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghua Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuwei Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhaoya Liu
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Desheng Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
45
|
Wu B, Liu G, Jin Y, Yang T, Zhang D, Ding L, Zhou F, Pan Y, Wei Y. miR-15b-5p Promotes Growth and Metastasis in Breast Cancer by Targeting HPSE2. Front Oncol 2020; 10:108. [PMID: 32175269 PMCID: PMC7054484 DOI: 10.3389/fonc.2020.00108] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) can participate in many behaviors of various tumors. Prior studies have reported that miR-15b-5p in different tumors can either promote or inhibit tumor progression. In breast cancer, the role of miR-15b-5p is unclear. The main objective of this paper is to explore miR-15b-5p effects and their mechanisms in breast cancer using both in vitro and in vivo experiments. This study showed that miR-15b-5p expression was upregulated in breast cancer compared with normal breast tissue and was positively correlated with poor overall survival in patients. Knockdown of miR-15b-5p in MCF-7 and MD-MBA-231 breast cancer cells restrained cell growth and invasiveness and induced apoptosis, whereas overexpression of miR-15b-5p achieved the opposite effects. We next revealed a negative correlation between miR-15b-5p and heparanase-2 (HPSE2) expression in breast cancer. Knockdown of miR-15b-5p significantly increased HPSE2 expression at both mRNA and protein levels in breast cancer cells in vitro. The underlying mechanisms of miR-15-5p in breast cancer were investigated using luciferase activity reporter assay and rescue experiments. In addition, miR-15b-5p knockdown significantly inhibited tumor growth in a xenograft model in mice. In summary, we showed that miR-15b-5p promotes breast cancer cell proliferation, migration, and invasion by directly targeting HPSE2. Accordingly, miR-15b-5p may serve both as a tool for prognosis and as a target for therapy of breast cancer patients.
Collapse
Affiliation(s)
- Balu Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanxia Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tian Yang
- Department of Clinical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongdong Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Liu J, Chen Z, Cui Y, Wei H, Zhu Z, Mao F, Wang Y, Liu Y. Berberine promotes XIAP-mediated cells apoptosis by upregulation of miR-24-3p in acute lymphoblastic leukemia. Aging (Albany NY) 2020; 12:3298-3311. [PMID: 32062612 PMCID: PMC7066883 DOI: 10.18632/aging.102813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Berberine (BBR) has gained considerable attention because of its anti-tumor activity. BBR can induce apoptosis of acute lymphoblastic leukemia (ALL) cells through the MDM2/p53 pathway. However, the effects of BBR on those ALL patients with p53 deficiency remain unclear. RESULTS We found that BBR reduced ALL cell viability and induced apoptosis in p53-null EU-4 and p53-mutant EU-6 cells by downregulating X-linked inhibitor of apoptosis protein (XIAP), which is increased in ALL tissues and cells. BBR-induced cell apoptosis was attenuated by inhibition of XIAP that was controlled by PIM-2. Mechanistic studies showed that BBR treatment induced an enhancement of miR-24-3p. PIM-2 is a direct target of miR-24-3p. Blockade of PIM-2 or miR-24-3p reversed BBR-induced cell apoptosis. In vivo studies, BBR remarkably alleviated leukemia conditions in a EU4 xenograft mouse model, whereas inhibition of miR-24-3p significantly reversed the effects of BBR in the leukemia condition. CONCLUSIONS miR-24-3p/PIM-2/XIAP signaling contributes to BBR-mediated leukemia mitigation in p53-defect ALL, which should be further developed as a treatment strategy in ALL patients with p53 deficiency. METHODS Cell viability and apoptosis were determined using CCK-8 and TUNEL assays, respectively. The dual-luciferase reporter gene system was used to determine the interaction between miR-24-3p and 3'-untranslated regions (UTRs) of PIM-2.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhiwei Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yunping Cui
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Huixia Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhenjing Zhu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Fengxia Mao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingchao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
47
|
Huang W, Gu J, Tao T, Zhang J, Wang H, Fan Y. MiR-24-3p Inhibits the Progression of Pancreatic Ductal Adenocarcinoma Through LAMB3 Downregulation. Front Oncol 2020; 9:1499. [PMID: 32039003 PMCID: PMC6985431 DOI: 10.3389/fonc.2019.01499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with several genetic syndromes. However, the molecular mechanism underlying PDAC progression is still unknown. In this study, we showed that Laminin Subunit Beta 3 (LAMB3) was aberrantly overexpressed in PDAC and was closely associated with the overall survival rate of patients with PDAC. Functional studies demonstrated that LAMB3 played important roles in cell proliferation, the cell cycle, and invasion capacity. Using bioinformatics analysis, we determined that miR-24-3p was an upstream miRNA of LAMB3, and further experiments verified that miR-24-3p regulated LAMB3 expression in PDAC cells. A dual-luciferase reporter system demonstrated that miR-24-3p directly targeted the LAMB3 3'UTR, and FISH assay confirmed that miR-24-3p and LAMB3 mRNA mostly resided in cytoplasm, accounting for their post-translational regulation. Rescue assay demonstrated that miR-24-3p exerted its anti-cancer role by suppressing LAMB3 expression. Finally, by using a subcutaneous xenotransplanted tumor model, we demonstrated that miR-24-3p overexpression inhibited the proliferation of PDAC by suppressing LAMB3 expression in vivo. Collectively, our results provide evidence that the miR-24-3p/LAMB3 axis plays a vital role in the progression of PDAC and indicate that the miR-24-3p/LAMB3 axis may represent a novel therapeutic target for PDAC.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jianyou Gu
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tian Tao
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yingfang Fan
- Department of First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Huang W, Liu J, Hu S, Shi G, Yong Z, Li J, Qiu J, Cao Y, Yuan L. miR-181a Upregulation Promotes Radioresistance of Nasopharyngeal Carcinoma by Targeting RKIP. Onco Targets Ther 2019; 12:10873-10884. [PMID: 31849491 PMCID: PMC6912017 DOI: 10.2147/ott.s228800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Radioresistance is the leading cause of treatment failure for nasopharyngeal carcinoma (NPC). Therefore, screening the critical regulators in radioresistance and revealing the underlying mechanisms is imperative for improvement of therapeutical efficacy in NPC. Materials and methods Our previous study has proved that miR-181a may serve as a pro-radioresistant miRNA. In this study, we explored the expression of miR-181a in NPC, especially in radioresistant NPC samples, by qPCR. Moreover, the clinical significance of miR-181a level was also analyzed. Furthermore, the functions of miR-181a, both in vitro and in vivo, were detected via a serial of assays such as CCK-8, plate clone survival, apoptosis, and xenograft tumor model. The downstream target of miR-181a was also validated by dual luciferase reporter assay and the roles of miR-181a’s target in the regulation of NPC radioresistance were investigated. Results The results revealed that miR-181a was significantly upregulated in NPC, especially in radioresistant NPC. MiR-181a level is positively correlated to lymph node metastasis and advanced TNM stages and negatively associated with overall survival rate in NPC. Ectopic expression of miR-181a in radiosensitive NPC cells, or overexpression of miR-181a inhibitor in radioresistant NPC cells, could enhance or impair the radioresistance of NPC cells supported by the results from both in vitro and in vivo, respectively. Mechanistically, dual luciferase report assay indicated that miR-181a could directly target RKIP. Moreover, both in vitro and in vivo experimental outcomes indicated that RKIP restoration and knockdown could antagonize the effects of miR-181a and miR-181a inhibitor in the regulation of NPC radioresistance. Conclusion Collectively, the findings of this study proved that miR-181a is upregulated and promotes radioresistance by targeting RKIP in NPC. Targeting miR-181a/RKIP axis may be a valid path for reinforcing radiosensitivity and eventually improving the outcomes of clinical treatment in NPC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Liu
- Department of Pathology, Changsha Central Hospital, Changsha, Hunan, People's Republic of China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Guangqing Shi
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhong Yong
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Li
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Juan Qiu
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Cao
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
49
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
50
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|