1
|
Kader M, Yu YP, Liu S, Luo JH. Immuno-targeting the ectopic phosphorylation sites of PDGFRA generated by MAN2A1-FER fusion in HCC. Hepatol Commun 2024; 8:e0511. [PMID: 39082961 DOI: 10.1097/hc9.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND HCC is one of the most lethal cancers for humans. Mannosidase alpha class 2A member 1 (MAN2A1)-FER is one of the most frequent oncogenic fusion genes in HCC. In this report, we showed that MAN2A1-FER ectopically phosphorylated the extracellular domains of PDGFRA, MET, AXL, and N-cadherin. The ectopic phosphorylation of these transmembrane proteins led to the activation of their kinase activities and initiated the activation cascades of their downstream signaling molecules. METHODS A panel of mouse monoclonal antibodies was developed to recognize the ectopic phosphorylation sites of PDGFRA. RESULTS AND CONCLUSIONS The analyses showed that these antibodies bound to the specific phosphotyrosine epitopes in the extracellular domain of PDGFRA with high affinity and specificity. The treatment of MAN2A1-FER-positive cancer HUH7 with one of the antibodies called 2-3B-G8 led to the deactivation of cell growth signaling pathways and cell growth arrest while having minimal impact on HUH7ko cells where MAN2A1-FER expression was disrupted. The treatment of 2-3B-G8 antibody also led to a large number of cell deaths of MAN2A1-FER-positive cancer cells such as HUH7, HEPG2, SNU449, etc., while the same treatment had no impact on HUH7ko cells. When severe combined immunodeficiency mice xenografted with HEPG2 or HUH7 were treated with monomethyl auristatin E-conjugated 2-3B-G8 antibody, it slowed the progression of tumor growth, eliminated the metastasis, and reduced the mortality, in comparison with the controls. Targeting the cancer-specific ectopic phosphorylation sites of PDGFRA induced by MAN2A1-FER may hold promise as an effective treatment for liver cancer.
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- High Throughput Genome Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Yu YP, Liu S, Geller D, Luo JH. Serum Fusion Transcripts to Assess the Risk of Hepatocellular Carcinoma and the Impact of Cancer Treatment through Machine Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1262-1271. [PMID: 38537933 PMCID: PMC11220925 DOI: 10.1016/j.ajpath.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 patients with HCC and 75 patients with non-HCC conditions, using TaqMan real-time quantitative RT-PCR. Seven of the nine fusions frequently detected in patients with HCC included: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model resulted in 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.
Collapse
Affiliation(s)
- Yan-Ping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Geller
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Ding L, Sun M, Sun Y, Li J, Zhang Z, Dang S, Zhang J, Yang B, Dai Y, Zhou Q, Zhou D, Li E, Peng S, Li G. MCM8 promotes gastric cancer progression through RPS15A and predicts poor prognosis. Cancer Med 2024; 13:e7424. [PMID: 38988047 PMCID: PMC11236911 DOI: 10.1002/cam4.7424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.
Collapse
Affiliation(s)
- Lixian Ding
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Mingjun Sun
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Yanyan Sun
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Jinxing Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Zhicheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Shuwei Dang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Surgery Teaching and Research OfficeThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Jinning Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Bang Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Youlin Dai
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Qinghao Zhou
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Dazhi Zhou
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Encheng Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Shuqi Peng
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Guodong Li
- Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Bio‐Bank of Department of General SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
- Surgery Teaching and Research OfficeThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| |
Collapse
|
4
|
Kader M, Sun W, Ren BG, Yu YP, Tao J, Foley LM, Liu S, Monga SP, Luo JH. Therapeutic targeting at genome mutations of liver cancer by the insertion of HSV1 thymidine kinase through Cas9-mediated editing. Hepatol Commun 2024; 8:e0412. [PMID: 38497929 PMCID: PMC10948134 DOI: 10.1097/hc9.0000000000000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Sun
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bao-Guo Ren
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center at Pittsburgh Liver Institute, Animal Imaging Center, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Junyan Tao
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center at Pittsburgh Liver Institute, Animal Imaging Center, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center at Pittsburgh Liver Institute, Animal Imaging Center, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center at Pittsburgh Liver Institute, Animal Imaging Center, University of Pittsburg School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Yu S, Dai W, Zhao S, Yang Y, Xu Y, Wang J, Deng Q, He J, Shi D. Function and mechanism of MCM8 in the development and progression of colorectal cancer. J Transl Med 2023; 21:623. [PMID: 37710286 PMCID: PMC10503009 DOI: 10.1186/s12967-023-04084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2023] [Indexed: 09/16/2023] Open
Abstract
Colorectal cancer (CRC) has become a global health problem which has almost highest morbidity and mortality in all types of cancers. This study aimed to uncover the biological functions and underlying mechanism of MCM8 in the development and progression of CRC. The expression level of MCM8 was found to be upregulated in CRC tissues and significantly associated with tumor grade and patients' survival. Knocking down MCM8 expression in CRC cells could restrain cell growth and cell motility while promoting cell apoptosis in vitro, as well as inhibit tumor growth in xenograft mice model. Based on the RNA screening performing on CRC cells with or without MCM8 knockdown and the following IPA analysis, CHSY1 was identified as a potential target of MCM8 in CRC, whose expression was also found to be higher in tumor tissues than in normal tissues. Moreover, it was demonstrated that MCM8 may regulate the expression of CHSY1 through affecting its NEDD4-mediated ubiquitination, both of which synergistically execute tumor promotion effects on CRC. In conclusion, the outcomes of our study showed the first evidence that MCM8 act as a tumor promotor in CRC, and may be a promising therapeutic target of CRC treatment.
Collapse
Affiliation(s)
- Shaojun Yu
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Qun Deng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jinghu He
- Department of General Surgery, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
6
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
8
|
Klucnika A, Mu P, Jezek J, McCormack M, Di Y, Bradshaw CR, Ma H. REC drives recombination to repair double-strand breaks in animal mtDNA. J Cell Biol 2023; 222:e202201137. [PMID: 36355348 PMCID: PMC9652705 DOI: 10.1083/jcb.202201137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthew McCormack
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Yu M, Wang H, Xu H, Lv Y, Li Q. High MCM8 expression correlates with unfavorable prognosis and induces immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:10027-10049. [PMID: 36575045 PMCID: PMC9831725 DOI: 10.18632/aging.204440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND MCM8 has been reported highly expressed in several human malignancies. However, its role in HCC has not yet been researched. METHODS The prognostic significance of MCM8 mRNA expression was analyzed using datasets from TCGA and GEO databases. Immunohistochemistry (IHC) assay was used to detect the MCM8 protein expression in HCC tissues. The Cox regression analysis was employed to determine the independent prognostic value of MCM8. Then, we established a nomogram for OS and RFS prediction based on MCM8 protein expression. We analyzed the DNA methylation and genetic alteration of MCM8 in HCC. Moreover, GO, KEGG and GSEA were utilized to explore the potential biological functions of MCM8. Subsequently, we evaluate the correlations between MCM8 expression and composition of the tumor microenvironment as well as immunocyte infiltration ratio in HCC. RESULTS MCM8 mRNA and protein were significantly overexpressed in HCC tissues. High MCM8 protein expression was an independent risk factor for OS and RFS of HCC patients. MCM8 expression is altered in 60% of queried HCC patients. In addition, higher methylation of the CpG site cg03098629, cg10518808, and 17230679 correlated with lower MCM8 levels. MCM8 expression correlated with cell cycle and DNA replication signaling. Moreover, MCM8 may be correlated with different compositions of the tumor microenvironment and immunocyte infiltration ratio in HCC. CONCLUSIONS MCM8 was highly expressed in HCC tissues and was associated with poor prognosis. Meanwhile, high expression of MCM8 may induce immune cell infiltration and may be a promising prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Meng Yu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Hongyang Xu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Yuhang Lv
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| | - Qingsong Li
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China
| |
Collapse
|
10
|
Griffin WC, McKinzey DR, Klinzing KN, Baratam R, Eliyapura A, Trakselis MA. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress. Nat Commun 2022; 13:5090. [PMID: 36042199 PMCID: PMC9427862 DOI: 10.1038/s41467-022-32583-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.
Collapse
Affiliation(s)
- Wezley C. Griffin
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA ,grid.240871.80000 0001 0224 711XPresent Address: St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - David R. McKinzey
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Kathleen N. Klinzing
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Rithvik Baratam
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Achini Eliyapura
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Michael A. Trakselis
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| |
Collapse
|
11
|
The High Expression of Minichromosome Maintenance Complex Component 5 Is an Adverse Prognostic Factor in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4338793. [PMID: 35360518 PMCID: PMC8961428 DOI: 10.1155/2022/4338793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background. Minichromosome maintenance (MCM) genes are crucial for genomic DNA replication and are important biomarkers in tumor biology. In this study, we aimed to identify the diagnostic, therapeutic, and prognostic value of the MCM2–10 genes in patients with lung cancer. Methods. We examined the expression levels, gene networks, and protein networks of lung cancer using data from the ONCOMINE, GeneMANIA, and STRING databases. We conducted a functional enrichment analysis of MCM2–10 using the clusterProfiler package using TCGA data. The correlation between the MCM2–10 expression and lung cancer prognosis was evaluated using Cox regression analysis. The influence of clinical variables on overall survival (OS) was evaluated using univariate and multivariate analyses. The TIMER database was used to evaluate the correlation between tumor infiltrating levels and lung cancer. Kaplan–Meier Plotter pan-cancer RNA sequencing was used to estimate the correlation between the MCM5 expression and OS in different immune cell subgroups in patients with lung adenocarcinoma (LUAD). Finally, the 1-, 3-, and 5-year predictions of LUAD were performed using nomogram and calibration analysis. Results. The expression of MCM2, 3, 4, 5, 6, 7, 8, and 10 in lung cancer was higher than that for normal samples. The MCM5 expression was associated with poor OS in patients with LUAD, and prognosis was related to TNM stage, smoking status, and pathological stage. The MCM5 expression is correlated with immune invasion in LUAD and may affect prognosis due to immune infiltration. Conclusion. MCM5 may serve as a molecular biomarker for LUAD prognosis.
Collapse
|
12
|
Zuo Z, Yu Y, Ren B, Liu S, Nelson J, Wang Z, Tao J, Pradhan‐Sundd T, Bhargava R, Michalopoulos G, Chen Q, Zhang J, Ma D, Pennathur A, Luketich J, Satdarshan Monga P, Nalesnik M, Luo J. Oncogenic Activity of Solute Carrier Family 45 Member 2 and Alpha-Methylacyl-Coenzyme A Racemase Gene Fusion Is Mediated by Mitogen-Activated Protein Kinase. Hepatol Commun 2022; 6:209-222. [PMID: 34505419 PMCID: PMC8710797 DOI: 10.1002/hep4.1724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/09/2022] Open
Abstract
Chromosome rearrangement is one of the hallmarks of human malignancies. Gene fusion is one of the consequences of chromosome rearrangements. In this report, we show that gene fusion between solute carrier family 45 member 2 (SLC45A2) and alpha-methylacyl-coenzyme A racemase (AMACR) occurs in eight different types of human malignancies, with frequencies ranging from 45% to 97%. The chimeric protein is translocated to the lysosomal membrane and activates the extracellular signal-regulated kinase signaling cascade. The fusion protein promotes cell growth, accelerates migration, resists serum starvation-induced cell death, and is essential for cancer growth in mouse xenograft cancer models. Introduction of SLC45A2-AMACR into the mouse liver using a sleeping beauty transposon system and somatic knockout of phosphatase and TENsin homolog (Pten) generated spontaneous liver cancers within a short period. Conclusion: The gene fusion between SLC45A2 and AMACR may be a driving event for human liver cancer development.
Collapse
Affiliation(s)
- Ze‐Hua Zuo
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yan‐Ping Yu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Bao‐Guo Ren
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Joel Nelson
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Zhou Wang
- Department of UrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Junyan Tao
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | | | - Rohit Bhargava
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - George Michalopoulos
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Qi Chen
- Department of PharmacologyToxicology, and TherapeuticsUniversity of KansasKansas CityKSUSA
| | - Jun Zhang
- Department of MedicineUniversity of IowaIowa CityIAUSA
- Present address:
Department of MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Deqin Ma
- Department of PathologyUniversity of IowaIowa CityIAUSA
| | - Arjun Pennathur
- Thoracic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - James Luketich
- Thoracic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Paul Satdarshan Monga
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| | - Michael Nalesnik
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jian‐Hua Luo
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Liver Research Center of University of Pittsburgh Medical CenterPittsburghPAUSA
| |
Collapse
|
13
|
Liu S, Nalesnik MA, Singhi A, Wood-Trageser MA, Randhawa P, Ren BG, Humar A, Liu P, Yu YP, Tseng GC, Michalopoulos G, Luo JH. Transcriptome and Exome Analyses of Hepatocellular Carcinoma Reveal Patterns to Predict Cancer Recurrence in Liver Transplant Patients. Hepatol Commun 2021; 6:710-727. [PMID: 34725972 PMCID: PMC8948579 DOI: 10.1002/hep4.1846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Liver transplantation has been an effective approach to treat liver cancer. However, significant numbers of patients with HCC experience cancer recurrence, and the selection of suitable candidates for liver transplant remains a challenge. We developed a model to predict the likelihood of HCC recurrence after liver transplantation based on transcriptome and whole‐exome sequencing analyses. We used a training cohort and a subsequent testing cohort based on liver transplantation performed before or after the first half of 2012. We found that the combination of transcriptome and mutation pathway analyses using a random forest machine learning correctly predicted HCC recurrence in 86.8% of the training set. The same algorithm yielded a correct prediction of HCC recurrence of 76.9% in the testing set. When the cohorts were combined, the prediction rate reached 84.4% in the leave‐one‐out cross‐validation analysis. When the transcriptome analysis was combined with Milan criteria using the k‐top scoring pairs (k‐TSP) method, the testing cohort prediction rate improved to 80.8%, whereas the training cohort and the combined cohort prediction rates were 79% and 84.4%, respectively. Application of the transcriptome/mutation pathways RF model on eight tumor nodules from 3 patients with HCC yielded 8/8 consistency, suggesting a robust prediction despite the heterogeneity of HCC. Conclusion: The genome prediction model may hold promise as an alternative in selecting patients with HCC for liver transplant.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael A Nalesnik
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aatur Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bao-Guo Ren
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - George Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Hao J, Deng H, Yang Y, Chen L, Wu Q, Yao P, Li J, Li B, Jin X, Wang H, Duan H. Downregulation of MCM8 expression restrains the malignant progression of cholangiocarcinoma. Oncol Rep 2021; 46:235. [PMID: 34523691 PMCID: PMC8453687 DOI: 10.3892/or.2021.8186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor with an extremely poor prognosis. Minichromosome maintenance 8 homologous recombination repair factor (MCM8) is a helicase involved in the elongation step of DNA replication and tumorigenesis. In the present study, the clinical significance and biological function of MCM8 in CCA were investigated. The expression levels of MCM8 in CCA and paracancerous tissues were analyzed using immunohistochemical staining. The potential mechanisms underlying MCM8 and the biological effects of MCM8 in CCA cells were explored using in vitro assays and in vivo mouse xenograft models. The high expression levels of MCM8 in CCA has important clinical significance in predicting disease progression. Knockdown of MCM8 decreased proliferation, promoted apoptosis and suppressed migration of CCA cells. MCM8 knockdown also suppressed tumor growth in vivo. Mechanistically, MCM8 knockdown led to the abnormal downregulation of survivin, XIAP, HSP27, IGF‑1sR, sTNF‑R1, sTNF‑R2, TNF‑α and TNF‑β. Furthermore, downregulation of MCM8 expression inhibited the PI3K/Akt signaling pathway and induced the MAPK9 signaling pathway. MCM8 promoted the malignant progression of CCA, indicating that inhibition of MCM8 may have the potential to serve as a novel molecular targeted therapy.
Collapse
Affiliation(s)
- Jingcheng Hao
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Haimin Deng
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuan Yang
- Department of Rheumatology and Immunology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Lidan Chen
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Qiang Wu
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Pei Yao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Junen Li
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Bowen Li
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Xueli Jin
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
15
|
Yu YP, Liu S, Nelson J, Luo JH. Detection of fusion gene transcripts in the blood samples of prostate cancer patients. Sci Rep 2021; 11:16995. [PMID: 34417538 PMCID: PMC8379170 DOI: 10.1038/s41598-021-96528-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer remains one of the most lethal cancers for men in the United States. The study aims to detect fusion transcripts in the blood samples of prostate cancer patients. We analyzed nine fusion transcripts including MAN2A1-FER, SLC45A2-AMACR, TRMT11-GRIK2, CCNH-C5orf30, mTOR-TP53BP1, KDM4-AC011523.2, TMEM135-CCDC67, LRRC59-FLJ60017 and Pten-NOLC1147 in the blood samples from 147 prostate cancer patients and 14 healthy individuals, using Taqman RT-PCR and Sanger's sequencing. Similar analyses were also performed on 25 matched prostate cancer samples for matched-sample evaluation. Eighty-two percent blood samples from the prostate cancer patients were positive for MAN2A1-FER transcript, while 41.5% and 38.8% blood samples from the prostate cancer patients were positive for SLC45A2-AMACR and Pten-NOLC1, respectively. CCNH-c5orf30 and mTOR-TP53BP1 had low detection rates, positive in only 5.4% and 4% of the blood samples from the prostate cancer patients. Only 2 blood samples were positive for KDM4B-AC011523.2 transcript. Overall, 89.8% patients were positive for at least one fusion transcript in their blood samples. The statistical analysis showed varied sensitivity of fusion transcript detection in the blood based on the types of fusions. In contrast, the blood samples from all healthy individuals were negative for the fusion transcripts. Detection of fusion transcripts in the blood samples of the prostate cancer patients may be a fast and cost-effective way to detect prostate cancer.
Collapse
Affiliation(s)
- Yan-Ping Yu
- Department of Pathology and Urology, School of Medicine, University of Pittsburgh, Scaife S-728, Pittsburgh, PA, 15261, USA
| | - Silvia Liu
- Department of Pathology and Urology, School of Medicine, University of Pittsburgh, Scaife S-728, Pittsburgh, PA, 15261, USA
| | - Joel Nelson
- Department of Pathology and Urology, School of Medicine, University of Pittsburgh, Scaife S-728, Pittsburgh, PA, 15261, USA
| | - Jian-Hua Luo
- Department of Pathology and Urology, School of Medicine, University of Pittsburgh, Scaife S-728, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Wang X, Zhang L, Song Y, Jiang Y, Zhang D, Wang R, Hu T, Han S. MCM8 is regulated by EGFR signaling and promotes the growth of glioma stem cells through its interaction with DNA-replication-initiating factors. Oncogene 2021; 40:4615-4624. [PMID: 34131285 DOI: 10.1038/s41388-021-01888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins are critical components of DNA-replication-licensing factors. MCM8 is an MCM protein that exhibits oncogenic functions in several human malignancies. However, the role of MCM8 in glioblastomas (GBMs) has remained unclear. In the present study, we investigated the biological functions and mechanisms of MCM8 in glioma stem cells (GSCs). The clinical relevance of MCM8 mRNA expression was explored via TCGA and REMBRANDT datasets. The effects of MCM8 on the self-renewal and tumorigenicity of GSCs were examined both in vitro and in vivo. The regulation of MCM8 expression and its interacting proteins were also evaluated. We found that the expression of MCM8 was elevated in high-grade gliomas and classical molecular subtypes and was inversely correlated with patient prognosis. GSCs had a significantly higher expression of MCM8 compared with that in normal glioma cells. Silencing of MCM8 induced G0/G1 arrest and apoptosis, as well as inhibited the proliferation and self-renewal of GSCs. Forced expression of MCM8 enhanced clonogenicity of GSCs both in vitro and in vivo. MCM8 expression was regulated by EGFR signaling, which was mediated by NF-κB (p65). MCM8 interacted with DNA-replication-initiating factors-including EZH2, CDC6, and CDCA2-and influenced these factors to associate with chromatin. In addition, MCM8 knockdown increased the sensitivity of GSCs to radiation and TMZ treatments. Our findings suggest that MCM8, regulated by the EGFR pathway, maintains the clonogenic and tumorigenic potential of GSCs through interaction with DNA-replication-initiating factors; hence, MCM8 may represent a novel therapeutic target in GBMs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Harama D, Yahata T, Kagami K, Abe M, Ando N, Kasai S, Tamai M, Akahane K, Inukai T, Kiyokawa N, Ibrahim AA, Ando K, Sugita K. IMiDs uniquely synergize with TKIs to upregulate apoptosis of Philadelphia chromosome-positive acute lymphoblastic leukemia cells expressing a dominant-negative IKZF1 isoform. Cell Death Discov 2021; 7:139. [PMID: 34117218 PMCID: PMC8195985 DOI: 10.1038/s41420-021-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
The long-term prognosis of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) is still unsatisfactory even after the emergence of tyrosine kinase inhibitors (TKIs) against chimeric BCR-ABL, and this is associated with the high incidence of genetic alterations of Ikaros family zinc finger 1 (IKZF1), most frequently the hemi-allelic loss of exons 4–7 expressing a dominant-negative isoform Ik6. We found that lenalidomide (LEN), a representative of immunomodulatory drugs (IMiDs), which have been long used for the treatment of multiple myeloma, specifically induced accumulation of Ik6 with the disappearance of functional isoforms within 24 h (i.e., abrupt and complete shut-down of the IKZF1 activity) in Ik6-positive Ph+ALL cells in a neddylation-dependent manner. The functional IKZF3 isoforms expression was also abruptly and markedly downregulated. The LEN treatment specifically suppressed proliferation of Ik6-positive-Ph+ALL cells by inducing cell cycle arrest via downregulation of cyclins D3 and E and CDK2, and of importance, markedly upregulated their apoptosis in synergy with the TKI imatinib (IM). Apoptosis of IM-resistant Ph+ALL cells with T315I mutation of BCR-ABL was also upregulated by LEN in the presence of the newly developed TKI ponatinib. Analyses of flow cytometry, western blot, and oligonucleotide array revealed that apoptosis was caspase-/p53-dependent and associated with upregulation of pro-apoptotic Bax/Bim, enhanced dephosphorylation of BCR-ABL/Akt, and downregulation of oncogenic helicase genes HILLS, CDC6, and MCMs4 and 8. Further, the synergism of LEN with IM was clearly documented as a significant prolongation of survival in the xenograft mice model. Because this synergism was further potentiated in vitro by dexamethasone, a key drug for ALL treatment, the strategy of repositioning IMiDs for the treatment of Ik6-positive Ph+ALL patients certainly shed new light on an outpatient-based treatment option for achieving their long-term durable remission and higher QOL, particularly for those who are not tolerable to intensified therapeutic approaches.
Collapse
Affiliation(s)
- Daisuke Harama
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takashi Yahata
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Kagami
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masako Abe
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Norie Ando
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shin Kasai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Minori Tamai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Abd Aziz Ibrahim
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kanji Sugita
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
18
|
Zhu W, Gao F, Zhou H, Jin K, Shao J, Xu Z. Knockdown of MCM8 inhibits development and progression of bladder cancer in vitro and in vivo. Cancer Cell Int 2021; 21:242. [PMID: 33931059 PMCID: PMC8086360 DOI: 10.1186/s12935-021-01948-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bladder cancer is a frequently diagnosed urinary system tumor, whose mortality remains rising. Minichromosome maintenance eight homologous recombination repair factor (MCM8), a newly discovered MCM family member, has been shown to be required for DNA replication. Unfortunately, little is known concerning the roles of MCM8 in bladder cancer. METHODS The present study, we aimed at probing into the impacts and detailed mechanisms of MCM8 in bladder cancer progression. In this study, MCM8 expression level was detected through immunohistochemistry staining (IHC), qRT-PCR and Western blot assay. Silenced MCM8 cell models were constructed by lentivirus transfection. In vitro, the cell proliferation was evaluated by the MTT assay. The wound-healing assay and the transwell assay were utilized to assess the cell migration. Also, the cell apoptosis and the cell cycle were determined by flow cytometry. Moreover, the Human Apoptosis Antibody Array assay was performed to analyze the alterations of apoptosis-related proteins. The in vivo experiments were conducted to verify the effects of MCM8 knockdown on the tumor growth of bladder cancer. RESULTS The results demonstrated that compared with normal adjacent tissues, MCM8 expression in bladder cancer tissues was strongly up-regulated. The up-regulation of MCM8 expression in bladder cancer may be a valuable independent prognostic indicator. Of note, MCM8 inhibition modulated the malignant phenotypes of bladder cancer cells. In terms of mechanism, it was validated that MCM8 knockdown made Akt, P-Akt, CCND1 and CDK6 levels down-regulated, as well as MAPK9 up-regulated. CONCLUSIONS Taken together, our study demonstrated an important role of MCM8 in bladder cancer and created a rationale for the therapeutic potential of MCM8 inhibition in human bladder cancer therapy.
Collapse
Affiliation(s)
- Wei Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Fei Gao
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Hongyi Zhou
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Ke Jin
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China
| | - Jianfeng Shao
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China.
| | - Zhuoqun Xu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Rd, Wuxi, 214023, China.
| |
Collapse
|
19
|
Ren Z, Li J, Zhao S, Qiao Q, Li R. Knockdown of MCM8 functions as a strategy to inhibit the development and progression of osteosarcoma through regulating CTGF. Cell Death Dis 2021; 12:376. [PMID: 33828075 PMCID: PMC8027380 DOI: 10.1038/s41419-021-03621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone derived from osteoblasts, which is a noteworthy threat to the health of children and adolescents. In this study, we found that MCM8 has significantly higher expression level in osteosarcoma tissues in comparison with normal tissues, which was also correlated with more advanced tumor grade and pathological stage. In agreement with the role of MCM proteins as indicators of cell proliferation, knockdown/overexpression of MCM8 inhibited/promoted osteosarcoma cell proliferation in vitro and tumor growth in vivo. Also, MCM8 knockdown/overexpression was also significantly associated with the promotion/inhibition of cell apoptosis and suppression/promotion of cell migration. More importantly, mechanistic study identified CTGF as a potential downstream target of MCM8, silencing of which could enhance the regulatory effects of MCM8 knockdown and alleviate the effects of MCM8 overexpression on osteosarcoma development. In summary, MCM8/CTGF axis was revealed as critical participant in the development and progression of osteosarcoma and MCM8 may be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong, Hefei, 230601, China
| | - Shanwen Zhao
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China.,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China
| | - Qi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Runguang Li
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China. .,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China. .,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China. .,Department of Orthopedics, Linzhi People's Hospital, Linzhi, 860000, China.
| |
Collapse
|
20
|
Motifs of the C-terminal domain of MCM9 direct localization to sites of mitomycin-C damage for RAD51 recruitment. J Biol Chem 2021; 296:100355. [PMID: 33539926 PMCID: PMC7949153 DOI: 10.1016/j.jbc.2021.100355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional “bipartite-like” nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.
Collapse
|
21
|
Pten-NOLC1 fusion promotes cancers involving MET and EGFR signalings. Oncogene 2020; 40:1064-1076. [PMID: 33323972 PMCID: PMC7880894 DOI: 10.1038/s41388-020-01582-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Inactivation of Pten gene through deletions and mutations leading to excessive pro-growth signaling pathway activations frequently occurs in cancers. Here, we report a Pten derived pro-cancer growth gene fusion Pten-NOLC1 originated from a chr10 genome rearrangement and identified through a transcriptome sequencing analysis of human cancers. Pten-NOLC1 fusion is present in primary human cancer samples and cancer cell lines from different organs. The product of Pten-NOLC1 is a nuclear protein that interacts and activates promoters of EGFR, c-MET, and their signaling molecules. Pten-NOLC1 promotes cancer proliferation, growth, invasion, and metastasis, and reduces the survival of animals xenografted with Pten-NOLC1-expressing cancer cells. Genomic disruption of Pten-NOLC1 induces cancer cell death, while genomic integration of this fusion gene into the liver coupled with somatic Pten deletion produces spontaneous liver cancers in mice. Our studies indicate that Pten-NOLC1 gene fusion is a driver for human cancers.
Collapse
|
22
|
Lutzmann M, Bernex F, da Costa de Jesus C, Hodroj D, Marty C, Plo I, Vainchenker W, Tosolini M, Forichon L, Bret C, Queille S, Marchive C, Hoffmann JS, Méchali M. MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. Cell Rep 2020; 28:2851-2865.e4. [PMID: 31509747 DOI: 10.1016/j.celrep.2019.07.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/26/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.
Collapse
Affiliation(s)
- Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| | - Florence Bernex
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | | | - Dana Hodroj
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Caroline Marty
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | - Isabelle Plo
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Luc Forichon
- Animal House Facility, BioCampus Montpellier, UMS3426 CNRS-US009 INSERM-UM, 141 Rue de la Cardonille, 34396 Montpellier, France
| | - Caroline Bret
- Department of Hematology, University Hospital St Eloi, 80 Ave Augustin Fliche, Montpellier, France
| | - Sophie Queille
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Candice Marchive
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, DNA Replication and Genome Dynamics, 141, Rue de la Cardonille, 34396 Montpellier, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
23
|
MCMs in Cancer: Prognostic Potential and Mechanisms. Anal Cell Pathol (Amst) 2020; 2020:3750294. [PMID: 32089988 PMCID: PMC7023756 DOI: 10.1155/2020/3750294] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Enabling replicative immortality and uncontrolled cell cycle are hallmarks of cancer cells. Minichromosome maintenance proteins (MCMs) exhibit helicase activity in replication initiation and play vital roles in controlling replication times within a cell cycle. Overexpressed MCMs are detected in various cancerous tissues and cancer cell lines. Previous studies have proposed MCMs as promising proliferation markers in cancers, while the prognostic values remain controversial and the underlying mechanisms remain unascertained. This review provides an overview of the significant findings regarding the cellular and tumorigenic functions of the MCM family. Besides, current evidence of the prognostic roles of MCMs is retrospectively reviewed. This work also offers insight into the mechanisms of MCMs prompting carcinogenesis and adverse prognosis, providing information for future research. Finally, MCMs in liver cancer are specifically discussed, and future perspectives are provided.
Collapse
|
24
|
Yu YP, Tsung A, Liu S, Nalesnick M, Geller D, Michalopoulos G, Luo JH. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget 2019; 10:3352-3360. [PMID: 31164957 PMCID: PMC6534357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma is one of the most lethal cancers in the United States. Early detection of the disease is crucial for reducing the mortality of this malignancy. Recently, we identified a panel of fusion genes present in several types of human cancers, including hepatocellular carcinoma. Among 8 fusion genes, MAN2A1-FER, TRMT11-GRIK2 and CCNH-C5orf30 appear most frequently in hepatocellular carcinoma samples. In this study, we showed that the fusion transcripts of MAN2A1-FER, CCNH-C5orf30 and SLC45A2-AMACR were detected in the serum samples of liver cancer patients as circulating cell-free RNA. The distributions of these gene fusion RNA fragments largely matched those of the primary HCC samples. In contrast, the sera of all healthy individuals free of human malignancies were shown to be negative for these fusion genes. These results suggest that gene fusion RNA is frequently shed from liver cancer cells. The detection of serum cell-free fusion transcripts may provide a new approach to aid in the diagnosis, follow-up or therapy of liver cancers.
Collapse
Affiliation(s)
- Yan-Ping Yu
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allan Tsung
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA,2Current address: Department of Surgery, Ohio State University School of Medicine, Columbus, Ohio 43210, USA
| | - Silvia Liu
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Nalesnick
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Geller
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - George Michalopoulos
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jian-Hua Luo
- 1Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Yu YP, Tsung A, Liu S, Nalesnick M, Geller D, Michalopoulos G, Luo JH. Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma. Oncotarget 2019. [DOI: 10.18632/oncotarget.26918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yan-Ping Yu
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Allan Tsung
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Current address: Department of Surgery, Ohio State University School of Medicine, Columbus, Ohio 43210, USA
| | - Silvia Liu
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Nalesnick
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David Geller
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - George Michalopoulos
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jian-Hua Luo
- Department of Pathology and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
26
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
27
|
Lee S, Park S, Lee H, Jeong D, Ham J, Choi EH, Kim SJ. ChIP-seq analysis reveals alteration of H3K4 trimethylation occupancy in cancer-related genes by cold atmospheric plasma. Free Radic Biol Med 2018; 126:133-141. [PMID: 30096431 DOI: 10.1016/j.freeradbiomed.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Cold atmospheric plasma (CAP) has gained attention for use in cancer treatment owing to its ability to preferentially induce cancer cell death; however, the involved molecular mechanism remains to be elucidated. Herein, an epigenetic effect of CAP on cancer cells was examined by performing a genome-wide ChIP-seq for H3K4me3 in MCF-7 breast cancer cell line. Consequently, 899 genes showed significantly changed methylation level at H3K4 with constructing "Cellular Compromise, DNA Replication, Recombination, Repair, and Cell Cycle" as the top network. Comparisons with expression array data revealed a coincidence between histone modification and gene expression for 18 genes, and the association was confirmed by ChIP-PCR and qRT-PCR for selected genes. The expression of the affected genes, such as HSCB and PRPS1, was recovered when a histone demethylase JARID1A was inhibited. Furthermore, JARID1A was induced by CAP via the reactive oxygen species signaling. The two genes are known as oncogenes and show a higher expression in breast cancer tissue, and this was supported by the decreased colony formation ability of MCF-7 cells when the cells were treated with siRNAs against each gene. Taken together, these data indicate that CAP inhibits cancer cell proliferation by modulating the methylation level of H3K4 corresponding to oncogenes.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
28
|
Minichromosome maintenance complex component 8 and 9 gene expression in the menstrual cycle and unexplained primary ovarian insufficiency. J Assist Reprod Genet 2018; 36:57-64. [PMID: 30276597 DOI: 10.1007/s10815-018-1325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE DNA repair genes Minichromosome maintenance complex component (MCM) 8 and 9 have been linked with gonadal development, primary ovarian insufficiency (POI), and age at menopause. Our objective was to characterize MCM 8 and 9 gene expression in the menstrual cycle, and to compare MCM 8/9 expression in POI vs normo-ovulatory women. METHODS Normo-ovulatory controls (n = 11) and unexplained POI subjects (n = 6) were recruited. Controls provided three blood samples within one menstrual cycle: (1) early follicular phase, (2) ovulation, and (3) mid-luteal phase. Six of 11 controls only provided a follicular phase sample. Amenorrheic POI subjects provided a single, random blood sample. MCM8/9 expression in peripheral blood was assessed with qRTPCR. Analyses were performed using delta-Ct measurements; group differences were transformed to a fold change (FC) and confidence interval (CI). Differences across menstrual cycle phases were compared using random effects ANOVA. Two-sample t tests were used to compare two groups. RESULTS MCM8 expression was significantly lower at ovulation and during the luteal phase, when compared to the follicular phase [FC = 0.69 in the luteal vs follicular phase (p = 0.012, CI = 0.53, 0.90); and 0.65 in the ovulatory vs follicular phase (p = 0.0057, CI = 0.50, 0.85)]. No change in MCM9 expression was noted throughout the menstrual cycle. No significant difference was seen in MCM8/9 expression when comparing POI to control subjects. CONCLUSIONS Our study showed greater MCM8 expression in the follicular phase of the menstrual cycle, compared to the ovulatory and luteal phases. No cyclic changes were seen with MCM9. Significant differences in MCM8/9 expression were not detected between POI and controls; however, we recommend further investigation with a larger sample population.
Collapse
|