1
|
Chan AM, Olafsen T, Tsui J, Salazar FB, Aguirre B, Zettlitz KA, Condro M, Wu AM, Braun J, Gordon LK, Ashki N, Whitelegge J, Xu S, Ikotun O, Lee JT, Wadehra M. 89Zr-ImmunoPET for the Specific Detection of EMP2-Positive Tumors. Mol Cancer Ther 2024; 23:890-903. [PMID: 38417138 DOI: 10.1158/1535-7163.mct-23-0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Epithelial membrane protein-2 (EMP2) is upregulated in a number of tumors and therefore remains a promising target for mAb-based therapy. In the current study, image-guided therapy for an anti-EMP2 mAb was evaluated by PET in both syngeneic and immunodeficient cancer models expressing different levels of EMP2 to enable a better understanding of its tumor uptake and off target accumulation and clearance. The therapeutic efficacy of the anti-EMP2 mAb was initially evaluated in high- and low-expressing tumors, and the mAb reduced tumor load for the high EMP2-expressing 4T1 and HEC-1-A tumors. To create an imaging agent, the anti-EMP2 mAb was conjugated to p-SCN-Bn-deferoxamine (DFO) and radiolabeled with 89Zr. Tumor targeting and tissue biodistribution were evaluated in syngeneic tumor models (4T1, CT26, and Panc02) and human tumor xenograft models (Ramos, HEC-1-A, and U87MG/EMP2). PET imaging revealed radioactive accumulation in EMP2-positive tumors within 24 hours after injection, and the signal was retained for 5 days. High specific uptake was observed in tumors with high EMP2 expression (4T1, CT26, HEC-1-A, and U87MG/EMP2), with less accumulation in tumors with low EMP2 expression (Panc02 and Ramos). Biodistribution at 5 days after injection revealed that the tumor uptake ranged from 2 to approximately 16%ID/cc. The results show that anti-EMP2 mAbs exhibit EMP2-dependent tumor uptake with low off-target accumulation in preclinical cancer models. The development of improved anti-EMP2 Ab fragments may be useful to track EMP2-positive tumors for subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Ann M Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Small Animal Imaging Core, Shared Resources, City of Hope, Duarte, California
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Felix B Salazar
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Michael Condro
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, California
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lynn K Gordon
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Negin Ashki
- Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julian Whitelegge
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shili Xu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Oluwatayo Ikotun
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jason Thanh Lee
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
2
|
Meril S, Muhlbauer Avni M, Lior C, Bahlsen M, Olender T, Savidor A, Krausz J, Belhanes Peled H, Birisi H, David N, Bialik S, Scherz-Shouval R, Ben David Y, Kimchi A. Loss of EIF4G2 mediates aggressiveness in distinct human endometrial cancer subpopulations with poor survival outcome in patients. Oncogene 2024; 43:1098-1112. [PMID: 38388710 PMCID: PMC10997518 DOI: 10.1038/s41388-024-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.
Collapse
Affiliation(s)
- Sara Meril
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Muhlbauer Avni
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Chen Lior
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Marcela Bahlsen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alon Savidor
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Judit Krausz
- Pathology Department, Emek Medical Center, Afula, Israel
| | | | - Hila Birisi
- Pathology Department, Emek Medical Center, Afula, Israel
| | - Nofar David
- Pathology Department, Emek Medical Center, Afula, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Ben David
- Department of Obstetrics and Gynecology, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
3
|
Zhu W, Song S, Xu Y, Sheng H, Wang S. EMP3: A promising biomarker for tumor prognosis and targeted cancer therapy. Cancer Biomark 2024; 40:227-239. [PMID: 39213053 PMCID: PMC11380316 DOI: 10.3233/cbm-230504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epithelial membrane protein 3 (EMP3) belongs to the peripheral myelin protein 22 kDa (PMP22) gene family, characterized by four transmembrane domains and widespread expression across various human tissues and organs. Other members of the PMP22 family, including EMP1, EMP2, and PMP22, have been linked to various cancers, such as glioblastoma, laryngeal cancer, nasopharyngeal cancer, gastric cancer, breast cancer, and endometrial cancer. However, few studies report on the function and relevance of EMP3 in tumorigenicity. Given the significant structural similarities among members of the PMP22 family, there are likely potential functional similarities as well. Previous studies have established the regulatory role of EMP3 in immune cells like T cells and macrophages. Additionally, EMP3 is found to be involved in critical signaling pathways, including HER-2/PI3K/Akt, MAPK/ERK, and TGF-beta/Smad. Furthermore, EMP3 is associated with cell cycle regulation, cellular proliferation, and apoptosis. Hence, it is likely that EMP3 participates in cancer development through these aforementioned pathways and mechanisms. This review aims to systematically examine and summarize the structure and function of EMP3 and its association to various cancers. EMP3 is expected to emerge as a significant biological marker for tumor prognosis and a potential target in cancer therapeutics.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shu Song
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hanyue Sheng
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Cha YJ, Koo JS. Expression of EMP 1, 2, and 3 in Adrenal Cortical Neoplasm and Pheochromocytoma. Int J Mol Sci 2023; 24:13016. [PMID: 37629198 PMCID: PMC10455306 DOI: 10.3390/ijms241613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to investigate the expression of the epithelial membrane proteins (EMP) 1, 2, and 3 in adrenal gland neoplasm and to explore the broader implications of this. Tissue microarrays were constructed for 132 cases of adrenal cortical neoplasms (ACN) (adrenal cortical adenoma (115 cases), and carcinoma (17 cases)) and 189 cases of pheochromocytoma. Immunohistochemical staining was performed to identify EMP 1, 2, and 3, and was compared with clinicopathological parameters. The H-score of EMP 3 (p < 0.001) was higher in pheochromocytoma when compared to that of ACN, and the H-score of EMP 1 (p < 0.001) and EMP 3 (p < 0.001) was higher in adrenal cortical carcinomas when compared to that of adrenal cortical adenomas. A higher EMP 1 H-score was observed in pheochromocytomas with a GAPP score ≥3 (p = 0.018). In univariate analysis, high levels of EMP 1 and EMP 3 expression in ACN were associated with shorter overall survival (p = 0.001). Differences were observed in the expression of EMPs between ACN and pheochromocytoma. EMPs are associated with malignant tumor biology in adrenal cortical neoplasm and pheochromocytoma, suggesting the role of a prognostic and/or predictive factor for EMPs in adrenal tumor.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea;
| |
Collapse
|
5
|
Mozaffari K, Mekonnen M, Harary M, Lum M, Aguirre B, Chandla A, Wadehra M, Yang I. Epithelial membrane protein 2 (EMP2): A systematic review of its implications in pathogenesis. Acta Histochem 2023; 125:151976. [PMID: 36455339 DOI: 10.1016/j.acthis.2022.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial membrane protein 2 (EMP2) is a cell surface protein composed of approximately 160 amino acids and encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. Although EMP2 expression has been investigated in several diseases, much remains unknown regarding its mechanism of action and the extent of its role in pathogenesis. Our aim was to perform a systematic review on the involvement of EMP2 in disease processes and the current usage of anti-EMP2 therapies. METHODS A Boolean search of the English-language medical literature was performed. PubMed, Scopus, Cochrane, and Web of Science were used to identify relevant citations. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS 52 studies met the inclusion criteria for qualitative analysis. Of those, 28 (53.8%) were human-only studies, 11 (21.2%) were animal-only studies, and 13 (25%) studies included both human and animal models. Furthermore, 34 (65.4%) studies focused on EMP2's role in neoplasms, while the remaining 18 (34.6%) articles evaluated its role in other pathologies. CONCLUSION Overall, the evidence suggests the mechanisms of action of EMP2 are context dependent. Promising results have been produced by utilizing EMP2 as a biomarker and therapeutic target. More studies are warranted to better understand the mechanism and comprehend the role of EMP2 in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Meachelle Lum
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anubhav Chandla
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|
6
|
Sun M, Cherian N, Liu L, Chan AM, Aguirre B, Chu A, Strawbridge J, Kim ES, Lin MC, Tsui I, Gordon LK, Wadehra M. Epithelial membrane protein 2 (EMP2) regulates hypoxia-induced angiogenesis in the adult retinal pigment epithelial cell lines. Sci Rep 2022; 12:19432. [PMID: 36371458 PMCID: PMC9653491 DOI: 10.1038/s41598-022-22696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pathologic retinal neovascularization is a potentially blinding consequence seen in many common diseases including diabetic retinopathy, retinopathy of prematurity, and retinal vaso-occlusive diseases. This study investigates epithelial membrane protein 2 (EMP2) and its role as a possible modulator of angiogenesis in human retinal pigment epithelium (RPE) under hypoxic conditions. To study its effects, the RPE cell line ARPE-19 was genetically modified to either overexpress EMP2 or knock down its levels, and RNA sequencing and western blot analysis was performed to confirm the changes in expression at the RNA and protein level, respectively. Protein expression was evaluated under both normoxic conditions or hypoxic stress. Capillary tube formation assays with human umbilical vein endothelial cells (HUVEC) were used to evaluate functional responses. EMP2 expression was found to positively correlate with expression of pro-angiogenic factors HIF1α and VEGF at both mRNA and protein levels under hypoxic conditions. Mechanistically, EMP2 stabilized HIF1α expression through downregulation of von Hippel Lindau protein (pVHL). EMP2 mediated changes in ARPE-19 cells were also found to alter the secretion of a paracrine factor(s) in conditioned media that can regulate HUVEC migration and capillary tube formation in in vitro functional angiogenesis assays. This study identifies EMP2 as a potential mediator of angiogenesis in a human RPE cell line. EMP2 levels positively correlate with pro-angiogenic mediators HIF1α and VEGF, and mechanistically, EMP2 regulates HIF1α through downregulation of pVHL. This study supports further investigation of EMP2 as a promising novel target for therapeutic treatment of pathologic neovascularization in the retina.
Collapse
Affiliation(s)
- Michel Sun
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nina Cherian
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lucia Liu
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ann M Chan
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Aguirre
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Strawbridge
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Esther S Kim
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Irena Tsui
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lynn K Gordon
- UCLA Stein Eye Institute and the Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, 4525 MacDonald Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhang N, Zhu HP, Huang W, Wen X, Xie X, Jiang X, Peng C, Han B, He G. Unraveling the structures, functions and mechanisms of epithelial membrane protein family in human cancers. Exp Hematol Oncol 2022; 11:69. [PMID: 36217151 PMCID: PMC9552464 DOI: 10.1186/s40164-022-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) and epithelial membrane proteins (EMP-1, -2, and -3) belong to a small hydrophobic membrane protein subfamily, with four transmembrane structures. PMP22 and EMPs are widely expressed in various tissues and play important roles in cell growth, differentiation, programmed cell death, and metastasis. PMP22 presents its highest expression in the peripheral nerve and participates in normal physiological and pathological processes of the peripheral nervous system. The progress of molecular genetics has shown that the genetic changes of the PMP22 gene, including duplication, deletion, and point mutation, are behind various hereditary peripheral neuropathies. EMPs have different expression patterns in diverse tissues and are closely related to the risk of malignant tumor progression. In this review, we focus on the four members in this protein family which are related to disease pathogenesis and discuss gene mutations and post-translational modification of them. Further research into the interactions between structural alterations and function of PMP22 and EMPs will help understand their normal physiological function and role in diseases and might contribute to developing novel therapeutic tools.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re‑Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Xia H, Liu B, Shen N, Xue J, Chen S, Guo H, Zhou X. circRNA-0002109 promotes glioma malignant progression via modulating the miR-129-5P/EMP2 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1-15. [PMID: 34938603 PMCID: PMC8646083 DOI: 10.1016/j.omtn.2021.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023]
Abstract
Glioma is a common intracranial malignant tumor with high mortality and high recurrence rate. In recent years, increasing evidence has demonstrated that circular RNAs (circRNAs) are potential biomarkers and therapeutic targets for many tumors. However, the role of circRNAs in glioma remains unclear. In this study, we found that circRNA-0002109 was highly expressed in glioma tissues and cell lines. Downregulation of circRNA-0002109 expression inhibited the proliferation, migration, and invasion of glioma cells and inhibited the malignant progression of tumors in vivo. Investigations into the relevant mechanisms showed that circRNA-0002109 upregulated the expression of EMP2 through endogenous competitive binding of microRNA-129-5P (miR-129-5P), which partially alleviated the inhibitory effect of miR-129-5P on epithelial membrane protein-2 (EMP2) and ultimately promoted the malignant development of glioma. Our results indicate that circRNA-0002109 plays an important role in the proliferation, invasion, and migration of glioma cells by regulating the miR-129-5P/EMP2 axis, which provides a new potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Haibin Xia
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China.,Trauma Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Boyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Nanxiang Shen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Siyu Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaozhong Zhou
- Trauma Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Enkhtaivan E, Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Kim KS, Huy HP, Rahman M, Jang JY, Rho SB, Lee H, Kang GJ, Park MK, Kim NH, Choi CI, Lee K, Han HK, Cho J, Lee AY, Lee CH. Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2. Biomol Ther (Seoul) 2022; 30:203-211. [PMID: 35221300 PMCID: PMC8902453 DOI: 10.4062/biomolther.2022.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.
Collapse
Affiliation(s)
- Enkhmend Enkhtaivan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hiệu Phùng Huy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.,National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mi Kyung Park
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Chang Ick Choi
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
11
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
12
|
Fan J, Feng Y, Cheng Y, Wang Z, Zhao H, Galan EA, Liao Q, Cui S, Zhang W, Ma S. Multiplex gene quantification as digital markers for extremely rapid evaluation of chemo-drug sensitivity. PATTERNS 2021; 2:100360. [PMID: 34693378 PMCID: PMC8515010 DOI: 10.1016/j.patter.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation. The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1–3 h after tumor sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the performance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and corresponding graphic user interface were developed to demonstrate the promise of digital markers for extremely rapid drug recommendation. Non-targeted multiplex genes are screened as digital markers for drug sensitivity Transcription level cohort of 10s to 100s genes predicts drug sensitivity Digital markers are quantified using qRT-PCR within 1–3 h Digital markers guide extremely rapid chemo-drug uses after patient hospitalization
In clinical cancer medicine, many patients require immediate chemotherapy after hospitalization. Current administrations for precision drug uses are limited in evaluation speed, including genomic sequencing and tumor organoid evaluation. An extremely rapid evaluation protocol is in high demand to realize drug recommendation within a few hours after tumor sampling. In this work, we have proposed an approach for extremely rapid and personalized drug recommendation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| | - Yilin Feng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Yifan Cheng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Haoran Zhao
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Quanxing Liao
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaohua Ma
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Mah V, Elshimali Y, Chu A, Moatamed NA, Uzzell JP, Tsui J, Schettler S, Shakeri H, Wadehra M. ALDH1 expression predicts progression of premalignant lesions to cancer in Type I endometrial carcinomas. Sci Rep 2021; 11:11949. [PMID: 34099751 PMCID: PMC8184965 DOI: 10.1038/s41598-021-90570-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
In type 1 endometrial cancer, unopposed estrogen stimulation is thought to lead to endometrial hyperplasia which precedes malignant progression. Recent data from our group and others suggest that ALDH activity mediates stemness in endometrial cancer, but while aldehyde dehydrogenase 1 (ALDH1) has been suggested as a putative cancer stem cell marker in several cancer types, its clinical and prognostic value in endometrial cancer remains debated. The aim of this study was to investigate the clinical value of ALDH1 expression in endometrial hyperplasia and to determine its ability to predict progression to endometrial cancer. Interrogation of the TCGA database revealed upregulation of several isoforms in endometrial cancer, of which the ALDH1 isoforms collectively constituted the largest group. To translate its expression, a tissue microarray was previously constructed which contained a wide sampling of benign and malignant endometrial samples. The array contained a metachronous cohort of samples from individuals who either developed or did not develop endometrial cancer. Immunohistochemical staining was used to determine the intensity and frequency of ALDH1 expression. While benign proliferative and secretory endometrium showed very low levels of ALDH1, slightly higher expression was observed within the stratum basalis. In disease progression, cytoplasmic ALDH1 expression showed a step-wise increase between endometrial hyperplasia, atypical hyperplasia, and endometrial cancer. ALDH1 was also shown to be an early predictor of EC development, suggesting that it can serve as an independent prognostic indicator of patients with endometrial hyperplasia with or without atypia who would progress to cancer (p = 0.012).
Collapse
Affiliation(s)
- Vei Mah
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yahya Elshimali
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | - Alison Chu
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Neda A Moatamed
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jamar P Uzzell
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jessica Tsui
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Stephen Schettler
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hania Shakeri
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- 4525 MacDonald Research Laboratories, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
14
|
Liang M, Wang H, Liu C, Lei T, Min J. LncRNA RUNX1-IT1 is Downregulated in Endometrial Cancer and Binds to miR-21 Precursor to Suppress Its Maturation. Cancer Manag Res 2021; 12:13451-13459. [PMID: 33408517 PMCID: PMC7779314 DOI: 10.2147/cmar.s272165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background RUNX1-IT1 suppresses colorectal cancer and liver cancer, while its role in other cancers is unknown. This study was performed to investigate the role of RUNX1-IT1 in endometrial cancer (EC). Methods EC and paired non-tumor tissues were collected from 62 EC patients, and the expression of RUNX1-IT1, mature miR-21 and miR-21 precursor in these tissue samples were determined by RT-qPCR. Correlations were analyzed by linear regression. Overexpression of RUNX1-IT1 was achieved in EC cells and the expression of mature miR-21 and miR-21 precursor were analyzed by RT-qPCR. CCK-8 assay was used for cell proliferation analysis. Results We found that RUNX1-IT1 was downregulated in EC and inversely correlated with mature miR-21 but not miR-21 precursor. RUNX1-IT1 was predicted to bind with miR-21 precursor. The interaction between them was verified by dual-luciferase activity assay and RNA pull-down assay. In EC cells, overexpression of RUNX1-IT1 downregulated mature miR-21, but not miR-21 precursor. Overexpression of RUNX1-IT1 suppressed the role of miR-21 in increasing cell proliferation. Conclusion RUNX1-IT1 is downregulated in EC and inhibits cancer cell proliferation by suppressing the maturation of miR-21.
Collapse
Affiliation(s)
- Minglin Liang
- Department of Obstetrics and Gynecology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province 430022, People's Republic of China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province 430022, People's Republic of China
| | - Cong Liu
- Department of Obstetrics and Gynecology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province 430022, People's Republic of China
| | - Tao Lei
- Department of Obstetrics and Gynecology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province 430022, People's Republic of China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province 430022, People's Republic of China
| |
Collapse
|
15
|
Dillard C, Kiyohara M, Mah V, McDermott SP, Bazzoun D, Tsui J, Chan AM, Haddad G, Pellegrini M, Chang YL, Elshimali Y, Wu Y, Vadgama JV, Kim SR, Goodglick L, Law SM, Patel DD, Dhawan P, O'Brien NA, Gordon LK, Braun J, Lazar G, Wicha MS, Wadehra M. EMP2 Is a Novel Regulator of Stemness in Breast Cancer Cells. Mol Cancer Ther 2020; 19:1682-1695. [PMID: 32451329 PMCID: PMC7415657 DOI: 10.1158/1535-7163.mct-19-0850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
Abstract
Little is known about the role of epithelial membrane protein-2 (EMP2) in breast cancer development or progression. In this study, we tested the hypothesis that EMP2 may regulate the formation or self-renewal of breast cancer stem cells (BCSC) in the tumor microenvironment. In silico analysis of gene expression data demonstrated a correlation of EMP2 expression with known metastasis-related genes and markers of cancer stem cells (CSC) including aldehyde dehydrogenase (ALDH). In breast cancer cell lines, EMP2 overexpression increased and EMP2 knockdown decreased the proportion of stem-like cells as assessed by the expression of the CSC markers CD44+/CD24-, ALDH activity, or by tumor sphere formation. In vivo, upregulation of EMP2 promoted tumor growth, whereas knockdown reduced the ALDHhigh CSC population as well as retarded tumor growth. Mechanistically, EMP2 functionally regulated the response to hypoxia through the upregulation of HIF-1α, a transcription factor previously shown to regulate the self-renewal of ALDHhigh CSCs. Furthermore, in syngeneic mouse models and primary human tumor xenografts, mAbs directed against EMP2 effectively targeted CSCs, reducing the ALDH+ population and blocking their tumor-initiating capacity when implanted into secondary untreated mice. Collectively, our results show that EMP2 increases the proportion of tumor-initiating cells, providing a rationale for the continued development of EMP2-targeting agents.
Collapse
Affiliation(s)
- Christen Dillard
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Meagan Kiyohara
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sean P McDermott
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Dana Bazzoun
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ann M Chan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Ghassan Haddad
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Matteo Pellegrini
- Department of Molecular, Cell & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yu-Ling Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yahya Elshimali
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Yanyuan Wu
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Jaydutt V Vadgama
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| | - Sara R Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel M Law
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Deven D Patel
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Neil A O'Brien
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn K Gordon
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Gary Lazar
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Max S Wicha
- Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
16
|
Liao S, Yang Y, Chen S, Bi Y, Huang Q, Wei Z, Qin A, Liu B. IL-24 inhibits endometrial cancer cell proliferation by promoting apoptosis through the mitochondrial intrinsic signaling pathway. Biomed Pharmacother 2020; 124:109831. [PMID: 31972354 DOI: 10.1016/j.biopha.2020.109831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endometrial cancer is a type of malignant tumor of the female reproductive system. Preserving fertility in endometrial cancer patients is currently a formidable challenge. Interleukin-24 (IL-24) is a unique cytokine tumor suppressor gene belonging to the IL-10 cytokine family. IL-24 has broad-spectrum antitumor activity through different signaling pathways but does not affect normal cells. IL-24 gene therapy may provide a new method for the treatment of endometrial cancer. METHODS Transfection was used for gene transfer. The expression of IL-24 and related pathway proteins in endometrial cancer tissue and the Ishikawa cell line was detected by immunohistochemistry and Western blotting, respectively. The antitumor function of IL-24 was examined in vitro and in vivo. Cell proliferation was determined by CCK-8 assay, cell migration was shown by wound-healing assay, and cell invasion was detected by Transwell assay. Apoptosis was analyzed by TUNEL assay, and HE staining was performed to observe the morphology of the samples. RESULTS Immunohistochemical analysis showed different expression levels of IL-24 in human endometrial cancer tissues and normal endometrial tissues. IL-24 increased protein expression of BAX and Cytochrome C, while BCL-2, MMP-3, VEGF, Caspase-9 and Caspase-3 expression was decreased. Overexpression of IL-24 inhibited cell proliferation, migration and invasion, but increased cell apoptosis in endometrial cancer. Mechanistically, we demonstrated that IL-24 inhibited endometrial cancer cell growth by inducing cell apoptosis through the mitochondrial intrinsic signaling pathway. In addition, IL-24 inhibited tumor development by inducing cell apoptosis and inhibiting angiogenesis, as shown in xenograft tumor experiments. CONCLUSIONS Our study demonstrates the antitumor effect of IL-24 on endometrial cancer and shows that IL-24 may be a promising therapeutic gene for endometrial cancer gene therapy.
Collapse
Affiliation(s)
- Shengbin Liao
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yihua Yang
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Saiqiong Chen
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yin Bi
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Qiuyan Huang
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Zhiyao Wei
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Aiping Qin
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| | - Bo Liu
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| |
Collapse
|
17
|
Giannone G, Attademo L, Scotto G, Genta S, Ghisoni E, Tuninetti V, Aglietta M, Pignata S, Valabrega G. Endometrial Cancer Stem Cells: Role, Characterization and Therapeutic Implications. Cancers (Basel) 2019; 11:E1820. [PMID: 31752447 PMCID: PMC6896186 DOI: 10.3390/cancers11111820] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer. In patients with relapsed and advanced disease, prognosis is still dismal and development of resistance is common. In this context, endometrial Cancer Stem Cells (eCSC), stem-like cells capable to self-renewal and differentiation in mature cancer cells, represent a potential field of expansion for drug development. The aim of this review is to characterize the role of eCSC in EC, their features and how they could be targeted. CSC are involved in progression, invasiveness and metastasis (though epithelial to mesenchimal transition, EMT), as well as chemoresistance in EC. Nevertheless, isolation of eCSC is still controversial. Indeed, CD133, Aldheyde dehydrogenase (ALDH), CD117, CD55 and CD44 are enriched in CSCs but there is no universal marker nowadays. The most frequently activated pathways in eCSC are Wingless-INT (Wnt)/β-catenin, Notch1, and Hedghog, with a high expression of self-renewal transcription factors like Octamer binding transcription factor 4 (OCT), B Lymphoma Mo-MLV Insertion Region 1 Homolog (BMI1), North American Network Operations Group Homebox protein (NANOG), and SRY-Box 2 (SOX2). These pathways have been targeted with selective drugs alone or in combination with chemotherapy and immunotherapy. Unfortunately, although preclinical results are encouraging, few clinical data are available.
Collapse
Affiliation(s)
- Gaia Giannone
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, 80131 Napoli, Italy; (L.A.); (S.P.)
| | - Giulia Scotto
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Sofia Genta
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Eleonora Ghisoni
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, 80131 Napoli, Italy; (L.A.); (S.P.)
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, 10124 Torino, Italy; (G.S.); (S.G.); (E.G.); (V.T.); (M.A.); (G.V.)
- Candiolo Cancer Institute, FPO - IRCCS - Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy
| |
Collapse
|
18
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
19
|
ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer. Stem Cell Reports 2019; 13:730-746. [PMID: 31564647 PMCID: PMC6829754 DOI: 10.1016/j.stemcr.2019.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Uterine endometrial cancer is associated with poor survival outcomes in patients with advanced-stage disease. Here, we developed a three-dimensional cell cultivation method of endometrioid cancer stem-like cells with high aldehyde dehydrogenase (ALDH) activity from clinical specimens. ALDH inhibition synergized with paclitaxel to block cancer proliferation. In the clinical setting, high ALDH1A1 expression was associated with poor survival. A high level of ALDH correlated with an increase of glucose uptake, activation of the glycolytic pathway, and elevation of glucose transporter 1 (GLUT1). Blockade of GLUT1 inhibited characteristics of cancer stem cells. Similarly to ALDH inhibition, GLUT1 inhibition synergized with paclitaxel to block endometrial cancer proliferation. Our data indicated that ALDH-dependent GLUT1 activation and the resulting glycolytic activation are of clinical importance for both prognostic evaluation and therapeutic decision-making in endometrial cancer patients. In addition, the synergistic effects of taxane compounds and ALDH or GLUT1 inhibitors may serve as a new clinical treatment option for endometrial cancer. Establishment of patient-derived endometrial cancer stem cells with ALDH activity Endometrial cancer stemness depends on ALDH-mediated glycolysis via GLUT1 High ALDH and GLUT expression is associated with poor outcome in endometrial cancer Paclitaxel and ALDH or GLUT inhibitor synergistically suppress endometrial cancer
Collapse
|
20
|
Wang M, Li S, Zhang P, Wang Y, Wang C, Bai D, Jiang X. EMP2 acts as a suppressor of melanoma and is negatively regulated by mTOR-mediated autophagy. J Cancer 2019; 10:3582-3592. [PMID: 31333775 PMCID: PMC6636303 DOI: 10.7150/jca.30342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is one of the most common malignant skin tumors and advanced melanoma is usually associated with a poor prognosis. In the current study, we demonstrated the tumor suppressing role of epithelial membrane protein-2 (EMP2) by inducing apoptosis in a A375 human melanoma cell line. Mechanistically, the low expression of EMP2 in melanoma is partially due to autophagic protein degradation mediated by the mTOR pathway. These results suggest there is regulation of autophagy as well as EMP2 levels might be an interesting novel targeted therapeutic strategy for melanoma. Although the further investigation is needed to deeply understand the regulatory mechanisms of EMP2 in melanoma progression and metastasis, our results clarify the functions and mechanisms of autophagy in melanoma, and shed new light on novel targeted therapeutics for melanoma.
Collapse
Affiliation(s)
- Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Sijia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Chunting Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xian Jiang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
21
|
Kitson SJ, Rosser M, Fischer DP, Marshall KM, Clarke RB, Crosbie EJ. Targeting Endometrial Cancer Stem Cell Activity with Metformin Is Inhibited by Patient-Derived Adipocyte-Secreted Factors. Cancers (Basel) 2019; 11:cancers11050653. [PMID: 31083574 PMCID: PMC6562824 DOI: 10.3390/cancers11050653] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Advanced endometrial cancer continues to have a poor prognosis, due to limited treatment options, which may be further adversely impacted by obesity. Endometrial cancer stem cells have been reported to drive metastasis, chemotherapy resistance and disease relapse, but have yet to be fully characterised and no specific targeted therapies have been identified. Here, we describe the phenotype and genotype of aldehyde dehydrogenase high (ALDHhigh) and CD133+ve endometrial cancer stem cells and how adipocyte secreted mediators block the inhibitory effect of metformin on endometrial cancer stem cell activity. Ishikawa and Hec-1a cell lines were used to characterise ALDHhigh and CD133+ve endometrial cancer cells using flow cytometry, functional sphere assays and quantitative-Polymerase Chain Reaction. The comparative effect of metformin on endometrial cancer stem cell activity and bulk tumour cell proliferation was determined using an Aldefluor and cytotoxicity assay. The impact of adipocyte secreted mediators on metformin response was established using patient-derived conditioned media. ALDHhigh cells demonstrated greater endometrial cancer stem cell activity than CD133+ve cells and had increased expression of stem cell and epithelial-mesenchymal transition genes. Treatment with 0.5-1 mM metformin reduced the proportion and activity of both endometrial cancer stem cell populations (p ≤ 0.05), without affecting cell viability. This effect was, however, inhibited by exposure to patient-derived adipocyte conditioned media. These results indicate a selective and specific effect of metformin on endometrial cancer stem cell activity, which is blocked by adipocyte secreted mediators. Future studies of metformin as an adjuvant therapy in endometrial cancer should be adequately powered to investigate the influence of body mass on treatment response.
Collapse
Affiliation(s)
- Sarah J Kitson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK.
| | - Matthew Rosser
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Deborah P Fischer
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Kay M Marshall
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK.
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
22
|
Modulation of tumor stem cell characteristics by 17β-estradiol in human mesenchymal stem cells derived from ovarian endometrioma. Taiwan J Obstet Gynecol 2019; 58:338-344. [DOI: 10.1016/j.tjog.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
|
23
|
Lu H, Ju DD, Yang GD, Zhu LY, Yang XM, Li J, Song WW, Wang JH, Zhang CC, Zhang ZG, Zhang R. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine 2018; 40:276-289. [PMID: 30594556 PMCID: PMC6412073 DOI: 10.1016/j.ebiom.2018.12.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/30/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Endometrial cancer is one of the most common gynecological malignancies and has exhibited an increasing incidence rate in recent years. Cancer stem cells (CSCs), which are responsible for tumor growth and chemoresistance, have been confirmed in endometrial cancer. However, it is still challenging to identify endometrial cancer stem cells to then target for therapy. Methods Flow cytometry was used to identify the endometrial cancer stem cells. Sphere formation assay, western blotting, qRT-PCR assay, cell viability assay, xenograft assay and immunohistochemistry staining analysis were utilized to evaluate the effect of SPARC-related modular calcium binding 2 (SMOC-2) on the cells proliferation and drug resistance. Cell viability assay, qRT-PCR assay, immunofluorescence staining, Co-IP assay and luciferase reporter gene assay were performed to explore the possible molecular mechanism by which SMOC-2 activates WNT/β-catenin pathway. Findings We found the expression of SPARC-related modular calcium binding 2 (SMOC-2), a member of SPARC family, was higher in endometrial CSCs than that in non-CSCs. SMOC-2 was also more highly expressed in spheres than in monolayer cultures. The silencing of SMOC-2 suppressed cell sphere ability; reduced the expression of the stemness-associated genes SOX2, OCT4 and NANOG; and enhanced chemosensitivity in endometrial cancer cells. By co-culture IP assay, we demonstrated that SMOC-2 directly interacted with WNT receptors (Fzd6 and LRP6), enhanced ligand-receptor interaction with canonical WNT ligands (Wnt3a and Wnt10b), and finally, activated the WNT/β-catenin pathway in endometrial cancer. SMOC-2 expression was closely correlated with CSC markers CD133 and CD44 expression in endometrial cancer tissue. Interpretation Taken together, we conclude that SMOC-2 might be a novel endometrial cancer stem cell signature gene and therapeutic target for endometrial cancer. Fund National Natural Science Foundation of China, Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission, Scientific and Technological Innovation Act Program of Fengxian Science and Technology Commission, Natural Science Foundation of Shanghai.
Collapse
Affiliation(s)
- Huan Lu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Dan-Dan Ju
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Guang-Dong Yang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China; Department of Obstetrics and Gynecology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Lin-Yan Zhu
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei-Wei Song
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Jin-Hao Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Can-Can Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| | - Rong Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China; Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China.
| |
Collapse
|
24
|
Li X, Yu X, He Y, Meng Y, Liang J, Huang L, Du H, Wang X, Liu W. Integrated Analysis of MicroRNA (miRNA) and mRNA Profiles Reveals Reduced Correlation between MicroRNA and Target Gene in Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1972606. [PMID: 30627543 PMCID: PMC6304515 DOI: 10.1155/2018/1972606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accumulating evidences demonstrated that microRNA-target gene pairs were closely related to tumorigenesis and development. However, the correlation between miRNA and target gene was insufficiently understood, especially its changes between tumor and normal tissues. OBJECTIVES The aim of this study was to evaluate the changes of correlation of miRNAs-target pairs between normal and tumor. MATERIALS AND METHODS 5680 mRNA and 5740 miRNA expression profiles of 11 major human cancers were downloaded from the Cancer Genome Atlas (TCGA). The 11 cancer types were bladder urothelial carcinoma, breast invasive carcinoma, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, stomach adenocarcinoma, and thyroid carcinoma. For each cancer type, we firstly obtained differentially expressed miRNAs (DEMs) and genes (DEGs) in tumor and then acquired critical miRNA-target gene pairs by combining DEMs, DEGs and two experimentally validated miRNA-target interaction databases, miRTarBase and miRecords. We collected samples with both miRNA and mRNA expression values and performed a correlation analysis by Pearson method for miRNA-target pairs in normal and tumor, respectively. RESULTS We totally got 4743 critical miRNA-target pairs across 11 cancer types, and 4572 of them showed weaker correlation in tumor than in normal. The average correlation coefficients of miRNA-target pairs were different greatly between normal (-0.38 ~ -0.61) and tumor (-0.04 ~ -0.26) for 11 cancer type. The pan-cancer network, which consisted of 108 edges connecting 35 miRNAs and 89 target genes, showed the interactions of pairs appeared in multicancers. CONCLUSIONS This comprehensive analysis revealed that correlation between miRNAs and target genes was greatly reduced in tumor and these critical pairs we got were involved in cellular adhesion, proliferation, and migration. Our research could provide opportunities for investigating cancer molecular regulatory mechanism and seeking therapeutic targets.
Collapse
Affiliation(s)
- Xingsong Li
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Xiaokang Yu
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jinsheng Liang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanli Liu
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
25
|
Chen Q, Yao L, Burner D, Minev B, Lu L, Wang M, Ma W. Epithelial membrane protein 2: a novel biomarker for circulating tumor cell recovery in breast cancer. Clin Transl Oncol 2018; 21:433-442. [PMID: 30218306 DOI: 10.1007/s12094-018-1941-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE EpCAM is a common marker used in the detection of circulating tumor cells (CTC). Disseminated cancer cells display the characteristics of epithelial-to-mesenchymal transition events. The purpose of this study was to assess the potential of epithelial membrane protein 2 (EMP2) as a novel biomarker for CTC retrieval in breast cancer. METHODS MCF7 and MDA-MB-231 cells were stained with either anti-EpCAM or anti-EMP2 mAbs, respectively, followed by flow cytometric assay to measure their expression levels. PBMCs isolated from healthy donors were used for breast cancer cell spiking. CD45-depleted PBMCs from breast cancer patients' blood were used for CTC capturing. Immunomagnetic separation was used to enrich breast cancer cells. Cytospin centrifugation was performed to concentrate the captured cells, followed by immunofluorescence staining with anti-CD45 mAb, anti-pan cytokeratin mAb and DAPI. Fluorescent images were taken using a confocal microscope for CTC counts. RESULT MDA-MB-231 cells had 2.56 times higher EMP2 expression than MCF7 cells, and EMP2 had a significantly higher capture efficiency than EpCAM for MCF7 cells. Furthermore, anti-EMP2 was capable of capturing MCF7 cells that escaped in the flow-through of anti-EpCAM. Likewise, EMP2 had a significantly higher capture efficiency on MDA-MB-231 cells when compared to MCF7 cells. Most importantly, EMP2 biomarker was successfully used for CTC capture in patients with primary breast cancer. CONCLUSIONS EMP2 is superior to EpCAM for capturing both MCF7 and MDA-MB-231 cells. Additionally, EMP2 is a novel biomarker and capable of capturing breast cancer cells in patient blood samples.
Collapse
Affiliation(s)
- Q Chen
- Key Laboratory for Translational Medicine and the Division of Breast Surgery, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - L Yao
- Key Laboratory for Translational Medicine and the Division of Breast Surgery, The First Affiliated Hospital of Huzhou University School of Medicine, Huzhou, 313000, Zhejiang, China
| | - D Burner
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - B Minev
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.,Calidi Biotherapeutics, San Diego, CA, 92121, USA
| | - L Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT, 06520, USA
| | - M Wang
- Division of Gastrointestinal SurgeryThe First Affiliated Hospital and the Department of Clinical Medicine, Jiaxing University School of Medicine, Jiaxing, 314001, Zhejiang, China.
| | - W Ma
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
26
|
Shi H, Shi J, Zhang Y, Guan C, Zhu J, Wang F, Xu M, Ju Q, Fang S, Jiang M. Long non-coding RNA DANCR promotes cell proliferation, migration, invasion and resistance to apoptosis in esophageal cancer. J Thorac Dis 2018; 10:2573-2582. [PMID: 29997918 PMCID: PMC6006063 DOI: 10.21037/jtd.2018.04.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have important effects on the development and progression of multiple carcinomas. Our studies aimed to investigate the expression of lncRNA DANCR in esophageal squamous cell carcinoma (ESCC) tissues and paracancerous tissues, and to explore its effect on the cell biological characteristics of ESCC ECA109 cells. METHODS The expression of DANCR was detected by qRT-PCR in human ESCC tissues and paracancerous normal tissues in ESCC patients. Small interfering RNA (siRNA) was transfected to knock down the expression of DANCR and interference efficiency was analyzed by qRT-PCR in ECA109 cells. MTT, wound healing, Transwell, TUNEL and flow cytometry (FCM) assay was used to measure the influence of DANCR on proliferation, invasion, migration and apoptosis in ECA109 cells, respectively. RESULTS The expression of DANCR in ESCC tissues and ESCC cells was significantly higher compared with that in the adjacent normal tissues (P<0.05). Furthermore, cell proliferation, migration and invasion were significantly suppressed by knock-down mediated down-regulation of DANCR expression. On the contrary, cell apoptosis was promoted by silencing of DANCR. CONCLUSIONS According to our research, the expression of DANCR was up-regulated in human ESCC tissues, and the important role that DANCR played in ESCC cells was similar to an oncogene. Therefore, silencing of lncRNA DANCR could have potentially beneficial effects on the prognostic and therapy for ESCC in the future.
Collapse
Affiliation(s)
- Hui Shi
- Laboratory Animals Center, Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yudong Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chengqi Guan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fei Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Mingming Xu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qianqian Ju
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shu Fang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maorong Jiang
- Laboratory Animals Center, Nantong University, Nantong 226001, China
| |
Collapse
|
27
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 564] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
28
|
Juarez-Flores A, José MV. Multivariate Entropy Characterizes the Gene Expression and Protein-Protein Networks in Four Types of Cancer. ENTROPY 2018; 20:e20030154. [PMID: 33265245 PMCID: PMC7844632 DOI: 10.3390/e20030154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
There is an important urgency to detect cancer at early stages to treat it, to improve the patients’ lifespans, and even to cure it. In this work, we determined the entropic contributions of genes in cancer networks. We detected sudden changes in entropy values in melanoma, hepatocellular carcinoma, pancreatic cancer, and squamous lung cell carcinoma associated to transitions from healthy controls to cancer. We also identified the most relevant genes involved in carcinogenic process of the four types of cancer with the help of entropic changes in local networks. Their corresponding proteins could be used as potential targets for treatments and as biomarkers of cancer.
Collapse
Affiliation(s)
- Angel Juarez-Flores
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
| | - Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
- Correspondence:
| |
Collapse
|
29
|
The effect of several intertrial intervals on the 1 Hz interference effect. Can J Neurol Sci 1981; 12:cancers12040961. [PMID: 32295073 PMCID: PMC7225959 DOI: 10.3390/cancers12040961] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
Gynecologic cancers cause over 600,000 deaths annually in women worldwide. The development of chemoresistance after initial rounds of chemotherapy contributes to tumor relapse and death due to gynecologic malignancies. In this regard, cancer stem cells (CSCs), a subpopulation of stem cells with the ability to undergo self-renewal and clonal evolution, play a key role in tumor progression and drug resistance. Aldehyde dehydrogenases (ALDH) are a group of enzymes shown to be robust CSC markers in gynecologic and other malignancies. These enzymes also play functional roles in CSCs, including detoxification of aldehydes, scavenging of reactive oxygen species (ROS), and retinoic acid (RA) signaling, making ALDH an attractive therapeutic target in various clinical scenarios. In this review, we discuss the critical roles of the ALDH in driving stemness in different gynecologic malignancies. We review inhibitors of ALDH, both general and isoform-specific, which have been used to target CSCs in gynecologic cancers. Many of these inhibitors have been shown to be effective in preclinical models of gynecologic malignancies, supporting further development in the clinic. Furthermore, ALDH inhibitors, including 673A and CM037, synergize with chemotherapy to reduce tumor growth. Thus, ALDH-targeted therapies hold promise for improving patient outcomes in gynecologic malignancies.
Collapse
|