1
|
Kamkar L, Saberi S, Totonchi M, Kavousi K. Circulating microRNA panels for multi-cancer detection and gastric cancer screening: leveraging a network biology approach. BMC Med Genomics 2025; 18:27. [PMID: 39915853 PMCID: PMC11804061 DOI: 10.1186/s12920-025-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Screening tests, particularly liquid biopsy with circulating miRNAs, hold significant potential for non-invasive cancer detection before symptoms manifest. METHODS This study aimed to identify biomarkers with high sensitivity and specificity for multiple and specific cancer screening. 972 Serum miRNA profiles were compared across thirteen cancer types and healthy individuals using weighted miRNA co-expression network analysis. To prioritize miRNAs, module membership measure and miRNA trait significance were employed. Subsequently, for specific cancer screening, gastric cancer was focused on, using a similar strategy and a further step of preservation analysis. Machine learning techniques were then applied to evaluate two distinct miRNA panels: one for multi-cancer screening and another for gastric cancer classification. RESULTS The first panel (hsa-miR-8073, hsa-miR-614, hsa-miR-548ah-5p, hsa-miR-1258) achieved 96.1% accuracy, 96% specificity, and 98.6% sensitivity in multi-cancer screening. The second panel (hsa-miR-1228-5p, hsa-miR-1343-3p, hsa-miR-6765-5p, hsa-miR-6787-5p) showed promise in detecting gastric cancer with 87% accuracy, 90% specificity, and 89% sensitivity. CONCLUSIONS Both panels exhibit potential for patient classification in diagnostic and prognostic applications, highlighting the significance of liquid biopsy in advancing cancer screening methodologies.
Collapse
Affiliation(s)
- Leila Kamkar
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Research Center for Gastroenterology and Liver Diseases, Research Institute For Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Wang X, Zhang Z, Cao X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol Ther 2024; 25:2322206. [PMID: 38436092 PMCID: PMC10913707 DOI: 10.1080/15384047.2024.2322206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Zhendong Zhang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Xiaolan Cao
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
3
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2024:S1365-182X(24)02454-7. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
4
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Long QY, Wang FY, Hu Y, Gao B, Zhang C, Ban BH, Tian XB. Development of the interpretable typing prediction model for osteosarcoma and chondrosarcoma based on machine learning and radiomics: a multicenter retrospective study. Front Med (Lausanne) 2024; 11:1497309. [PMID: 39635595 PMCID: PMC11614641 DOI: 10.3389/fmed.2024.1497309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Osteosarcoma and chondrosarcoma are common malignant bone tumors, and accurate differentiation between these two tumors is crucial for treatment strategies and prognosis assessment. However, traditional radiological methods face diagnostic challenges due to the similarity in imaging between the two. Methods Clinical CT images and pathological data of 76 patients confirmed by pathology from January 2018 to January 2024 were retrospectively collected from Guizhou Medical University Affiliated Hospital and Guizhou Medical University Second Affiliated Hospital. A total of 788 radiomic features, including shape, texture, and first-order statistics, were extracted in this study. Six machine learning models, including Random Forest (RF), Extra Trees (ET), AdaBoost, Gradient Boosting Tree (GB), Linear Discriminant Analysis (LDA), and XGBoost (XGB), were trained and validated. Additionally, the importance of features and the interpretability of the models were evaluated through SHAP value analysis. Results The RF model performed best in distinguishing between these two tumor types, with an AUC value close to perfect at 1.00. The ET and AdaBoost models also demonstrated high performance, with AUC values of 0.98 and 0.93, respectively. SHAP value analysis revealed significant influences of wavelet-transformed GLCM and First Order features on model predictions, further enhancing diagnostic interpretability. Conclusion This study confirms the effectiveness of combining machine learning with radiomic features in improving the accuracy and interpretability of osteosarcoma and chondrosarcoma diagnosis. The excellent performance of the RF model is particularly suitable for complex imaging data processing, providing valuable insights for the future.
Collapse
Affiliation(s)
- Qing-Yuan Long
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Feng-Yan Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yue Hu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Gao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chuan Zhang
- The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Bo-Heng Ban
- Qiannan State Hospital of Traditional Chinese Medicine, Duyun, China
| | - Xiao-Bin Tian
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Wang S, Shao D, Gao X, Zhao P, Kong F, Deng J, Yang L, Shang W, Sun Y, Fu Z. TEAD transcription factor family emerges as a promising therapeutic target for oral squamous cell carcinoma. Front Immunol 2024; 15:1480701. [PMID: 39430767 PMCID: PMC11486717 DOI: 10.3389/fimmu.2024.1480701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
The treatment of oral squamous cell carcinoma (OSCC) remains a significant difficulty, as there has been no improvement in survival rates over the past fifty years. Hence, exploration and confirmation of new dependable treatment targets and biomarkers is imperative for OSCC therapy. TEAD transcription factors are crucial for integrating and coordinating multiple signaling pathways that are essential for embryonic development, organ formation, and tissue homeostasis. In addition, by attaching to coactivators, TEAD modifies the expression of genes such as Cyr61, Myc, and connective tissue growth factor, hence facilitating tumor progression. Therefore, TEAD is regarded as an effective predictive biomarker due to its significant connection with clinical parameters in several malignant tumors, including OSCC. The efficacy of existing drugs that specifically target TEAD has demonstrated encouraging outcomes, indicating its potential as an optimal target for OSCC treatment. This review provides an overview of current targeted therapy strategies for OSCC by highlighting the transcription mechanism and involvement of TEAD in oncogenic signaling pathways. Finally, the feasibility of utilizing TEAD as an innovative approach to address OSCC and its potential clinical applications were analyzed and discussed.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Medical College of Qingdao Huanghai University, Qingdao, China
| | - Dan Shao
- Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Gao
- Department of Quality Inspection, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Peng Zhao
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Fanzhi Kong
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Jiawei Deng
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Lianzhu Yang
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Sun
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People's Liberation Army of China (PLA), Beijing, China
| |
Collapse
|
7
|
Guo Z, Guo L. Abnormal activation of RFC3, A YAP1/TEAD downstream target, promotes gastric cancer progression. Int J Clin Oncol 2024; 29:442-455. [PMID: 38383698 DOI: 10.1007/s10147-024-02478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with a high mortality rate, and thus, it is necessary to explore molecular mechanisms underlying its progression. While replication factor C subunit 3 (RFC3) has been demonstrated to function as an oncogene in many cancers, its role in GC remains unclear. METHODS Tumor tissues were collected from clinical GC patients, and the expression of RFC3 was analyzed. NCI-N87 and HGC-27 cells were infected with lentivirus sh-RFC3 to knock down RFC3 expression. RFC3 expression levels were determined, in addition to cell biological behaviors both in vitro and in vivo. The relationship between RFC3 and the YAP1/TEAD signaling pathway was detected by dual luciferase reporter assay. RESULTS RFC3 was upregulated in GC tumor tissues. RFC3 knockdown inhibited cell proliferation, promoted cell apoptosis of GC cells, and suppressed cell migration and invasion. Moreover, depleted RFC3 suppressed tumor growth and metastasis in vivo. Mechanistically, the YAP1/TEAD axis activated RFC3 expression transcriptionally by binding to the RFC3 promoter. CONCLUSIONS RFC3 was transcriptional activated by the YAP1/TEAD signaling pathway, thus promoting GC progression. RFC3 may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Wang X, Liu W, Lei T, Qiao T, Feng W, Song W. CircGLIS3 promotes gastric cancer progression by regulating the miR-1343-3p/PGK1 pathway and inhibiting vimentin phosphorylation. J Transl Med 2024; 22:251. [PMID: 38459513 PMCID: PMC10921581 DOI: 10.1186/s12967-023-04625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/13/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been proved to play crucial roles in the development of various cancers. However, the molecular mechanism of circGLIS3 involved in gastric cancer (GC) tumorigenesis has not been elucidated. METHODS The higher expression level of circGLIS3 was identified in GC through RNA sequencing and subsequent tissue verification using Quantitative real-time PCR (qRT-PCR). A series of functional experiments in vitro and in vivo were performed to evaluated the effects of circGLIS3 on tumor growth and metastasis in GC. The interaction and regulation of circGLIS3/miR-1343-3p/PGK1 axis was confirmed by RNA pulldown, western blot, and rescue experiments. RIP and western blot were performed to demonstrate the role of circGLIS3 in regulating phosphorylation of VIMENTIN. We then used qRT-PCR and co culture system to trace circGLIS3 transmission via exosomal communication and identify the effect of exosomal circGLIS3 on gastric cancer and macrophages. Finally, RIP experiments were used to determine that EIF4A3 regulates circGLIS3 expression. RESULTS CircGLIS3(hsa_circ_0002874) was significantly upregulated in GC tissues and high circGLIS3 expression was associated with advanced TNM stage and lymph node metastasis in GC patients. We discovered that overexpression of circGLIS3 promoted GC cell proliferation, migration, invasion in vitro and in vivo, while suppression of circGLIS3 exhibited the opposite effect. Mechanistically, circGLIS3 could sponge miR-1343-3p and up-regulate the expression of PGK1 to promote GC tumorigenesis. We also found that circGLIS3 reduced the phosphorylation of VIMENTIN at ser 83 site by binding with VIMENTIN. Moreover, it was proven that exosomal circGLIS3 could promote gastric cancer metastasis and the M2 type polarization of macrophages. In the final step, the mechanism of EIF4A3 regulating the generation of circGLIS3 was determined. CONCLUSION Our findings demonstrate that circGLIS3 promotes GC progression through sponging miR-1343-3p and regulating VIMENTIN phosphorylation. CircGLIS3 is a potential therapeutic target for GC patients.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tang Qiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Yeruva L, Mulakala BK, Rajasundaram D, Gonzalez S, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Human milk miRNAs associate to maternal dietary nutrients, milk microbiota, infant gut microbiota and growth. Clin Nutr 2023; 42:2528-2539. [PMID: 37931372 DOI: 10.1016/j.clnu.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Maternal diet influences the milk composition, yet little information is available on the impact of maternal diet on milk miRNAs expression. Further, the association of human milk miRNAs to maternal diet and milk microbiota is not explored. In addition, the role of milk miRNAs on the infant gut microbiota, infant growth and development has not been investigated. METHODS Milk samples were collected from 60 healthy lactating women at ≤15d post-partum, HTG transcriptome assay was performed to examine milk miRNA profile. Maternal clinical and dietary clusters information were available and infant anthropometric measures were followed up to one year of age. Milk and infant microbiota were analyzed by 16S rRNA gene sequencing and integrative multi-omics data analysis was performed to identify potential association between microRNA, maternal dietary nutrients and microbiota. RESULTS Discriminant analysis revealed that the milk miRNAs were clustered into groups according to the maternal protein source. Interestingly, 31 miRNAs were differentially expressed (P adj < 0.05) between maternal dietary clusters (Cluster 1: enriched in plant protein and fibers and Cluster 2: enriched in animal protein), with 30 miRNAs downregulated in the plant protein group relative to animal protein group. Pathway analysis revealed that the top enriched pathways (P adj < 0.01) were involved in cell growth and proliferation processes. Furthermore, significant features contributing to the clustering were associated with maternal dietary nutrients and milk microbiota (r > 0.70). Further, miR-378 and 320 family miRNAs involved in adipogenesis were positively correlated to the infant BMI-z-scores, weight, and weight for length-z-scores at 6 months of age. CONCLUSIONS Maternal dietary source impacts the milk miRNA expression profile. Further, miRNAs were associated with maternal dietary nutrients, milk microbiota and to the infant gut microbiota and infant growth and development. CLINICAL TRIAL The study is registered in ClinicalTrials.gov. The identification number is NCT03552939.
Collapse
Affiliation(s)
- Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA.
| | - Bharat Kumar Mulakala
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA; Texas A&M AgriLife Institute for Advancing Health Through Agriculture, TX, USA
| | | | - Sonia Gonzalez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), Oviedo, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
10
|
Chen B, Liu X, Yu P, Xie F, Kwan JSH, Chan WN, Fang C, Zhang J, Cheung AHK, Chow C, Leung GWM, Leung KT, Shi S, Zhang B, Wang S, Xu D, Fu K, Wong CC, Wu WKK, Chan MWY, Tang PMK, Tsang CM, Lo KW, Tse GMK, Yu J, To KF, Kang W. H. pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med 2023; 13:e1481. [PMID: 37983931 PMCID: PMC10659770 DOI: 10.1002/ctm2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.
Collapse
|
11
|
Zhang D, Zhu Y, Ju Y, Zhang H, Zou X, She S, Zhu D, Guan Y. TEAD4 antagonizes cellular senescence by remodeling chromatin accessibility at enhancer regions. Cell Mol Life Sci 2023; 80:330. [PMID: 37856006 PMCID: PMC10587282 DOI: 10.1007/s00018-023-04980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
Dramatic alterations in epigenetic landscapes are known to impact genome accessibility and transcription. Extensive evidence demonstrates that senescent cells undergo significant changes in chromatin structure; however, the mechanisms underlying the crosstalk between epigenetic parameters and gene expression profiles have not been fully elucidated. In the present study, we delineate the genome-wide redistribution of accessible chromatin regions that lead to broad transcriptome effects during senescence. We report that distinct senescence-activated accessibility regions (SAAs) are always distributed in H3K27ac-occupied enhancer regions, where they are responsible for elevated flanking senescence-associated secretory phenotype (SASP) expression and aberrant cellular signaling relevant to SASP secretion. Mechanistically, a single transcription factor, TEAD4, moves away from H3K27ac-labled SAAs to allow for prominent chromatin accessibility reconstruction during senescence. The enhanced SAAs signal driven by TEAD4 suppression subsequently induces a robust increase in the expression of adjacent SASP genes and the secretion of downstream factors, which contribute to the progression of senescence. Our findings illustrate a dynamic landscape of chromatin accessibility following senescence entry, and further reveal an insightful function for TEAD4 in regulating the broad chromatin state that modulates the overall transcriptional program of SASP genes.
Collapse
Affiliation(s)
- Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Xiaopeng Zou
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Shangrong She
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Danping Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
12
|
Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, Huang KK, Li Z, Kumar V, Ramnarayanan K, Zhu F, Srivastava S, Isa ZFBA, Anene-Nzelu CG, Razavi-Mohseni M, Shigaki D, Ma H, Tan ALK, Ong X, Lee MH, Tay ST, Guo YA, Huang W, Li S, Beer MA, Foo RSY, Teh M, Skanderup AJ, Teh BT, Tan P. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023; 72:226-241. [PMID: 35817555 DOI: 10.1136/gutjnl-2021-326483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Manjie Xing
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Montreal Heart Institute, Quebec, Quebec, Canada.,Department of Medicine, University of Montreal, Quebec, Quebec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weitai Huang
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| |
Collapse
|
13
|
Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Cell Death Dis 2023; 14:21. [PMID: 36635265 PMCID: PMC9837097 DOI: 10.1038/s41419-023-05568-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Hippo pathway plays a critical role for balancing proliferation and differentiation, thus regulating tissue homeostasis. The pathway acts through a kinase cascade whose final effectors are the Yes-associated protein (YAP) and its paralog transcriptional co‑activator with PDZ‑binding motif (TAZ). In response to a variety of upstream signals, YAP and TAZ activate a transcriptional program that modulates cellular proliferation, tissue repair after injury, stem cell fate decision, and cytoskeletal reorganization. Hippo pathway signaling is often dysregulated in gastric cancer and in Helicobacter pylori-induced infection, suggesting a putative role of its deregulation since the early stages of the disease. In this review, we summarize the architecture and regulation of the Hippo pathway and discuss how its dysregulation fuels the onset and progression of gastric cancer. In this setting, we also focus on the crosstalk between Hippo and other established oncogenic signaling pathways. Lastly, we provide insights into the therapeutic approaches targeting aberrant YAP/TAZ activation and discuss the related clinical perspectives and challenges.
Collapse
Affiliation(s)
- Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
14
|
Wang Z, Liu M, Lei H, Xiao S, Zheng Y. TEAD1 Silencing Regulates Cell Proliferation and Resistance to 5-Fluorouracil in Cutaneous Squamous Cell Carcinoma. Clin Cosmet Investig Dermatol 2022; 15:2685-2692. [PMID: 36536757 PMCID: PMC9759115 DOI: 10.2147/ccid.s386547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023]
Abstract
PURPOSE Cutaneous squamous cell carcinoma (cSCC) is a skin malignant tumor account for approximately one-third of all nonmelanoma skin cancers. Studies have shown that TEA domain transcription factor 1 (TEAD1) is discovered to be involved in the pathogenesis of some human cancers, but to our knowledge its role in cSCC has not been reported. PATIENTS AND METHODS Samples from 16 cSCC patients and 27 healthy individuals were obtained for immunohistochemical staining of TEAD1. The expressions of TEAD1 in SCL-1, HSC-1 cells compared with the primary neonatal human epithelial keratinocytes were detected by Western blot and RT-qPCR. Proliferation and cell cycle of TEAD1 knockdown in cSCC cell lines were examined by MTT and flow cytometry analysis. Annexin V/PI and JC-1 staining were used to determine the cell apoptosis. RESULTS The expression of TEAD1 decreased significantly in cSCC compared to its expression in normal skin tissues and cell lines. Down-regulation of TEAD1 in cSCC cell lines promoted cell growth via regulation of the G2/M progression. Additionally, silence of TEAD1 also protected cells against 5-Fluorouracil-induced apoptosis and decreased the expression of apoptosis-related protein (p53). CONCLUSION Our results suggested that TEAD1 expression is down-regulated and functioned as a tumor suppressor in cSCC and that it may serve as a biomarker or therapeutic target of cSCC.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Wei JY, Zhang Q, Yao Y, He HB, Sun CH, Dong TT, Meng GP, Zhang J. Circular RNA circTTBK2 facilitates non-small-cell lung cancer malignancy through the miR-873-5p/TEAD1/DERL1 axis. Epigenomics 2022; 14:931-949. [PMID: 35916080 DOI: 10.2217/epi-2021-0480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The underlying mechanisms by which circular RNAs (circRNAs) regulate non-small-cell lung cancer (NSCLC) progression remain elusive. This study investigated the role of circRNA circTTBK2 in NSCLC tumorigenesis. Materials & methods: Quantitative reverse transcriptase polymerase chain reaction analysis of circTTBK2 in NSCLC tissues and cell lines was performed. Cell proliferation, migration, invasion and tumorigenesis were confirmed in vitro and in vivo using CCK-8, EdU incorporation, Transwell assays and xenograft technique. The circTTBK2/miR-873-5p/TEAD1/DERL1 axis was verified by RNA immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assays. Results: Overexpressed circTTBK2 in NSCLC tissues indicates poor prognosis of NSCLC patients. circTTBK2 harbors miR-873-5p, and miR-873-5p directly targets TEAD1. TEAD1 transcriptionally activates DERL1. Conclusion: This study revealed a novel machinery of circTTBK2/miR-873-5p/TEAD1/DERL1 for NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Jin-Ying Wei
- Department of General Practice, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, P.R. China
| | - Qiang Zhang
- Department of General Practice, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, P.R. China
| | - Yue Yao
- Department of Respiratory & Critical Care Medicine, Changchun Central Hospital, Changchun, Jilin Province, 130000, P.R. China
| | - Hai-Bin He
- Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, P.R. China
| | - Cheng-Hao Sun
- Department of General Practice, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, P.R. China
| | - Ting-Ting Dong
- Department of Respiratory & Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, P.R. China
| | - Guang-Ping Meng
- Department of Respiratory & Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin Province, 130000, P.R. China
| | - Jie Zhang
- Department of Respiratory & Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin Province, 130000, P.R. China
| |
Collapse
|
16
|
Gong X, Li N, Sun C, Li Z, Xie H. A Four-Gene Prognostic Signature Based on the TEAD4 Differential Expression Predicts Overall Survival and Immune Microenvironment Estimation in Lung Adenocarcinoma. Front Pharmacol 2022; 13:874780. [PMID: 35600867 PMCID: PMC9114646 DOI: 10.3389/fphar.2022.874780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: TEA domain transcription factor 4 (TEAD4) is a member of the transcriptional enhancer factor (TEF) family of transcription factors, which is studied to be linked to the tumorigenesis and progression of various forms of cancers, including lung adenocarcinoma (LUAD). However, the specific function of this gene in the progression of LUAD remains to be explored. Method: A total of 19 genes related to the Hippo pathway were analyzed to identify the significant genes involved in LUAD progression. The TCGA-LUAD data (n = 585) from public databases were mined, and the differentially expressed genes (DEGs) in patients with the differential level of TEAD4 were identified. The univariate Cox regression, zero LASSO regression coefficients, and multivariate Cox regression were performed to identify the independent prognostic signatures. The immune microenvironment estimation in the two subgroups, including immune cell infiltration, HLA family genes, and immune checkpoint genes, was assessed. The Gene Set Enrichment Analysis (GSEA) and GO were conducted to analyze the functional enrichment of DEGs between the two risk groups. The potential drugs for the high-risk subtypes were forecasted via the mode of action (moa) module of the connectivity map (CMap) database. Results:TEAD4 was found to be significantly correlated with poor prognosis in LUAD-patients. A total of 102 DEGs in TEAD4-high vs. TEAD4-low groups were identified. Among these DEGs, four genes (CPS1, ANLN, RHOV, and KRT6A) were identified as the independent prognostic signature to conduct the Cox risk model. The immune microenvironment estimation indicated a strong relationship between the high TEAD4 expression and immunotherapeutic resistance. The GSEA and GO showed that pathways, including cell cycle regulation, were enriched in the high-risk group, while immune response-related and metabolism biological processes were enriched in the low-risk group. Several small molecular perturbagens targeting CFTR or PLA2G1B, by the mode of action (moa) modules of the glucocorticoid receptor agonist, cyclooxygenase inhibitor, and NFkB pathway inhibitor, were predicted to be suited for the high-risk subtypes based on the high TEAD4 expression. Conclusion: The current study revealed TEAD4 is an immune regulation–related predictor of prognosis and a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Ning Li
- Cardiovascular Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Chen Sun
- Hematology Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Hsu SC, Lin CY, Lin YY, Collins CC, Chen CL, Kung HJ. TEAD4 as an Oncogene and a Mitochondrial Modulator. Front Cell Dev Biol 2022; 10:890419. [PMID: 35602596 PMCID: PMC9117765 DOI: 10.3389/fcell.2022.890419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4’s functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Yu Lin
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yi Lin
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin C. Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chia-Lin Chen
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| | - Hsing-Jien Kung
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| |
Collapse
|
18
|
Li F, Feng Y, Jiang Q, Zhang J, Wu F, Li Q, Jing X, Wang X, Huang C. Pan-cancer analysis, cell and animal experiments revealing TEAD4 as a tumor promoter in ccRCC. Life Sci 2022; 293:120327. [DOI: 10.1016/j.lfs.2022.120327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/29/2022]
|
19
|
Bhat IP, Rather TB, Bhat GA, Maqbool I, Akhtar K, Rashid G, Parray FQ, Besina S, Mudassar S. TEAD4 nuclear localization and regulation by miR-4269 and miR-1343-3p in colorectal carcinoma. Pathol Res Pract 2022; 231:153791. [PMID: 35124548 DOI: 10.1016/j.prp.2022.153791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS TEAD4 transcription factor belonging to TEAD-family, is a key downstream element of the Hippo Signalling pathway and is very important for YAPinduced tumor progression. YAP-TEAD interaction is required to promote tumor progression and metastasis in various cancers. This study aims to investigate the role of TEAD4 in CRC progression and to compare the TEAD4 expression with different clinicopathological parameters of the study population. We also aim to explore the expression pattern of miR-4269 and miR-1343-3p and their functional role in TEAD4 mediated CRC progression. Furthermore, we intend to evaluate the prognostic significance of TEAD4, miR-4269, and miR-1343-3p in colorectal carcinoma. METHODS Real-time PCR, Immunohistochemical Staining, and Western Blotting were performed on 71 human CRC tissue specimens and their adjacent normal tissues to evaluate the TEAD4 expression and the results were statistically analyzed against the clinicopathological variables of patient data and also with survival data using STATA software. miRNA expression was analyzed by quantitative real-time PCR. RESULTS TEAD4 expression levels in tumor specimens were significantly higher than their paired normal specimens. The higher protein expression levels showed a significant association with TNM stage, Duke Stage, tumor grade, invasion depth, node status, necrosis of tumor tissue, lymphovascular and perineural invasion. As per the cox-regression model and classification tree analysis, TNM stage and perineural invasion were important predictors for TEAD4 expression and prognosis of CRC patients. Survival analysis indicated that TEAD4 overexpression was associated with poorer overall and disease-free survival. miR-4269 and miR-1343-3p were downregulated in CRC tumors and showed a negative correlation with TEAD4. The nuclear overexpressed TEAD4 and downregulated miR-4269 and miR-1343-3p evaluated for the first time in CRC, are believed to serve as important prognostic markers in CRC. CONCLUSION Expression of TEAD4 was increased in CRC and was negatively regulated by miR-4269 and miR-1343-3p. The overexpression of TEAD4 is linked with poor overall and disease-free survival of CRC patients. These findings support prior observations and thus TEAD4 may be a possible prognostic marker in CRC.
Collapse
Affiliation(s)
- Ishrat Parveiz Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Tahseen Bilal Rather
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Gulzar A Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Irfan Maqbool
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Kulsum Akhtar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Gowhar Rashid
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Fazl Q Parray
- Department of General and Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Syed Besina
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India.
| |
Collapse
|
20
|
Gilani N, Arabi Belaghi R, Aftabi Y, Faramarzi E, Edgünlü T, Somi MH. Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach. Front Genet 2022; 12:779455. [PMID: 35082831 PMCID: PMC8785967 DOI: 10.3389/fgene.2021.779455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to identify the strong miRNAs associated with GC in the training sample. We then validated the prediction models in the independent sample GSE113486 data. Finally, an ontological analysis was done on identified miRNAs to eliciting the relevant relationships. Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision (AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identified miRNAs approved their strong relationship with cancer associated genes and molecular events. Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies on the GC diagnosis using reliable biomarkers.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Mathematics, Uppsala University, Uppsala, Sweden
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tuba Edgünlü
- Department of Medical Biology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Yu M, Shi C, Xu D, Lin X, Ji T, Shi Z, Zhuge X, Zhuo S, Yang Q. LncRNA ASB16-AS1 drives proliferation, migration, and invasion of colorectal cancer cells through regulating miR-185-5p/TEAD1 axis. Cell Cycle 2021; 21:1-11. [PMID: 34870557 DOI: 10.1080/15384101.2021.1973700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
As a common malignant tumor, colorectal cancer (CRC) has a high incidence. Recent investigations have suggested that although great improvement has been achieved in the survival rate of early-stage CRC patients, the overall survival rate remains low. Mounting reports have proved that lncRNAs take part in the development of various cancers and possess the regulatory functions in cancers. For example, ASB16 antisense RNA 1 (ASB16-AS1) is a poorly researched novel lncRNA whose specific functions in CRC are still unknown. In our research, we discovered that ASB16-AS1 was with high expression in CRC cells. In addition, ASB16-AS1 silencing restrained the proliferation, migration, invasion, and stemness while accelerating cell apoptosis of CRC cells. Mechanism experiments were applied to explore the regulatory mechanism of ASB16-AS1. It turned out that miR-185-5p could interact with ASB16-AS1 and inhibited the progression of CRC cells. TEAD1 (TEA domain transcription factor1) - a major effector of the Hippo signaling was proved to serve as the target of miR-185-5p and promote CRC development. In short, ASB16-AS1 drove the progression of CRC through the regulation of miR-185-5p/TEAD1 axis.
Collapse
Affiliation(s)
- Mingxu Yu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changsheng Shi
- Department of Interventional Therapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingyin Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingcheng Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Ji
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengchao Shi
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Zhuge
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengye Zhuo
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Jiang N, Zhao L, Zong D, Yin L, Wu L, Chen C, Song X, Zhang Q, Jiang X, He X, Feng J. Long non-coding RNA LUADT1 promotes nasopharyngeal carcinoma cell proliferation and invasion by downregulating miR-1207-5p. Bioengineered 2021; 12:10716-10728. [PMID: 34738862 PMCID: PMC8810096 DOI: 10.1080/21655979.2021.2001952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a typical type of malignant tumor. This research paper aims to study the function and mechanism of long non-coding RNA lung adenocarcinoma-related transcript 1 (lncRNA-LUADT1) in the progression of NPC. In this study, the expressions of lncRNA-LUADT1, miR-1207-5p, and TEAD1 in NPC tissues and cell lines were detected by RT-qPCR. Initially, the expression of lncRNA-LUADT1 and TEAD1 were significantly up-regulated in NPC tissues and cells, while miR-1207-5p was significantly down-regulated. Next, miR-1207-5p was confirmed to bind to lncRNA-LUADT1 or TEAD1 by bioinformatics and luciferase reporter assay. In addition, after interfering with lncRNA-LUADT1 expression, experiments of CCK8, EDU staining, and Transwell invasion were used to detect proliferation, invasion, and migration of NPC cells. The results showed that interfering with lncRNA-LUADT1 expression could inhibit the proliferation, invasion, and migration of NPC cells. Western blot showed that lncRNA-LUADT1 knockdown significantly decreased the expression of Hippo/YAP pathway protein (YAP1 and TAZ). However, interfering with the expression of miR-1207-5p reversed these results. In addition, the nude mouse tumor formation experiment suggested that low-expressed lncRNA-LUADT1 reduced the volume and weight of tumor tissues. In summary, lncRNA-LUADT1 down-regulation could inhibit NPC cell proliferation and invasion, which may be achieved through regulating miR-1207-5p expression and affecting TEAD1 expression, thus inhibiting the activation of Hippo/YAP signaling pathway.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Lijun Zhao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Dan Zong
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Lirong Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Cheng Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Xue Song
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Qian Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Xuesong Jiang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210003, China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210003, China
| |
Collapse
|
23
|
Hu Y, Mu H, Deng Z. The transcription factor TEAD4 enhances lung adenocarcinoma progression through enhancing PKM2 mediated glycolysis. Cell Biol Int 2021; 45:2063-2073. [PMID: 34196069 DOI: 10.1002/cbin.11654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
Lung adenocarcinoma (LUAD) is a deadly disease with a hallmark of aberrant metabolism. TEA domain 4 (TEAD4) is involved in the progression of several forms of cancer including LUAD. However, the role of TEAD4 in LUAD glucose metabolism is rarely reported as well as its potential mechanisms. Pyruvate kinase isozymes M2 (PKM2), the key regulatory enzymes in glycolysis, was predicted to be a target for TEAD4 by bioinformatics analysis. Thus, we aimed to explore whether TEAD4/PKM2 axis was related to LUAD glucose metabolism and malignant phenotype. The expression level of TEAD4 and PKM2 was measured by quantitative real-time PCR and Western blot. Luciferase reporter assay were employed to verify the effect of TEAD4 on PKM2 promoter as well as TEAD4/PKM2 axis on reporter activity of hypoxia inducible factor-1α (HIF-1α). Glycolysis was investigated according to glucose consumption, lactate production and the extracellular acidification rate. The present study indicated that TEAD4 and PKM2 were upregulated in LUAD and closely related to prognosis. Mechanistic investigations identified that TEAD4 played a key role as a transcription factor and promoted PKM2 transcription and expression, which further altered the reporter activity of HIF-1α and upregulated HIF-1α-targeted glycolytic genes glucose transporter-1 and hexokinase II. Functional assays revealed that TEAD4 and PKM2 affected glycolytic and 2-DG blocked the positive function of TEAD4 and PKM2 on glycolytic. Besides, TEAD4/PKM2 axis affects LUAD cell viability, apoptosis, migration, and invasion. Together, these data provided evidence that both TEAD4 and PKM2 were poor prognosticator. Targeting TEAD4/PKM2 axis might be an effective therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Yan Hu
- Department of Respiratory, The First People's Hospital of Zigong City, Zigong, Sichuan, China
| | - Hanshuo Mu
- Department of Clinical Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhiping Deng
- Department of Respiratory, The First People's Hospital of Zigong City, Zigong, Sichuan, China
| |
Collapse
|
24
|
WEE1 inhibition reverses trastuzumab resistance in HER2-positive cancers. Gastric Cancer 2021; 24:1003-1020. [PMID: 33723720 DOI: 10.1007/s10120-021-01176-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, many efforts have been made to understand the resistance mechanism of trastuzumab in human epidermal growth factor receptor 2 (HER2)-positive breast and gastric cancer. However, there is still a huge unmet medical need for patients with trastuzumab resistance. METHODS In our study, we generated four trastuzumab-resistant (HR) cancer cell lines from ERBB2-amplified gastric and biliary tract cancer cell lines (SNU-216, NCI-N87, SNU-2670, and SNU-2773). RESULTS Here, we found higher PD-L1 expression in trastuzumab-resistant (HR) HER2-positive cancer cells than in parental cells, and blocking PD-L1 reversed the resistance to trastuzumab in HR cells. Trastuzumab upregulated PD-L1 expression via NF-κB activation in both parental and HR cells, however, led to DNA damage only in parental cells. The WEE1 inhibitor adavosertib, which downregulates PD-L1 expression, enhanced trastuzumab efficacy by blocking BRCA1-CMTM6-PD-L1 signals and the HER2-CDCP-1-SRC axis. Additionally, the levels of galectin-9, CD163, FoxP3, and CTLA-4 were diminished by blocking WEE1 in the presence of human PBMCs in vitro. CONCLUSION Taken together, the strategy of co-targeting HER2 and WEE1 could overcome resistance to trastuzumab in HER2-positive cancers, supporting further clinical development in HER2-positive cancer patients.
Collapse
|
25
|
Yang X, Xu Y, Jiang C, Ma Z, Jin L. Verteporfin suppresses osteosarcoma progression by targeting the Hippo signaling pathway. Oncol Lett 2021; 22:724. [PMID: 34429764 PMCID: PMC8371961 DOI: 10.3892/ol.2021.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Verteporfin (VP) is a specific inhibitor of yes-associated protein 1 (YAP1) that suppresses tumor progression by inhibiting YAP1 expression. The present study aimed to determine the inhibitory effect of VP on osteosarcoma and the underlying mechanism of its anticancer effects. Cell viability, cell cycle and apoptosis and cell migration and invasion were analyzed using the MTT assay, flow cytometry, wound healing assay and Transwell assay, respectively. Expressions of YAP1 and TEA domain transcription factor 1 (TEAD1) were measured using reverse transcription-quantitative PCR and western blotting, while their interaction was identified by the co-immunoprecipitation assay. In vivo mouse xenograft experiments were performed to evaluate the effect of VP on osteosarcoma growth. The results demonstrated that YAP1 and TEAD1 were highly expressed in osteosarcoma cells and tissues, whereas VP significantly downregulated the expression levels of YAP1 and TEAD1 in the osteosarcoma cell line Saos-2 compared with those in untreated control cells. In addition, compared with those in the control group, VP suppressed the viability, migration and invasion, induced cell cycle arrest in the G1 phase and promoted apoptosis in Saos-2 cells. In addition, VP inhibited mouse xenograft tumor growth in vivo compared with that observed in the control group. Notably, VP downregulated the levels of CYR61 expression in Saos-2 cells, whereas CYR61 overexpression mitigated the inhibitory effects of VP on osteosarcoma cells, as indicated by the increased viability and reduced apoptotic rates in Saos-2 cells overexpressing CYR61 compared with those in the control group. In summary, VP suppressed osteosarcoma by downregulating the expression of YAP1 and TEAD1. Additionally, CYR61 may mediate the effects of VP on osteosarcoma progression.
Collapse
Affiliation(s)
- Xianliang Yang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Youjia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chao Jiang
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Ziping Ma
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Linguang Jin
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
26
|
Geng H, Liu G, Hu J, Li J, Wang D, Zou S, Xu X. HOXB13 suppresses proliferation, migration and invasion, and promotes apoptosis of gastric cancer cells through transcriptional activation of VGLL4 to inhibit the involvement of TEAD4 in the Hippo signaling pathway. Mol Med Rep 2021; 24:722. [PMID: 34396425 PMCID: PMC8383034 DOI: 10.3892/mmr.2021.12361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignancy worldwide and is accompanied by both high mortality and morbidity rates. Homeobox B13 (HOXB13) has been reported to act as a tumor suppressor gene in multiple types of human cancer. The present study aimed to investigate the effects and potential underlying molecular mechanisms of HOXB13 in the progression of GC. The expression of HOXB13 in GC cells was first examined using the Cancer Cell Line Encyclopedia database and subsequently validated in a number of GC cell lines. Following HOXB13 overexpression (Ov-HOXB13), HGC-27 cell proliferation was evaluated by colony formation and Cell Counting Kit-8 assays. Wound healing and Matrigel assays were used to determine the migratory and invasive abilities, respectively. Additionally, cell apoptosis was assessed using TUNEL staining, and the expression of apoptosis-related proteins was detected by western blot analysis. Subsequently, TEA domain transcription factor 4 (TEAD4) was overexpressed to evaluate the effects on HGC-27 cell proliferation, migration, invasion and apoptosis following co-transfection with Ov-HOXB13. The potential binding sites of HOXB13 on the vestigial-like family member 4 (VGLL4) promoter were verified using chromatin immunoprecipitation and dual luciferase reporter assays. Moreover, the expression levels of proteins involved in the Hippo signaling pathway were analyzed using western blotting. The results revealed that the expression of HOXB13 was notably lower in GC cells compared with normal gastric cells. The overexpression of HOXB13 significantly inhibited the proliferation, migration and invasion, but promoted the apoptosis of HGC-27 cells. Moreover, Ov-HOXB13 downregulated TEAD4 expression. Notably, Ov-TEAD4 transfection partially reversed the effects of Ov-HOXB13 on the cellular behaviors of HGC-27 cells. HOXB13 was also confirmed to bind with the VGLL4 promoter. The knockdown of VGLL4 restored the inhibitory effects of Ov-HOXB13 on the expression levels of VGLL4 and Hippo pathway signaling proteins. In conclusion, the findings of the present study suggested that Ov-HOXB13 may suppress the proliferation, migration and invasion, and promote the apoptosis of GC cells through the transcriptional activation of VGLL4 to inhibit the involvement of TEAD4 in the Hippo signaling pathway. These results may provide novel and potent targets for the treatment of GC.
Collapse
Affiliation(s)
- Hui Geng
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Guangli Liu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Jiandong Hu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Jianchao Li
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Dong Wang
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Shenshan Zou
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Xintao Xu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
27
|
Dong S, Fu Y, Yang K, Zhang X, Miao R, Long Y, Liu C. Linc01559 Served as a Potential Oncogene and Promoted Resistance of Hepatocellular Carcinoma to Oxaliplatin by Directly Sponging miR-6783-3p. Anticancer Agents Med Chem 2021; 21:278-286. [PMID: 32698745 DOI: 10.2174/1871520620666200721122317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/21/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxaliplatin (L-OHP)-based chemotherapy, such as FOLFOX4 (5-fluorouracil, leucovorin, and L-OHP), improves the prognosis of patients with late-stage Hepatocellular Carcinoma (HCC). However, the development of resistance to L-OHP leads to the failure of chemotherapy. The aim of this study was to investigate the role of linc01559 and miR-6783-3p in regulating resistance to L-OHP. METHODS Quantitative reverse transcription-polymerase chain reaction was used to determine the expression profile. The Cell Counting Kit-8 test and wound healing assay were also used. Dual-luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation were used to evaluate the interaction between linc01559 and miR-6783-3p. RESULT linc01559 expression was associated with response to FOLFOX4, as well as miR-1343-3p and miR- 6783-3p expression in vivo. A nomogram, including linc01559 and miR-1343-3p, precisely and accurately predicted the overall survival of patients with HCC. Regarding the in vitro tests, linc01559 showed higher expression in L-OHP-resistant cell lines, whereas miR-6783-3p was downregulated. Knockdown of linc01559 led to decreased proliferation and migration ability, and increased expression of miR-6783-3p; however, it did not influence the expression of miR-1343-3p. We also found that linc01559 directly interacted with miR-6783-3p. Furthermore, linc01559 and miR-6783-3p regulated the viability of L-OHP-resistant cells following treatment with L-OHP. CONCLUSION linc01559 promoted the proliferation of HCC by sponging miR-6783-3p. This suggests that linc01559/miR-6783-3p may be key factors in regulating resistance and response to L-OHP. Moreover, they may be potential therapeutic targets for improving sensitivity to L-OHP in patients with HCC.
Collapse
Affiliation(s)
- Shunbin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ying Fu
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China
| | - Kaibo Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yunxiang Long
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
28
|
Sun Q, Guo D, Li S, Xu Y, Jiang M, Li Y, Duan H, Zhuo W, Liu W, Zhu S, Wang L, Zhou T. Combining gene expression signature with clinical features for survival stratification of gastric cancer. Genomics 2021; 113:2683-2694. [PMID: 34129933 DOI: 10.1016/j.ygeno.2021.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
The AJCC staging system is considered as the golden standard in clinical practice. However, it remains some pitfalls in assessing the prognosis of gastric cancer (GC) patients with similar clinicopathological characteristics. We aim to develop a new clinic and genetic risk score (CGRS) to improve the prognosis prediction of GC patients. We established genetic risk score (GRS) based on nine-gene signature including APOD, CCDC92, CYS1, GSDME, ST8SIA5, STARD3NL, TIMEM245, TSPYL5, and VAT1 based on the gene expression profiles of the training set from the Asian Cancer Research Group (ACRG) cohort by LASSO-Cox regression algorithms. CGRS was established by integrating GRS with clinical risk score (CRS) derived from Surveillance, Epidemiology, and End Results (SEER) database. GRS and CGRS dichotomized GC patients into high and low risk groups with significantly different prognosis in four independent cohorts with different data types, such as microarray, RNA sequencing and qRT-PCR (all HR > 1, all P < 0.001). Both GRS and CGRS were prognostic signatures independent of the AJCC staging system. Receiver operating characteristic (ROC) analysis showed that area under ROC curve of CGRS was larger than that of the AJCC staging system in most cohorts we studied. Nomogram and web tool (http://39.100.117.92/CGRS/) based on CGRS were developed for clinicians to conveniently assess GC prognosis in clinical practice. CGRS integrating genetic signature with clinical features shows strong robustness in predicting GC prognosis, and can be easily applied in clinical practice through the web application.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Dongyang Guo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Shuang Li
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Yanjun Xu
- Zhejiang Cancer Hospital, Hangzhou 310022, P.R. China
| | - Mingchun Jiang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Yang Li
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Huilong Duan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, P.R. China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Wei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Shankuan Zhu
- Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, Hangzhou 310058, P.R. China
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, P.R. China; Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310016, P.R. China.
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, P.R. China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, P.R. China; Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada.
| |
Collapse
|
29
|
Wang J, Shen C, Zhang J, Zhang Y, Liang Z, Niu H, Wang Y, Yang X. TEAD4 is an Immune Regulating-Related Prognostic Biomarker for Bladder Cancer and Possesses Generalization Value in Pan-Cancer. DNA Cell Biol 2021; 40:798-810. [PMID: 34030484 DOI: 10.1089/dna.2021.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed the significant role of TEA domain family member 4 (TEAD4) in the development and progression of cancer. However, the potential role of TEAD4 in the progression of bladder cancer (BC) remains to be explored. The aim of this study was to determine whether TEAD4 could serve as a pan-cancer predictor of the prognosis for BC. Based on data mined from public databases, expression levels and clinical value of TEAD4 were identified in BC and human pan-cancers. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the TEAD4 expression levels in BC cell lines. Gene Set Enrichment Analysis (GSEA) was carried out for functional analysis in BC, and the relationship between infiltrating immune cells and TEAD4 expression was evaluated by the CIBERSORT algorithm in BC and pan-cancer data. TEAD4 was overexpressed and associated with poor prognosis in BC and several types of cancers. GSEA and CIBERSORT algorithm suggested that various pathways including immune-related pathways were enriched in TEAD4 high expression group and several immunocytes infiltrated were correlated with the expression of TEAD4. This study revealed TEAD4 is an immune regulating-related predictor of prognosis for BC and has generalization value in pan-cancer.
Collapse
Affiliation(s)
- Jirong Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jipeng Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youzhi Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Coto-Llerena M, Tosti N, Taha-Mehlitz S, Kancherla V, Paradiso V, Gallon J, Bianco G, Garofoli A, Ghosh S, Tang F, Ercan C, Christofori GM, Matter MS, Droeser RA, Zavolan M, Soysal SD, von Flüe M, Kollmar O, Terracciano LM, Ng CKY, Piscuoglio S. Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members. Hepatol Commun 2021; 5:661-674. [PMID: 33860124 PMCID: PMC8034568 DOI: 10.1002/hep4.1656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Transcriptional enhancer factor domain family member 4 (TEAD4) is a downstream effector of the conserved Hippo signaling pathway, regulating the expression of genes involved in cell proliferation and differentiation. It is up-regulated in several cancer types and is associated with metastasis and poor prognosis. However, its role in hepatocellular carcinoma (HCC) remains largely unexplored. Using data from The Cancer Genome Atlas, we found that TEAD4 was overexpressed in HCC and was associated with aggressive HCC features and worse outcome. Overexpression of TEAD4 significantly increased proliferation and migration rates in HCC cells in vitro as well as tumor growth in vivo. Additionally, RNA sequencing analysis of TEAD4-overexpressing HCC cells demonstrated that TEAD4 overexpression was associated with the up-regulation of genes involved in epithelial-to-mesenchymal transition, proliferation, and protein-folding pathways. Among the most up-regulated genes following TEAD4 overexpression were the 70-kDa heat shock protein (HSP70) family members HSPA6 and HSPA1A. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction experiments demonstrated that TEAD4 regulates HSPA6 and HSPA1A expression by directly binding to their promoter and enhancer regions. The pharmacologic inhibition of HSP70 expression in TEAD4-overexpressing cells reduced the effect of TEAD4 on cell proliferation. Finally, by overexpressing TEAD4 in yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ)-knockdown HCC cells, we showed that the effect of TEAD4 on cell proliferation and its regulation of HSP70 expression does not require YAP and TAZ, the main effectors of the Hippo signaling pathway. Conclusion: A novel Hippo-independent mechanism for TEAD4 promotes cell proliferation and tumor growth in HCC by directly regulating HSP70 family members.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland.,Visceral Surgery and Precision Medicine Research LaboratoryDepartment of BiomedicineUniversity of BaselBaselSwitzerland
| | - Nadia Tosti
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research LaboratoryDepartment of BiomedicineUniversity of BaselBaselSwitzerland.,ClarunisDepartment of Visceral SurgeryUniversity Center for Gastrointestinal and Liver DiseasesSt. Clara Hospital and University Hospital BaselBaselSwitzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Viola Paradiso
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research LaboratoryDepartment of BiomedicineUniversity of BaselBaselSwitzerland
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research LaboratoryDepartment of BiomedicineUniversity of BaselBaselSwitzerland
| | - Andrea Garofoli
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Souvik Ghosh
- Computational and Systems Biology, BiozentrumUniversity of BaselBaselSwitzerland
| | - Fengyuan Tang
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Caner Ercan
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | | | - Matthias S Matter
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Raoul A Droeser
- ClarunisDepartment of Visceral SurgeryUniversity Center for Gastrointestinal and Liver DiseasesSt. Clara Hospital and University Hospital BaselBaselSwitzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, BiozentrumUniversity of BaselBaselSwitzerland
| | - Savas D Soysal
- ClarunisDepartment of Visceral SurgeryUniversity Center for Gastrointestinal and Liver DiseasesSt. Clara Hospital and University Hospital BaselBaselSwitzerland
| | - Markus von Flüe
- ClarunisDepartment of Visceral SurgeryUniversity Center for Gastrointestinal and Liver DiseasesSt. Clara Hospital and University Hospital BaselBaselSwitzerland
| | - Otto Kollmar
- ClarunisDepartment of Visceral SurgeryUniversity Center for Gastrointestinal and Liver DiseasesSt. Clara Hospital and University Hospital BaselBaselSwitzerland
| | - Luigi M Terracciano
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Charlotte K Y Ng
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland.,Visceral Surgery and Precision Medicine Research LaboratoryDepartment of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
31
|
Lin W, Zhang T, Ding G, Hao L, Zhang B, Yu J, Pang Y, Geng F, Zhan L, Zhou M, Yan Q, Wang Y, Zheng C, Li H. Circular RNA circ‑CCT3 promotes hepatocellular carcinoma progression by regulating the miR‑1287‑5p/TEAD1/PTCH1/LOX axis. Mol Med Rep 2021; 23:375. [PMID: 33760147 PMCID: PMC7986040 DOI: 10.3892/mmr.2021.12014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis because of its insensitivity to radiation and chemotherapy. Recently, circular RNAs (circRNAs) have been found to serve important roles in hepatocellular carcinogenesis. circ-CCT3, a novel circRNA, was screened from the differential tissue expression results of a circRNA microarray. Relative expression levels of circ-CCT3 in specimens and cell lines were evaluated by reverse transcription-quantitative PCR and the relationship between circ-CCT3 and prognosis was analyzed by Kaplan-Meier curves. The oncogenic role of circ-CCT3 was confirmed in HCC cells through a cell counting kit-8 (CCK-8) assay, a colony formation assay, acridine orange/ethidium bromide double fluorescence staining, flow cytometry, a wound-healing assay and a Transwell assay. Bioinformatics prediction and luciferase reporter assays validated that circ-CCT3 facilitated HCC progression through the miR-1287-5p/TEA domain transcription factor 1 (TEAD1) axis. TEAD1 could then directly activate patched 1 and lysyl oxidase transcription, as analyzed by chromatin immunoprecipitation and luciferase reporter assays. The present study identified a novel circRNA, circ-CCT3, which may be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wennan Lin
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Tianyu Zhang
- Department of Computed Tomography, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Guoxu Ding
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Liguo Hao
- Department of Molecular Imaging, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Bingquan Zhang
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jing Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yu Pang
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Feng Geng
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lan Zhan
- Department of Neurology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Minglu Zhou
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Qiyu Yan
- Department of General Practice, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Yuguang Wang
- Department of Computed Tomography, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chunlei Zheng
- Department of Oncology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Hui Li
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
32
|
MiR-4269 suppresses the tumorigenesis and development of pancreatic cancer by targeting ZEB1/OTX1 pathway. Biosci Rep 2021; 40:225115. [PMID: 32484209 PMCID: PMC7286876 DOI: 10.1042/bsr20200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
As one of the most prevalent malignant tumors, pancreatic cancer (PC) is a leading fatal cancer worldwide. Surging evidence has unraveled that miRNAs are involved in the occurrence and progression of multiple cancers, including PC. The tumor suppressor effects of miR-4269 have been certified in gastric carcinoma. However, the potential function of miR-4269 remains largely unclear, which drives us to identify the role of miR-4269 in PC development. In the present study, we determined the expression pattern of miR-4269 in PC cells and normal cells. Results of RT-qPCR analysis illuminated that miR-4269 expression level in PC cells was lower than that in normal cells. Functional assays demonstrated that up-regulation of miR-4269 obviously inhibited the proliferation, migration and invasion of PC cells. In order to elucidate the mechanism governing miR-4269 in PC, we carried out bioinformatics analysis and further experimental investigations. Our results validated that ZEB1 was a direct target of miR-4269. Additionally, ZEB1 activated the transcription of OXT1. More importantly, miR-4269 attenuated the expression level of OXT1 via targeting ZEB1. Ultimately, our findings confirmed that miR-4269 served as a cancer suppressor in PC through regulation of ZEB1/OTX1 pathway, which suggested that miR-4269 might represent a promising target for the clinical treatment of PC.
Collapse
|
33
|
Yuan F, Li Z, Chen L, Zeng T, Zhang YH, Ding S, Huang T, Cai YD. Identifying the Signatures and Rules of Circulating Extracellular MicroRNA for Distinguishing Cancer Subtypes. Front Genet 2021; 12:651610. [PMID: 33767734 PMCID: PMC7985347 DOI: 10.3389/fgene.2021.651610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most threatening diseases to humans. It can invade multiple significant organs, including lung, liver, stomach, pancreas, and even brain. The identification of cancer biomarkers is one of the most significant components of cancer studies as the foundation of clinical cancer diagnosis and related drug development. During the large-scale screening for cancer prevention and early diagnosis, obtaining cancer-related tissues is impossible. Thus, the identification of cancer-associated circulating biomarkers from liquid biopsy targeting has been proposed and has become the most important direction for research on clinical cancer diagnosis. Here, we analyzed pan-cancer extracellular microRNA profiles by using multiple machine-learning models. The extracellular microRNA profiles on 11 cancer types and non-cancer were first analyzed by Boruta to extract important microRNAs. Selected microRNAs were then evaluated by the Max-Relevance and Min-Redundancy feature selection method, resulting in a feature list, which were fed into the incremental feature selection method to identify candidate circulating extracellular microRNA for cancer recognition and classification. A series of quantitative classification rules was also established for such cancer classification, thereby providing a solid research foundation for further biomarker exploration and functional analyses of tumorigenesis at the level of circulating extracellular microRNA.
Collapse
Affiliation(s)
- Fei Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
- Department of Science and Technology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
34
|
Huang Z, Yan Y, Tang P, Cai J, Cao X, Wang Z, Zhang F, Shen B. TEAD4 as a Prognostic Marker Promotes Cell Migration and Invasion of Urinary Bladder Cancer via EMT. Onco Targets Ther 2021; 14:937-949. [PMID: 33603398 PMCID: PMC7882801 DOI: 10.2147/ott.s290425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose As a member of TEA Domain Transcription Factors (TEADs), TEAD4 was found to be upregulated in urinary bladder cancer (UBC). This study focused on investigating the clinical value and potential functions of TEAD4 in UBC. Materials and Methods Patients' samples, TCGA-BLCA and multiple GEO datasets were applied to explore the expression pattern of TEAD4 in UBC. Cox regression and Kaplan-Meier survival analyses were carried out to evaluate the prognostic significance of TEAD4 in UBC. Wound healing and transwell assays were performed to explore the biological functions of TEAD4 in UBC cells. Results The results of TCGA-BLCA, GEO datasets, Western blotting and immunohistochemistry staining (IHC) indicated that TEAD4 was strikingly elevated in UBC tissues as compared to their normal counterparts, and upregulation of TEAD4 was significantly correlated with clinical stage, pathological grade and poor clinical outcome. Functional studies demonstrated that TEAD4 knockdown suppressed cell migration and invasion by reducing the expression of epithelial-mesenchymal transition (EMT) related markers and transcription regulators. Conclusion Our results suggest that TEAD4 may serve as a novel prognostic biomarker and a promising therapeutic target for UBC, and act as a pro-tumorigenic gene to promote cell migration and invasion by inducing EMT.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, People's Republic of China
| | - Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, People's Republic of China
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China.,Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, People's Republic of China
| |
Collapse
|
35
|
Rohr M, Aljabban J, Rudeski-Rohr T, Lessans S, Nakkina SP, Hadley D, Zhu X, Altomare DA. Meta-Analysis Reveals the Prognostic Relevance of Nuclear and Membrane-Associated Bile Acid Receptors in Gastric Cancer. Clin Transl Gastroenterol 2021; 12:e00295. [PMID: 33492921 PMCID: PMC7806235 DOI: 10.14309/ctg.0000000000000295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Bile acids (BAs) arising from duodenogastric reflux are known to facilitate gastric cancer (GC) development. Although BAs traditionally contribute to carcinogenesis through direct cellular cytotoxicity, increasing evidence implicates nuclear and membrane BA receptors (BARs) as additional factors influencing cancer risk. Indeed, some BARs are already linked with GC, but conflicting evidence and lack of information regarding other endogenous BARs warrant further investigation. In this study, we meta-analyzed multiple data sets to identify clinically relevant relationships between BAR expression and prognosis, clinicopathology, and activity in GC. METHODS We collected transcriptomic data from the Gene Expression Omnibus and The Cancer Genome Atlas to analyze associations between BAR expression and GC prognosis, subtype, and clinicopathology. We also used Ingenuity Pathway Analysis to assess and predict functions, upstream regulators, and downstream mediators of membrane and nuclear BARs in GC. RESULTS BARs showed differential distribution in GC; membrane BARs (G protein-coupled BAR 1, sphingosine-1-phosphate receptor 2, and cholinergic receptor muscarinic 2) were enriched in diffuse-, genome-stable, and mesenchymal-type tumors, whereas nuclear BARs (pregnane-X-receptor, constitutive androstane receptor, and farnesoid-X-receptor) were enriched in chromosome instability and metabolic subtypes. High expression of all membrane but not nuclear BARs was associated with poor prognosis and unfavorable GC clinicopathologic features. Similarly, expression patterns of membrane but not nuclear BARs varied geographically, aligning with Helicobacter pylori infection and GC mortality rates. Finally, GC-related oncogenes, namely transforming growth factor β1, were associated with membrane BARs, whereas many metabolic-associated genes were associated with nuclear BARs. DISCUSSION Through transcriptomic meta-analysis, we identified distinct expression profiles between nuclear and membrane BARs that demonstrate prognostic relevance and warrant further investigation.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jihad Aljabban
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Trina Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Spencer Lessans
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dexter Hadley
- Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
36
|
Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death Dis 2021; 12:36. [PMID: 33414429 PMCID: PMC7791140 DOI: 10.1038/s41419-020-03316-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
An accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.
Collapse
|
37
|
Drexler R, Fahy R, Küchler M, Wagner KC, Reese T, Ehmke M, Feyerabend B, Kleine M, Oldhafer KJ. Association of subcellular localization of TEAD transcription factors with outcome and progression in pancreatic ductal adenocarcinoma. Pancreatology 2021; 21:170-179. [PMID: 33317954 DOI: 10.1016/j.pan.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transcriptional enhanced associated domain (TEAD) transcription factors are nuclear effectors of several oncogenic signalling pathways including Hippo, WNT, TGF-ß and EGFR pathways that interact with various cancer genes. The subcellular localization of TEAD regulates the functional output of these pathways affecting tumour progression and patient outcome. However, the impact of the TEAD family on pancreatic ductal adenocarcinoma (PDAC) and its clinical progression remain elusive. METHODS A cohort of 81 PDAC patients who had undergone surgery was established. Cytoplasmic and nuclear localization of TEAD1, TEAD2, TEAD3 and TEAD4 was evaluated with the immunoreactive score (IRS) by immunohistochemistry (IHC) using paraffin-embedded tissue. Results were correlated with clinicopathological data, disease-free and overall survival. RESULTS Nuclear staining of all four TEADs was increased in pancreatic cancer tissue. Patients suffering from metastatic disease at time of surgery showed a strong nuclear staining of TEAD2 and TEAD3 (p < 0.05). Furthermore, a nuclear > cytoplasmic ratio of TEAD2 and TEAD3 was associated with a shorter overall survival and TEAD2 emerged as an independent prognostic factor for disease-free survival. CONCLUSION Our study underlines the importance of TEAD transcription factors in PDAC as a nuclear localization was found to be associated with metastatic disease and an unfavourable prognosis after surgical resection.
Collapse
Affiliation(s)
- Richard Drexler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| | - Rebecca Fahy
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mirco Küchler
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Kim C Wagner
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Tim Reese
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Mareike Ehmke
- Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | | | - Moritz Kleine
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karl J Oldhafer
- Asklepios Campus Hamburg, Semmelweis University Budapest, Hamburg, Germany; Department of Surgery, Division of HPB Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| |
Collapse
|
38
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
39
|
Astamal RV, Maghoul A, Taefehshokr S, Bagheri T, Mikaeili E, Derakhshani A, Delashoub M, Taefehshokr N, Isazadeh A, Hajazimian S, Tran A, Baradaran B. Regulatory role of microRNAs in cancer through Hippo signaling pathway. Pathol Res Pract 2020; 216:153241. [PMID: 33065484 DOI: 10.1016/j.prp.2020.153241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
Cancer is the major cause of death worldwide in countries of all income levels. The Hippo signaling pathway is a Drosophila kinase gene that was identified to regulate organ size, cell regeneration, and contribute to tumorigenesis. A huge variety of extrinsic and intrinsic signals regulate the Hippo signaling pathway. The Hippo signaling pathway consists of a wide array of components that merge numerous signals such as mechanical signals to address apoptosis resistance, cell proliferation, cellular outputs of growth, cell death and survival at cellular and tissue level. Recent studies have shed new light on the regulatory role of microRNAs in Hippo signaling and how they contribute to cancer progression. MicroRNAs influence various cancer-related processes such as, apoptosis, proliferation, migration, cell cycle and metabolism. Inhibition and overexpression of miRNAs via miRNA mimics and miRNA inhibitors, respectively, can uncover a hopeful and reliable insight for treatment and early diagnosis of cancer patients. In this review we will discuss our current understanding of regulatory role of miRNAs in Hippo signaling pathway.
Collapse
Affiliation(s)
- Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Asma Maghoul
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taha Bagheri
- Department of Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ehsan Mikaeili
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Delashoub
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Antalique Tran
- Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
He C, Qin H, Tang H, Yang D, Li Y, Huang Z, Zhang D, Lv C. Comprehensive bioinformatics analysis of the TP53 signaling pathway in Wilms' tumor. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1228. [PMID: 33178760 PMCID: PMC7607069 DOI: 10.21037/atm-20-6047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Differential expression of tumor protein 53 (TP53, or p53) has been observed in multiple cancers. However, the expression levels and prognostic role of TP53 signaling pathway genes in Wilms' tumor (WT) have yet to be fully explored. Methods The expression levels of TP53 signaling pathway genes including TP53, mouse double minute 2 (MDM2), mouse double minute 4 (MDM4), cyclin-dependent kinase 2A (CDKN2A), cyclin-dependent kinase 2B (CDKN2B), and tumor suppressor p53-binding protein 1 (TP53BP1) in WT were analyzed using the Oncomine database. Aberration types, co-mutations, mutation locations, signaling pathways, and the prognostic role of TP53 in WT were investigated using cBioPortal. MicroRNA (miRNA) and transcription factor (TF) targets were identified with miRTarBase, miWalk, and ChIP-X Enrichment Analysis 3 (CheA3), respectively. A protein-protein network was constructed using GeneMANIA. The expression of TP53 signaling genes were confirmed in WT samples and normal kidney tissues using the Human Protein Atlas (HPA). Cancer Therapeutics Response Portal (CTRP) was used to analyze the small molecules potentially targeting TP53. Results TP53 was significantly expressed in the Cutcliffe Renal (P=0.010), but not in the Yusenko Renal (P=0.094). Meanwhile, MDM2 was significantly overexpressed in the Yusenko Renal (P=0.058), but not in the Cutcliffe Renal (P=0.058). The expression levels of MDM4 no significant difference between the tumor and normal tissue samples. The most common TP53 alteration was missense and the proportion of TP53 pathway-related mutations was 2.3%. Co-expressed genes included ZNF609 (zinc finger protein 609), WRAP53 (WD40-encoding RNA antisense to p53), CNOT2 (CC chemokine receptor 4-negative regulator of transcription 2), and CDH13 (cadherin 13). TP53 alterations indicated poor prognosis of WT (P=1.051e-4). The regulators of the TP53 pathway included miR-485-5p and TFs NR2F2 and KDM5B. The functions of TP53 signaling pathway were signal transduction in response to DNA damage and regulate the cell cycle. The small molecules targeting TP53 included PRIMA-1, RITA, SJ-172550, and SCH-529074. Conclusions TP53 was found to be differentially expressed in WT tissues. TP53 mutations indicated poor outcomes of WT. Therefore, pifithrin-mu, PRIMA-1, RITA, SJ-172550, and SCH-529074 could be used in combination with traditional chemotherapy to treat WT.
Collapse
Affiliation(s)
- Changjing He
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huatao Qin
- Department of Nursing, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haizhou Tang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Di Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yufeng Li
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenwen Huang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Donghu Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changheng Lv
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
41
|
Karatas H, Akbarzadeh M, Adihou H, Hahne G, Pobbati AV, Yihui Ng E, Guéret SM, Sievers S, Pahl A, Metz M, Zinken S, Dötsch L, Nowak C, Thavam S, Friese A, Kang C, Hong W, Waldmann H. Discovery of Covalent Inhibitors Targeting the Transcriptional Enhanced Associate Domain Central Pocket. J Med Chem 2020; 63:11972-11989. [PMID: 32907324 PMCID: PMC7586386 DOI: 10.1021/acs.jmedchem.0c01275] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Transcriptional enhanced associate
domain (TEAD) transcription
factors together with coactivators and corepressors modulate the expression
of genes that regulate fundamental processes, such as organogenesis
and cell growth, and elevated TEAD activity is associated with tumorigenesis.
Hence, novel modulators of TEAD and methods for their identification
are in high demand. We describe the development of a new “thiol
conjugation assay” for identification of novel small molecules
that bind to the TEAD central pocket. The assay monitors prevention
of covalent binding of a fluorescence turn-on probe to a cysteine
in the central pocket by small molecules. Screening of a collection
of compounds revealed kojic acid analogues as TEAD inhibitors, which
covalently target the cysteine in the central pocket, block the interaction
with coactivator yes-associated protein with nanomolar apparent IC50 values, and reduce TEAD target gene expression. This methodology
promises to enable new medicinal chemistry programs aimed at the modulation
of TEAD activity.
Collapse
Affiliation(s)
- Hacer Karatas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Mohammad Akbarzadeh
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Hélène Adihou
- Department of Chemical Biology, AstraZeneca-Max Planck Institute Satellite Unit, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Gernot Hahne
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673 Singapore, Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, 138670, Singapore
| | - Stéphanie M Guéret
- Department of Chemical Biology, AstraZeneca-Max Planck Institute Satellite Unit, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Malte Metz
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Sarah Zinken
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Lara Dötsch
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Christine Nowak
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Sasikala Thavam
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - Alexandra Friese
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, 138670, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673 Singapore, Singapore
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
42
|
Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis 2020; 11:723. [PMID: 32895368 PMCID: PMC7477231 DOI: 10.1038/s41419-020-02810-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) are associated with the progression of human cancers. However, the expression level and function of LINC01559 (long intergenic non-protein coding RNA 1559) in gastric cancer (GC) are rarely reported. Here we found that LINC01559 was upregulated in GC tissues based on GEPIA (Gene Expression Profiling Interactive Analysis) and TCGA (The Cancer Genome Atlas) databases. Also, LINC01559 was expressed at a lower level in GC cells than in mesenchymal stem cells (MSCs). In vitro experiments revealed that silencing LINC01559 remarkably hindered GC cell proliferation, migration and stemness. Then, we identified that LINC01559 was transmitted form MSCs to GC cells via the exosomes. Immunofluorescence staining and electron microscope validated the existence of exosomes in GC cells. Mechanistically, LINC01559 sponged miR-1343-3p to upregulate PGK1 (phosphoglycerate kinase 1), therefore activating PI3K/AKT pathway. Moreover, LINC01559 recruited EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to PTEN (phosphatase and tensin homolog) promoter, inducing the methylation of PTEN promoter and finally resulting in PTEN repression. Of note, LINC01559 targeted both PGK1 and PTEN to promote GC progression by activating PI3K/AKT pathway. Taken together, our study demonstrated that LINC01559 accelerated GC progression via upregulating PGK1 and downregulating PTEN to trigger phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) pathway, indicating LINC01559 as a potential biomarker for GC treatment.
Collapse
|
43
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
44
|
Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. Cancer Lett 2020; 493:207-216. [PMID: 32822816 DOI: 10.1016/j.canlet.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal by "turning off" or "turning on" the kinase cascade chain reaction to manipulate the expression of downstream genes. Dysregulation of the Hippo pathway contributes to cancer development and metastasis. Emerging evidence has revealed new insights into tumorigenesis through the interplay between the Hippo pathway and non-coding RNAs (ncRNAs), especially microRNA, long non-coding RNA and circular RNA. Here, we reviewed the interactions between the Hippo pathway and ncRNAs and their implication for a variety of tumor-promoting or tumor-repressing effects. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yangge Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute, School of Basic Medical Science, NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
45
|
Gu C, Huang Z, Chen X, Liu C, Rocco G, Zhao S, Xie H, Chen J, Dai C, Chen C. TEAD4 promotes tumor development in patients with lung adenocarcinoma via ERK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165921. [PMID: 32800942 DOI: 10.1016/j.bbadis.2020.165921] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Whether TEAD4 itself plays a vital role in the tumorigenesis and development of lung adenocarcinoma remains unclear. In our study, we aim to investigate the expression pattern and biological functions of TEAD4 and further investigate the potential mechanisms. METHODS Clinical tumor and paired normal samples were collected for preparing tissue microarray. Western blot and immunohistochemical (IHC) staining of TEAD4 expression in these tissues were conducted to explore the expression pattern. Moreover, A549 cell line was select for investigating the function of TEAD4 for lung adenocarcinoma in vitro and in vivo. RNA sequencing was finally performed to further detect the potential downstream genes. RESULTS The elevated TEAD4 expression level was observed in tumor tissues and the patients with higher TEAD4 expression tended to have worse overall survival. The knockdown of TEAD4 inhibits A549 cells proliferation ability and migration ability. A total of 431 differentially expressed genes (DEGs), including 239 down-regulated genes and 191 up-regulated genes, were finally identified and some of DEGs were validated. Moreover, knockdown of TEAD4 led to the down-regulation of pERK, which maybe the potential TEAD4-targeted signaling pathway to play the pro-tumorigenic function. CONCLUSIONS The expression level of TEAD4 is high in lung adenocarcinoma tumor tissues and positively associated with worse prognosis. Up-regulation of TEAD4 may lead to excessive transcription and phosphorylation of ERK proteins and therefore accelerates the process of tumor development. Our results demonstrate that overexpression of TEAD4 is a new mechanism of dysregulation of Hippo pathway.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Shanghai Colorectal Cancer Research Center, 200092, Shanghai, China.
| | - Xiaojian Chen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Shanghai Colorectal Cancer Research Center, 200092, Shanghai, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Shanghai Colorectal Cancer Research Center, 200092, Shanghai, China
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shengnan Zhao
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Chen X, Wang J, Xie F, Mou T, Zhong P, Hua H, Liu P, Yang Q. Long noncoding RNA LINC01559 promotes pancreatic cancer progression by acting as a competing endogenous RNA of miR-1343-3p to upregulate RAF1 expression. Aging (Albany NY) 2020; 12:14452-14466. [PMID: 32678071 PMCID: PMC7425501 DOI: 10.18632/aging.103487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Background: An increasing number of studies have shown that lncRNAs are involved in the biological processes of pancreatic cancer (PC). Hence, we investigated the role of a novel noncoding RNA, LINC01559, involved in PC progression. Results: LINC01559 and RAF1 were highly expressed in PC, while miR-1343-3p had low expression. High expression of LINC01559 was significantly associated with large tumors, lymph node metastasis, and poor prognosis. Functional experiment results revealed that silencing of LINC01559 significantly suppressed PC cell proliferation and metastasis. Meanwhile, LINC01559 could act as a ceRNA to competitively sponge miR-1343-3p to up-regulate RAF1 and activate its downstream ERK pathway Conclusions: LINC01559 functions as an oncogene in PC progression through acting as a ceRNA of miR-1343-3p. Hence, LINC01559 is a potential diagnostic and therapeutic target. Methods: RT-qPCR was performed to determine the expression of LINC01559 and miR-1343-3p in PC. Individual patient data were collected to investigate the correlation between clinicopathological features and LINC01559 expression. Subsequently, the expression of LINC01559, miR-1343-3p, and RAF1 was altered using transfection of vectors or inhibitors. Gain- and loss-of-function assays and mechanistic assays were applied to verify the effects of LINC01559, miR-1343-3p, and RAF1 on PC cell proliferation and metastasis in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Osteology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Jie Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Fei Xie
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Tinggang Mou
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pingyong Zhong
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hao Hua
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Pan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| | - Qin Yang
- Department of Gastroenterology, The First Peoples Hospital of Neijiang, Neijiang, Sichuan, China
| |
Collapse
|
47
|
Xu G, Zhang Y, Li N, Wu Y, Zhang J, Xu R, Ming H. LBX2-AS1 up-regulated by NFIC boosts cell proliferation, migration and invasion in gastric cancer through targeting miR-491-5p/ZNF703. Cancer Cell Int 2020; 20:136. [PMID: 32351330 PMCID: PMC7183605 DOI: 10.1186/s12935-020-01207-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The crucial role of long non-coding RNAs (lncRNAs) has been certified in human cancers. The lncRNAs with abnormal expressions could act as tumor inhibitors or oncogenes in the advancement of tumors. LBX2-AS1 was once reported to accelerate esophageal squamous cell carcinoma. Nonetheless, its function in gastric cancer (GC) remained a riddle. METHODS RT-qPCR was used to examine the expression of NFIC/LBX2-AS1/miR-491-5p/ZNF703 in GC cell lines. The functions of LBX2-AS1 in GC were appraised by colony formation, EdU, flow cytometry analysis, transwell and wound healing assays. Luciferase reporter, ChIP and RNA pull down assays were utilized to evaluate the interactions among genes. RESULTS LBX2-AS1 was up-regulated in GC cell lines. Knockdown of LBX2-AS1 repressed the proliferative, migratory, and invasive abilities of GC cells. Moreover, LBX2-AS1 was transcriptionally activated by NFIC. And LBX2-AS1 could bind with miR-491-5p. Besides, miR-491-5p depletion or ZNF703 upregulation could counteract the repressing effects of LBX2-AS1 silence on GC progression. CONCLUSION In a word, LBX2-AS1 up-regulated by NFIC promoted GC progression via targeting miR-491-5p/ZNF703, implying LBX2-AS1 was an underlying treatment target for GC patients.
Collapse
Affiliation(s)
- Gang Xu
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Yan Zhang
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Na Li
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Yanling Wu
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Jinbiao Zhang
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Rui Xu
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| | - Hui Ming
- Oncology Department, The 960th Hospital of the PLA, No. 20 Zhanbei Road, Zibo, 255300 Shandong China
| |
Collapse
|
48
|
AMOTL1 enhances YAP1 stability and promotes YAP1-driven gastric oncogenesis. Oncogene 2020; 39:4375-4389. [PMID: 32313226 PMCID: PMC7253359 DOI: 10.1038/s41388-020-1293-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
Hippo signaling functions to limit cellular growth, but the aberrant nuclear accumulation of its downstream YAP1 leads to carcinogenesis. YAP1/TEAD complex activates the oncogenic downstream transcription, such as CTGF and c-Myc. How YAP1 is protected in the cytoplasm from ubiquitin-mediated degradation remains elusive. In this study, a member of Angiomotin (Motin) family, AMOTL1 (Angiomotin Like 1), was screened out as the only one to promote YAP1 nuclear accumulation by several clinical cohorts, which was further confirmed by the cellular functional assays. The interaction between YAP1 and AMOTL1 was suggested by co-immunoprecipitation and immunofluorescent staining. The clinical significance of the AMOTL1–YAP1–CTGF axis in gastric cancer (GC) was analyzed by multiple clinical cohorts. Moreover, the therapeutic effect of targeting the oncogenic axis was appraised by drug-sensitivity tests and xenograft-formation assays. The upregulation of AMOTL1 is associated with unfavorable clinical outcomes of GC, and knocking down AMOTL1 impairs its oncogenic properties. The cytoplasmic interaction between AMOTL1 and YAP1 protects each other from ubiquitin-mediated degradation. AMOTL1 promotes YAP1 translocation into the nuclei to activate the downstream expression, such as CTGF. Knocking down AMOTL1, YAP1, and CTGF enhances the therapeutic efficacies of the first-line anticancer drugs. Taken together, AMOTL1 plays an oncogenic role in gastric carcinogenesis through interacting with YAP1 and promoting its nuclear accumulation. A combination of AMOTL1, YAP1, and CTGF expression might serve as a surrogate of Hippo activation status. The co-activation of the AMOTL1/YAP1–CTGF axis is associated with poor clinical outcomes of GC patients, and targeting this oncogenic axis may enhance the chemotherapeutic effects.
Collapse
|
49
|
Pan H, Pan J, Chen P, Gao J, Guo D, Yang Z, Ji L, Lv H, Guo Y, Xu D. WITHDRAWN: Circular RNA circUBA1 promotes gastric cancer proliferation and metastasis by acting as a competitive endogenous RNA through sponging miR-375 and regulating TEAD4. Cancer Lett 2020:S0304-3835(20)30085-9. [PMID: 32087308 DOI: 10.1016/j.canlet.2020.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Internal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Pan
- Department of Internal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengju Chen
- Department of Unit III & Ostomy Service, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongwei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhangru Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T, Shu Y. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer 2020; 19:6. [PMID: 31924214 PMCID: PMC6953272 DOI: 10.1186/s12943-019-1104-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. METHODS LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. RESULTS It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. CONCLUSIONS Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changsheng Yan
- Department of Gastroenterology, Institute for Microbial Ecology, School of Medicine, Xiamen University, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Shengwang Tian
- Department of Oncology, JinTan People's Hospital, Jintan, 213200, China
| | - Tongpeng Xu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yongqian Shu
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|