1
|
Germini D, Farhat R, Dadon L, Lacroix A, Nemati F, Rebollo A, Decaudin D, Wiels J, Brenner C. A translational study for biomarker identification of PEP-010, a pro-apoptotic peptide restoring apoptosis in cancer models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167492. [PMID: 39218274 DOI: 10.1016/j.bbadis.2024.167492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Affiliation(s)
- D Germini
- PEP-Therapy, 111 Avenue de France, 75013 Paris, France.
| | - R Farhat
- PEP-Therapy, 111 Avenue de France, 75013 Paris, France
| | - L Dadon
- PEP-Therapy, 111 Avenue de France, 75013 Paris, France
| | - A Lacroix
- PEP-Therapy, 111 Avenue de France, 75013 Paris, France
| | - F Nemati
- Translational Research Department, Laboratory of Preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - A Rebollo
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), INSERM U1267 - CNRS UMR8258, Université de Paris, Faculté de Pharmacie, France
| | - D Decaudin
- Translational Research Department, Laboratory of Preclinical Investigation, PSL University, Institut Curie, 26 rue d'Ulm, Paris 75248, France; Department of Medical Oncology, Institut Curie, 26 rue d'Ulm, Paris 75248, France
| | - J Wiels
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, 94805 Villejuif, France
| | - C Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, 94805 Villejuif, France.
| |
Collapse
|
2
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
3
|
Lin F, Liang X, Meng Y, Zhu Y, Li C, Zhou X, Hu S, Yi N, Lin Q, He S, Sun Y, Sheng J, Fan H, Li L, Peng L. Unmasking Protein Phosphatase 2A Regulatory Subunit B as a Crucial Factor in the Progression of Dilated Cardiomyopathy. Biomedicines 2024; 12:1887. [PMID: 39200351 PMCID: PMC11352103 DOI: 10.3390/biomedicines12081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure. Although significant progress has been made in elucidating the underlying mechanisms, further investigation is required for clarifying molecular diagnostic and therapeutic targets. In this study, we found that the mRNA level of protein phosphatase 2 regulatory subunit B' delta (Ppp2r5d) was altered in the peripheral blood plasma of DCM patients. Knockdown of Ppp2r5d in murine cardiomyocytes increased the intracellular levels of reactive oxygen species (ROS) and inhibited adenosine triphosphate (ATP) synthesis. In vivo knockdown of Ppp2r5d in an isoproterenol (ISO)-induced DCM mouse model aggravated the pathogenesis and ultimately led to heart failure. Mechanistically, Ppp2r5d-deficient cardiomyocytes showed an increase in phosphorylation of STAT3 at Y705 and a decrease in phosphorylation of STAT3 at S727. The elevated levels of phosphorylation at Y705 in STAT3 triggered the upregulation of interleukin 6 (IL6) expression. Moreover, the decreased phosphorylation at S727 in STAT3 disrupted mitochondrial electron transport chain function and dysregulated ATP synthesis and ROS levels. These results hereby reveal a novel role for Ppp2r5d in modulating STAT3 pathway in DCM, suggesting it as a potential target for the therapy of the disease.
Collapse
Affiliation(s)
- Fang Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yilei Meng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Yuping Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Chenyu Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Sangyu Hu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Na Yi
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Qin Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Siyu He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Yizhuo Sun
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Jie Sheng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Li Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Luying Peng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
4
|
Jiang L, Zhao Y, Liu F, Huang Y, Zhang Y, Yuan B, Cheng J, Yan P, Ni J, Jiang Y, Wu Q, Jiang X. Concomitant targeting of FLT3 and SPHK1 exerts synergistic cytotoxicity in FLT3-ITD + acute myeloid leukemia by inhibiting β-catenin activity via the PP2A-GSK3β axis. Cell Commun Signal 2024; 22:391. [PMID: 39113090 PMCID: PMC11304842 DOI: 10.1186/s12964-024-01774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Approximately 25-30% of patients with acute myeloid leukemia (AML) have FMS-like receptor tyrosine kinase-3 (FLT3) mutations that contribute to disease progression and poor prognosis. Prolonged exposure to FLT3 tyrosine kinase inhibitors (TKIs) often results in limited clinical responses due to diverse compensatory survival signals. Therefore, there is an urgent need to elucidate the mechanisms underlying FLT3 TKI resistance. Dysregulated sphingolipid metabolism frequently contributes to cancer progression and a poor therapeutic response. However, its relationship with TKI sensitivity in FLT3-mutated AML remains unknown. Thus, we aimed to assess mechanisms of FLT3 TKI resistance in AML. METHODS We performed lipidomics profiling, RNA-seq, qRT-PCR, and enzyme-linked immunosorbent assays to determine potential drivers of sorafenib resistance. FLT3 signaling was inhibited by sorafenib or quizartinib, and SPHK1 was inhibited by using an antagonist or via knockdown. Cell growth and apoptosis were assessed in FLT3-mutated and wild-type AML cell lines via Cell counting kit-8, PI staining, and Annexin-V/7AAD assays. Western blotting and immunofluorescence assays were employed to explore the underlying molecular mechanisms through rescue experiments using SPHK1 overexpression and exogenous S1P, as well as inhibitors of S1P2, β-catenin, PP2A, and GSK3β. Xenograft murine model, patient samples, and publicly available data were analyzed to corroborate our in vitro results. RESULTS We demonstrate that long-term sorafenib treatment upregulates SPHK1/sphingosine-1-phosphate (S1P) signaling, which in turn positively modulates β-catenin signaling to counteract TKI-mediated suppression of FLT3-mutated AML cells via the S1P2 receptor. Genetic or pharmacological inhibition of SPHK1 potently enhanced the TKI-mediated inhibition of proliferation and apoptosis induction in FLT3-mutated AML cells in vitro. SPHK1 knockdown enhanced sorafenib efficacy and improved survival of AML-xenografted mice. Mechanistically, targeting the SPHK1/S1P/S1P2 signaling synergizes with FLT3 TKIs to inhibit β-catenin activity by activating the protein phosphatase 2 A (PP2A)-glycogen synthase kinase 3β (GSK3β) pathway. CONCLUSIONS These findings establish the sphingolipid metabolic enzyme SPHK1 as a regulator of TKI sensitivity and suggest that combining SPHK1 inhibition with TKIs could be an effective approach for treating FLT3-mutated AML.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Glycogen Synthase Kinase 3 beta/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Animals
- Mice
- Protein Phosphatase 2/metabolism
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/antagonists & inhibitors
- Cell Line, Tumor
- Sorafenib/pharmacology
- Apoptosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Cell Proliferation/drug effects
- Drug Synergism
- Xenograft Model Antitumor Assays
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujiao Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyi Yuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Quan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wu CG, Balakrishnan VK, Merrill RA, Parihar PS, Konovolov K, Chen YC, Xu Z, Wei H, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Chung WK, Honkanen RE, Suzuki A, Huang X, Strack S, Xing Y. B56δ long-disordered arms form a dynamic PP2A regulation interface coupled with global allostery and Jordan's syndrome mutations. Proc Natl Acad Sci U S A 2024; 121:e2310727120. [PMID: 38150499 PMCID: PMC10769853 DOI: 10.1073/pnas.2310727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Ronald A. Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA52242
| | - Hui Wei
- The Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY10027
| | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
| | | | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02215
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Xuhui Huang
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| |
Collapse
|
6
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
8
|
Wu CG, Balakrishnan VK, Parihar PS, Konovolov K, Chen YC, Merrill RA, Wei H, Carragher B, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Honkanen R, Chung WK, Suzuki A, Strack S, Huang X, Xing Y. Extended regulation interface coupled to the allosteric network and disease mutations in the PP2A-B56δ holoenzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.530109. [PMID: 37066309 PMCID: PMC10103954 DOI: 10.1101/2023.03.09.530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Molecular and Cellular Pharmacology program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wei
- New York Structural biology Center, New York, NY 10027, USA
| | | | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Qiang Cui
- Department of Chemistry, Metcalf Center for Science & Engineering, Boston University, Boston, MA 02215, USA
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Richard Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuhui Huang
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Pavic K, Gupta N, Omella JD, Derua R, Aakula A, Huhtaniemi R, Määttä JA, Höfflin N, Okkeri J, Wang Z, Kauko O, Varjus R, Honkanen H, Abankwa D, Köhn M, Hytönen VP, Xu W, Nilsson J, Page R, Janssens V, Leitner A, Westermarck J. Structural mechanism for inhibition of PP2A-B56α and oncogenicity by CIP2A. Nat Commun 2023; 14:1143. [PMID: 36854761 PMCID: PMC9974998 DOI: 10.1038/s41467-023-36693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.
Collapse
Affiliation(s)
- Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nikhil Gupta
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- SyBioMa, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Anna Aakula
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Riikka Huhtaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Juha A Määttä
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland and Fimlab Laboratories, 33520, Tampere, Finland
| | - Nico Höfflin
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Juha Okkeri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Roosa Varjus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Henrik Honkanen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland and Fimlab Laboratories, 33520, Tampere, Finland
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Rebecca Page
- Department of Chemistry and Biochemistry University of Arizona, Tucson, AZ, USA
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
10
|
Callebaut A, Derua R, Overbergh L, Janssens V. 2D-DIGE Analysis of Liver Disease in Mice. Methods Mol Biol 2023; 2596:231-244. [PMID: 36378443 DOI: 10.1007/978-1-0716-2831-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. In this chapter, we describe our routine two-dimensional difference gel electrophoresis (2D-DIGE) workflow for analysis of mouse liver tissue in physiological conditions, as well as of mouse HCC. 2D-DIGE still constitutes a valuable comparative proteomics technique, not only providing information on global protein expression in a sample but also on potential posttranslational protein modifications, occurrence of protein degradation fragments, and the existence of protein isoforms. Thus, 2D-DIGE analysis provides highly complementary data to non-gel-based shotgun mass spectrometry (MS) methods (e.g., liquid chromatography (LC)-MS/MS)-allowing, for example, identification of novel protein biomarkers for HCC or increasing insights into the molecular mechanisms underlying hepatocarcinogenesis.
Collapse
Affiliation(s)
- Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, Department of Chronic Diseases & Metabolism, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- SyBioMa, Proteomics Core Facility KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, Department of Chronic Diseases & Metabolism, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
11
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
12
|
The Pivotal Role of Protein Phosphatase 2A (PP2A) in Brain Tumors. Int J Mol Sci 2022; 23:ijms232415717. [PMID: 36555359 PMCID: PMC9779694 DOI: 10.3390/ijms232415717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathology; interestingly, PP2A appears to be essential for controlling cell growth and may be involved in cancer development. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. To leverage the potential clinical utility of combination PP2A inhibition and radiotherapy treatment, it is vital that novel highly specific PP2A inhibitors be developed. In this review, the existing literature on the role of PP2A in brain tumors, especially in gliomas and glioblastoma (GBM), was analyzed. Interestingly, the review focused on the role of PP2A inhibitors, focusing on CIP2A inhibition, as CIP2A participated in tumor cell growth by stimulating cell-renewal survival, cellular proliferation, evasion of senescence and inhibition of apoptosis. This review suggested CIP2A inhibition as a promising strategy in oncology target therapy.
Collapse
|
13
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
Oyama N, Vaneynde P, Reynhout S, Pao EM, Timms A, Fan X, Foss K, Derua R, Janssens V, Chung W, Mirzaa GM. Clinical, neuroimaging and molecular characteristics of PPP2R5D-related neurodevelopmental disorders: an expanded series with functional characterisation and genotype-phenotype analysis. J Med Genet 2022; 60:511-522. [PMID: 36216457 DOI: 10.1136/jmg-2022-108713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.
Collapse
Affiliation(s)
- Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Emily M Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York City, New York, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,SyBioMa, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Wendy Chung
- Department of Pediatrics, Columbia University, New York City, New York, USA.,Department of Medicine, Columbia University, New York City, New York, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA .,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Anwar MI, Li N, Zhou Q, Chen M, Hu C, Wu T, Chen H, Li YP, Zhou Y. PPP2R5D promotes hepatitis C virus infection by binding to viral NS5B and enhancing viral RNA replication. Virol J 2022; 19:118. [PMID: 35836293 PMCID: PMC9284890 DOI: 10.1186/s12985-022-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection increased the risk of hepatocellular carcinoma. Identification of host factors required for HCV infection will help to unveil the HCV pathogenesis. Adaptive mutations that enable the replication of HCV infectious clones could provide hints that the mutation-carrying viral protein may specifically interact with some cellular factors essential for the HCV life cycle. Previously, we identified D559G mutation in HCV NS5B (RNA dependent RNA polymerase) important for replication of different genotype clones. Here, we searched for the factors that potentially interacted with NS5B and investigated its roles in HCV infection. METHODS Wild-type-NS5B and D559G-NS5B of HCV genotype 2a clone, J6cc, were ectopically expressed in hepatoma Huh7.5 cells, and NS5B-binding proteins were pulled down and identified by mass spectrometry. The necessity and mode of action of the selected cellular protein for HCV infection were explored by experiments including gene knockout or knockdown, complementation, co-immunoprecipitation (Co-IP), colocalization, virus infection and replication, and enzymatic activity, etc. RESULTS: Mass spectrometry identified a number of cellular proteins, of which protein phosphatase 2 regulatory subunit B'delta (PPP2R5D, the PP2A regulatory B subunit) was one of D559G-NS5B-pulled down proteins and selected for further investigation. Co-IP confirmed that PPP2R5D specifically interacted with HCV NS5B but not HCV Core and NS3 proteins, and D559G slightly enhanced the interaction. NS5B also colocalized with PPP2R5D in the endoplasmic reticulum. Knockdown and knockout of PPP2R5D decreased and abrogated HCV infection in Huh7.5 cells, respectively, while transient and stable expression of PPP2R5D in PPP2R5D-knockout cells restored HCV infection to a level close to that in wild-type Huh7.5 cells. Replicon assay revealed that PPP2R5D promoted HCV replication, but the phosphatase activity and catalytic subunit of PP2A were not affected by NS5B. CONCLUSIONS PPP2R5D interactes with HCV NS5B and is required for HCV infection in cultured hepatoma cells through facilitating HCV replication.
Collapse
Affiliation(s)
- Muhammad Ikram Anwar
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ni Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mingxiao Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengguang Hu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wu
- Department of Infectious Diseases, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Haihang Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Infectious Diseases, The Fifth Hospital of Sun Yat-Sen University, Zhuhai, China.
| | - Yuanping Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
17
|
Gu M, Tan M, Zhou L, Sun X, Lu Q, Wang M, Jiang H, Liang Y, Hou Q, Xue X, Xu Z, Dai C. Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury. Kidney Int 2022; 102:321-336. [PMID: 35483524 DOI: 10.1016/j.kint.2022.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
Energy metabolism is crucial in maintaining cellular homeostasis and adapting to stimuli for tubular cells. However, the underlying mechanisms remain largely unknown. Here, we report that PP2Acα was upregulated in damaged tubular cells from patients and animal models with acute or chronic kidney injury. Using in vitro and in vivo model, we demonstrated that PP2Acα induction in damaged tubular cells suppresses fatty acid oxidation and promotes glycolysis, leading to cell death and fibrosis. Mechanistically, we revealed that PP2Acα dephosphorylates ACC through interaction with B56δ, leading to the regulation of fatty acid oxidation. Furthermore, PP2Acα also dephosphorylates p-Glut1 (Thr478) and suppresses Trim21-mediated Glut1 ubiquitination and degradation, leading to the promotion of glucose intake and glycolysis. Thus, this study adds new insight into the tubular cell metabolic alterations in kidney diseases. PP2Acα may be a promising therapeutic target for kidney injury.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lu Zhou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaoli Sun
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qingmiao Lu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mingjie Wang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Liang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xian Xue
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhuo Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Dyson JJ, Abbasi F, Varadkar P, McCright B. Growth arrest of PPP2R5C and PPP2R5D double knockout mice indicates a genetic interaction and conserved function for these PP2A B subunits. FASEB Bioadv 2022; 4:273-282. [PMID: 35415460 PMCID: PMC8984082 DOI: 10.1096/fba.2021-00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric phosphatase that controls a wide range of cellular functions. The catalytic activity and intracellular location of PP2A are modulated by its association with regulatory B subunits, including B56 proteins, which are encoded by five separate genes in humans and mice. The specific effects of each B56 protein on PP2A activity and function are largely unknown. As part of an effort to identify specific PP2A-B56 functions, we created knockout strains of B56β, B56δ, and B56ε using CRISPR/Cas9n. We found that none of the individual B56 genes are essential for mouse survival. However, mice that have both B56δ and B56γ inactivated (B56δγ-), arrest fetal development around Day E12. The hearts of B56δγ- mice have a single outflow vessel rather than having both an aorta and a pulmonary artery. Thus, there appears to be strong genetic interaction between B56δ and B56γ, and together they are necessary for heart development. Of note, both these proteins have been shown to localize to the nucleus and have the most related peptide sequences of the B56 family members. Our results suggest there are B56 subfamilies, which work in conjunction to regulate specific PP2A functions.
Collapse
Affiliation(s)
- Jade J. Dyson
- FDACenter for Biologics Evaluation and ResearchSilver SpringMarylandUSA
| | - Fatima Abbasi
- FDACenter for Biologics Evaluation and ResearchSilver SpringMarylandUSA
| | - Prajakta Varadkar
- FDACenter for Biologics Evaluation and ResearchSilver SpringMarylandUSA
| | - Brent McCright
- FDACenter for Biologics Evaluation and ResearchSilver SpringMarylandUSA
| |
Collapse
|
19
|
Madaan P, Kaur A, Saini L, Paria P, Vyas S, Sharma AR, Sahu JK. PPP2R5D-Related Neurodevelopmental Disorder or Developmental and Epileptic Encephalopathy?: A Novel Phenotypic Description and Review of Published Cases. Neuropediatrics 2022; 53:20-25. [PMID: 34448180 DOI: 10.1055/s-0041-1733984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit B' delta (PPP2R5D)-related neurodevelopmental disorder is caused by pathogenic variations in the PPP2R5D gene, product of which is involved in dephosphorylation. This is a rare disorder with description limited to case reports. Its phenotypic spectrum has expanded over the last decade. METHODS We report a child with a developmental and epileptic encephalopathy phenotype with a pathogenic PPP2R5D variant. This phenotype has not been previously reported. We also reviewed the previously published reports of patients with this disorder. RESULTS Including the index child, 28 cases (15 girls) were identified from nine relevant research items for analysis. All patients had developmental delay. History of seizures was observed in seven patients while macrocephaly was seen in nearly 80% of patients. Nonneurological manifestations were observed in 13 patients with the most common one being ophthalmological manifestations. The most common genetic variation was c.G592A (p.E198K). The common phenotypic associations of this variation were developmental delay, macrocephaly (11/15), and epilepsy (6/15). CONCLUSION PPP2R5D gene variations should be suspected in children with developmental delay, autistic features, macrocephaly with or without epilepsy in the absence of any clear etiology. Dysmorphic features might provide a diagnostic clue. DEE phenotype may also be the presenting feature and might be an underreported entity.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amrit Kaur
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradip Paria
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit R Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitendra K Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
20
|
Chen C, Huang FW, Huang SS, Huang JS. IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating type V TGF-β receptor (TβR-V)-mediated tumor suppressor signaling. FASEB Bioadv 2021; 3:709-729. [PMID: 34485840 PMCID: PMC8409558 DOI: 10.1096/fba.2021-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The TGF-β type V receptor (TβR-V) mediates growth inhibition by IGFBP-3 and TGF-β in epithelial cells and loss of TβR-V expression in these cells leads to development of carcinoma. The mechanisms by which TβR-V mediates growth inhibition (tumor suppressor) signaling remain elusive. Previous studies revealed that IGFBP-3 and TGF-β inhibit growth in epithelial cells by stimulating TβR-V-mediated IRS-1/2-dependent activation and cytoplasm-to-nucleus translocation of IGFBP-3- or TGF-β-stimulated protein phosphatase (PPase), resulting in dephosphorylation of pRb-related proteins (p107, p130) or pRb, and growth arrest. To define the signaling, we characterized/identified the IGFBP-3- and TGF-β-stimulated PPases in cell lysates and nucleus fractions in Mv1Lu cells treated with IGFBP-3 and TGF-β, using a cell-free assay with 32P-labeled casein as a substrate. Both IGFBP-3- and TGF-β-stimulated PPase activities in cell lysates are abolished when cells are co-treated with TGF-β/IGFBP-3 antagonist or RAP (LRP-1/TβR-V antagonist). However, the IGFBP-3-stimulated PPase activity, but not TGF-β-stimulated PPase activity, is sensitive to inhibition by okadaic acid (OA). In addition, OA or PP2Ac siRNA reverses IGFBP-3 growth inhibition, but not TGF-β growth inhibition, in Mv1Lu and 32D cells. These suggest that IGFBP-3- and TGF-β-stimulated PPases are identical to PP2A and PP1, respectively. By Western blot/phosphorimager/immunofluorescence-microscopy analyses, IGFBP-3 and TGF-β stimulate TβR-V-mediated IRS-2-dependent activation and cytoplasm-to-nucleus translocation of PP2Ac and PP1c, resulting in dephosphorylation of p130/p107 and pRb, respectively, and growth arrest. Small molecule TGF-β enhancers, which potentiate TGF-β growth inhibition by enhancing TβR-I-TβR-II-mediated canonical signaling and thus activating TβR-V-mediated tumor suppressor signaling cascade (TβR-V/IRS-2/PP1/pRb), could be used to prevent and treat carcinoma.
Collapse
Affiliation(s)
- Chun‐Lin Chen
- Department of Biological ScienceNational Sun Yat‐sen UniversityKaohsiungTaiwan
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| | - Franklin W. Huang
- Division of Hematology and OncologyDepartment of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | | | - Jung San Huang
- Departments of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
21
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
22
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
23
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
24
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
25
|
Meeusen B, Cortesi EE, Domènech Omella J, Sablina A, Ventura JJ, Janssens V. PPP2R4 dysfunction promotes KRAS-mutant lung adenocarcinoma development and mediates opposite responses to MEK and mTOR inhibition. Cancer Lett 2021; 520:57-67. [PMID: 34216687 DOI: 10.1016/j.canlet.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
KRAS-mutant lung adenocarcinomas represent the largest molecular subgroup of non-small cell lung cancers (NSCLC) and are notorious for their dismal survival perspectives. To gain more insights in etiology and therapeutic response, we focused on the tumor suppressor Protein Phosphatase 2A (PP2A) as a player in KRAS oncogenic signaling. We report that the PP2A activator PTPA (encoded by PPP2R4) is commonly affected in NSCLC by heterozygous loss and low-frequent loss-of-function mutation, and this is specifically associated with poorer overall survival of KRAS-mutant lung adenocarcinoma patients. Reduced or mutant PPP2R4 expression in A549 cells increased anchorage-independent growth in vitro and xenograft growth in vivo, correlating with increased Ki67 and c-MYC expression. Moreover, KrasG12D-induced lung tumorigenesis was significantly accelerated in Ppp2r4 gene trapped mice as compared to Ppp2r4 wild-type. A confined kinase inhibitor screen revealed that PPP2R4-depletion induced resistance against selumetinib (MEK inhibitor), but unexpectedly sensitized cells for temsirolimus (mTOR inhibitor), in vitro and in vivo. Our findings underscore a clinically relevant role for PTPA loss-of-function in KRAS-mutant NSCLC etiology and kinase inhibitor response.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium; Laboratory for Mechanisms of Cell Transformation, VIB Center for Cancer Biology & Dept. Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell & Tissue Research, Dept. Imaging & Pathology, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium; KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
26
|
Lambrecht C, Ferreira GB, Omella JD, Libbrecht L, DE Vos R, Derua R, Mathieu C, Overbergh L, Waelkens E, Janssens V. Differential Proteomic Analysis of Hepatocellular Carcinomas from Ppp2r5d Knockout Mice and Normal (Knockout) Livers. Cancer Genomics Proteomics 2021; 17:669-685. [PMID: 33099469 DOI: 10.21873/cgp.20222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Mice lacking the tumor-suppressive protein phosphatase 2A subunit B56δ (Ppp2r5d) spontaneously develop HCC, correlating with increased c-MYC oncogenicity. MATERIALS AND METHODS We used two-dimensional difference gel electrophoresis-coupled matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify differential proteomes of livers from wild-type, non-cancerous and HCC-affected B56δ knockout mice. RESULTS A total of 23 proteins were differentially expressed/regulated in liver between wild-type and non-cancerous knockout mice, and 119 between non-cancerous and HCC knockout mice ('cancer proteins'). Overlap with our reported differential transcriptome data was poor. Overall, 56% of cancer proteins were reported before in HCC proteomics studies; 44% were novel. Gene Ontology analysis revealed cancer proteins mainly associated with liver metabolism (18%) and mitochondria (15%). Ingenuity Pathway Analysis identified 'cancer' and 'gastrointestinal disease' as top hits. CONCLUSION We identified several proteins for further exploration as novel potential HCC biomarkers, and independently underscored the relevance of Ppp2r5d knockout mice as a valuable hepatocarcinogenesis model.
Collapse
Affiliation(s)
- Caroline Lambrecht
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Gabriela Bomfim Ferreira
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Judit DomÈnech Omella
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Louis Libbrecht
- Department of Pathology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Rita DE Vos
- Translational Cell and Tissue Research, Department Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium .,LKI, KU Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
27
|
Chen L, Guo P, Li W, Fang F, Zhu W, Fan J, Wang F, Gao Y, Zhao Q, Wang Q, Xiao Y, Xing X, Li D, Shi T, Yu D, Aschner M, Zhang L, Chen W. Perturbation of Specific Signaling Pathways Is Involved in Initiation of Mouse Liver Fibrosis. Hepatology 2021; 73:1551-1569. [PMID: 32654205 DOI: 10.1002/hep.31457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS To identify the regulatory role of protein phosphatase 2A (PP2A) in the development of liver disease, we generated a mouse model with hepatocyte-specific deletion of Ppp2r1a gene (encoding PP2A Aα subunit). APPROACH AND RESULTS Homozygote (HO) mice and matched wild-type littermates were investigated at 3, 6, 9, 12, 15, and 18 months of age. Pathological examination showed that PP2A Aα deficiency in hepatocytes resulted in progressive liver fibrosis phenotype from 9 months of age. No hepatocyte death was observed in HO mice. However, perturbation of pathways including epidermal growth factor receptor 1 (EGFR1), amino acid metabolism, and translation factors as well as leptin and adiponectin led to pronounced hepatic fibrosis. In vitro studies demonstrated the involvement of specific B subunit complexes in the regulation of EGFR1 signaling pathway and cross talk between defected hepatocytes and stimulation of interstitial hyperplasia. It is noteworthy that HO mice failed to develop hepatocellular carcinoma for as long as 22 months of age. We further demonstrate that PP2A Aβ-containing holoenzymes played a critical role in preventing hepatocyte apoptosis and antagonizing tumorigenesis through specific pathways on Aα loss. Furthermore, PP2A Aα and Aβ were functionally distinct, and the Aβ isoform failed to substitute for Aα in the development of inflammation and liver fibrosis. CONCLUSIONS These observations identify pathways that contribute to the pathogenesis of liver fibrosis and provide putative therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Fei Fang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Junling Fan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangping Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Gao
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
The Cell Cycle Checkpoint System MAST(L)-ENSA/ARPP19-PP2A is Targeted by cAMP/PKA and cGMP/PKG in Anucleate Human Platelets. Cells 2020; 9:cells9020472. [PMID: 32085646 PMCID: PMC7072724 DOI: 10.3390/cells9020472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19–S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)–ENSA/ARPP19–PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.
Collapse
|
29
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
30
|
Xu K, Liu X, Yin D, Ren G, Zhao Y. PP2A alleviates oxidized LDL-induced endothelial dysfunction by regulating LOX-1/ROS/MAPK axis. Life Sci 2020; 243:117270. [PMID: 31923421 DOI: 10.1016/j.lfs.2020.117270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/25/2022]
Abstract
AIMS The purpose of this study is to investigate the effect of PP2A on the progression of AS and the special molecular mechanism. MAIN METHODS The expression of PP2A in Human umbilical vein endothelial cells (HUVECs) induced by different concentrations of Ox-LDL was measured by RT-PCR and Western blot. The binding activity of PP2A and LOX-1 was determined by CoIP assay. Western blot was used to measure the protein expression of VCAM-1, ICAM-1 and MCP-1. KEY FINDING The results revealed that the expression of PP2A was decreased with the increase of Ox-LDL concentration in HUVECs. Overexpression of PP2A alleviated Ox-LDL-induced dysfunction and inflammatory response in HUVECs. The results of Co-immunoprecipitation (CoIP) showed that PP2A had direct effect on LOX-1, and PP2A inhibited the expression of LOX-1. In addition, overexpression of LOX-1 reversed the inhibitory effect of PP2A on Ox-LDL-induced dysfunction and inflammatory response in HUVECs. What is more, PP2A inhibited LOX-1/ROS/MAPK axis. SIGNIFICANCE it suggests that PP2A alleviates Ox-LDL-induced dysfunction and inflammatory response of HUVECs potentially by regulating the LOX-1/ROS/MAPK axis,which suggests that PP2A has anti-inflammatory effect during the formation of as, and the molecular therapy of PP2A provides a theoretical basis.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Anesthesiology, China-Japan Union hospital JiLin University, Chang chun, JiLin 130033, China
| | - Xiwen Liu
- Department of vascular surgery, China-Japan Union hospital JiLin University, Chang chun, JiLin 130033, China
| | - Dexin Yin
- Department of vascular surgery, China-Japan Union hospital JiLin University, Chang chun, JiLin 130033, China
| | - Guanghao Ren
- Department of vascular surgery, China-Japan Union hospital JiLin University, Chang chun, JiLin 130033, China
| | - Yue Zhao
- Department of vascular surgery, China-Japan Union hospital JiLin University, Chang chun, JiLin 130033, China.
| |
Collapse
|
31
|
Farrington CC, Yuan E, Mazhar S, Izadmehr S, Hurst L, Allen-Petersen BL, Janghorban M, Chung E, Wolczanski G, Galsky M, Sears R, Sangodkar J, Narla G. Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49933-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Farrington CC, Yuan E, Mazhar S, Izadmehr S, Hurst L, Allen-Petersen BL, Janghorban M, Chung E, Wolczanski G, Galsky M, Sears R, Sangodkar J, Narla G. Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. J Biol Chem 2019; 295:757-770. [PMID: 31822503 DOI: 10.1074/jbc.ra119.011443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor protein phosphatase 2A (PP2A) is a serine/threonine phosphatase whose activity is inhibited in most human cancers. One of the best-characterized PP2A substrates is MYC proto-oncogene basic helix-loop-helix transcription factor (MYC), whose overexpression is commonly associated with aggressive forms of this disease. PP2A directly dephosphorylates MYC, resulting in its degradation. To explore the therapeutic potential of direct PP2A activation in a diverse set of MYC-driven cancers, here we used biochemical assays, recombinant cell lines, gene expression analyses, and immunohistochemistry to evaluate a series of first-in-class small-molecule activators of PP2A (SMAPs) in Burkitt lymphoma, KRAS-driven non-small cell lung cancer, and triple-negative breast cancer. In all tested models of MYC-driven cancer, the SMAP treatment rapidly and persistently inhibited MYC expression through proteasome-mediated degradation, inhibition of MYC transcriptional activity, decreased cancer cell proliferation, and tumor growth inhibition. Importantly, we generated a series of cell lines expressing PP2A-dependent phosphodegron variants of MYC and demonstrated that the antitumorigenic activity of SMAPs depends on MYC degradation. Collectively, the findings presented here indicate a pharmacologically tractable approach to drive MYC degradation by using SMAPs for the management of a broad range of MYC-driven cancers.
Collapse
Affiliation(s)
| | - Eric Yuan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sahar Mazhar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sudeh Izadmehr
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lauren Hurst
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Brittany L Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Eric Chung
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Grace Wolczanski
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Matthew Galsky
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rosalie Sears
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
33
|
Kauko O, O'Connor CM, Kulesskiy E, Sangodkar J, Aakula A, Izadmehr S, Yetukuri L, Yadav B, Padzik A, Laajala TD, Haapaniemi P, Momeny M, Varila T, Ohlmeyer M, Aittokallio T, Wennerberg K, Narla G, Westermarck J. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci Transl Med 2019; 10:10/450/eaaq1093. [PMID: 30021885 DOI: 10.1126/scitranslmed.aaq1093] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/21/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.
Collapse
Affiliation(s)
- Otto Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Institute of Biomedicine, University of Turku, 20520 Turku, Finland.,TuBS and TuDMM Doctoral Programmes, University of Turku, 20520 Turku, Finland
| | - Caitlin M O'Connor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7285, USA
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Aakula
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sudeh Izadmehr
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laxman Yetukuri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Artur Padzik
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Teemu Daniel Laajala
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Pekka Haapaniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Taru Varila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Goutham Narla
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7285, USA
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
34
|
Kumar P, Tathe P, Chaudhary N, Maddika S. PPM1G forms a PPP-type phosphatase holoenzyme with B56δ that maintains adherens junction integrity. EMBO Rep 2019; 20:e46965. [PMID: 31432583 PMCID: PMC6776900 DOI: 10.15252/embr.201846965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Serine/threonine phosphatases achieve substrate diversity by forming distinct holoenzyme complexes in cells. Although the PPP family of serine/threonine phosphatase family members such as PP1 and PP2A are well known to assemble and function as holoenzymes, none of the PPM family members were so far shown to act as holoenzymes. Here, we provide evidence that PPM1G, a member of PPM family of serine/threonine phosphatases, forms a distinct holoenzyme complex with the PP2A regulatory subunit B56δ. B56δ promotes the re-localization of PPM1G to the cytoplasm where the phosphatase can access a discrete set of substrates. Further, we unveil α-catenin, a component of adherens junction, as a new substrate for the PPM1G-B56 phosphatase complex in the cytoplasm. B56δ-PPM1G dephosphorylates α-catenin at serine 641, which is necessary for the appropriate assembly of adherens junctions and the prevention of aberrant cell migration. Collectively, we reveal a new holoenzyme with PPM1G-B56δ as integral components, in which the regulatory subunit provides accessibility to distinct substrates for the phosphatase by defining its cellular localization.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Prajakta Tathe
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Neelam Chaudhary
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| |
Collapse
|
35
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Elgendy M, Cirò M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, Budillon A, Pelicci PG, Janssens V, Ogris M, Baccarini M, Lanfrancone L, Weckwerth W, Foiani M, Minucci S. Combination of Hypoglycemia and Metformin Impairs Tumor Metabolic Plasticity and Growth by Modulating the PP2A-GSK3β-MCL-1 Axis. Cancer Cell 2019; 35:798-815.e5. [PMID: 31031016 DOI: 10.1016/j.ccell.2019.03.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/05/2019] [Accepted: 03/27/2019] [Indexed: 01/09/2023]
Abstract
Tumor cells may adapt to metabolic challenges by alternating between glycolysis and oxidative phosphorylation (OXPHOS). To target this metabolic plasticity, we combined intermittent fasting, a clinically feasible approach to reduce glucose availability, with the OXPHOS inhibitor metformin. In mice exposed to 24-h feeding/fasting cycles, metformin impaired tumor growth only when administered during fasting-induced hypoglycemia. Synergistic anti-neoplastic effects of the metformin/hypoglycemia combination were mediated by glycogen synthase kinase 3β (GSK3β) activation downstream of PP2A, leading to a decline in the pro-survival protein MCL-1, and cell death. Mechanistically, specific activation of the PP2A-GSK3β axis was the sum of metformin-induced inhibition of CIP2A, a PP2A suppressor, and of upregulation of the PP2A regulatory subunit B56δ by low glucose, leading to an active PP2A-B56δ complex with high affinity toward GSK3β.
Collapse
Affiliation(s)
- Mohamed Elgendy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy.
| | - Marco Cirò
- Experimental Therapeutics Program, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | - Amir Hosseini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- Experimental Therapeutics Program, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | - Riccardo Cazzoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea DeCensi
- Medical Oncology Unit, Ospedali Galliera, 16128 Genova, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Ogris
- Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Manuela Baccarini
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marco Foiani
- Experimental Therapeutics Program, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, via Adamello 16, 20139 Milan, Italy; Department of Biosciences, University of Milan, 20100 Milan, Italy.
| |
Collapse
|
37
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
39
|
Allen-Petersen BL, Risom T, Feng Z, Wang Z, Jenny ZP, Thoma MC, Pelz KR, Morton JP, Sansom OJ, Lopez CD, Sheppard B, Christensen DJ, Ohlmeyer M, Narla G, Sears RC. Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:209-219. [PMID: 30389701 PMCID: PMC6318036 DOI: 10.1158/0008-5472.can-18-0717] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022]
Abstract
In cancer, kinases are often activated and phosphatases suppressed, leading to aberrant activation of signaling pathways driving cellular proliferation, survival, and therapeutic resistance. Although pancreatic ductal adenocarcinoma (PDA) has historically been refractory to kinase inhibition, therapeutic activation of phosphatases is emerging as a promising strategy to restore balance to these hyperactive signaling cascades. In this study, we hypothesized that phosphatase activation combined with kinase inhibition could deplete oncogenic survival signals to reduce tumor growth. We screened PDA cell lines for kinase inhibitors that could synergize with activation of protein phosphatase 2A (PP2A), a tumor suppressor phosphatase, and determined that activation of PP2A and inhibition of mTOR synergistically increase apoptosis and reduce oncogenic phenotypes in vitro and in vivo. This combination treatment resulted in suppression of AKT/mTOR signaling coupled with reduced expression of c-MYC, an oncoprotein implicated in tumor progression and therapeutic resistance. Forced expression of c-MYC or loss of PP2A B56α, the specific PP2A subunit shown to negatively regulate c-MYC, increased resistance to mTOR inhibition. Conversely, decreased c-MYC expression increased the sensitivity of PDA cells to mTOR inhibition. Together, these studies demonstrate that combined targeting of PP2A and mTOR suppresses proliferative signaling and induces cell death and implicates this combination as a promising therapeutic strategy for patients with PDA. SIGNIFICANCE: These findings present a combinatorial strategy targeting serine/threonine protein phosphatase PP2A and mTOR in PDA, a cancer for which there are currently no targeted therapeutic options.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/209/F1.large.jpg.
Collapse
Affiliation(s)
- Brittany L Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Tyler Risom
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Zipei Feng
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Zhiping Wang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Zina P Jenny
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Mary C Thoma
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Katherine R Pelz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Charles D Lopez
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, Oregon
| | - Brett Sheppard
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | | | | | - Goutham Narla
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
40
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
41
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|