1
|
Mariniello K, Pittaway JFH, Altieri B, Borges KS, Hadjidemetriou I, Ribeiro C, Ruiz-Babot G, Lim JA, Foster J, Cleaver J, Sosabowski J, Rahman N, Doroszko M, Hantel C, Sigala S, Abate A, Tamburello M, Kiseljak-Vassiliades K, Wierman M, Parvanta L, Abdel-Aziz TE, Chung TT, Di Marco A, Palazzo F, Gomez-Sanchez CE, Taylor DR, Rayner O, Ronchi CL, Gaston-Massuet C, Sbiera S, Drake WM, Rognoni E, Kroiss M, Breault DT, Fassnacht M, Guasti L. Dlk1 is a novel adrenocortical stem/progenitor cell marker that predicts malignancy in adrenocortical carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609117. [PMID: 39229217 PMCID: PMC11370565 DOI: 10.1101/2024.08.22.609117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Disruption of processes involved in tissue development and homeostatic self-renewal is increasingly implicated in cancer initiation, progression, and recurrence. The adrenal cortex is a dynamic tissue that undergoes life-long turnover. Here, using genetic fate mapping and murine adrenocortical carcinoma (ACC) models, we have identified a population of adrenocortical stem cells that express delta-like non-canonical Notch ligand 1 (DLK1). These cells are active during development, near dormant postnatally but are re-expressed in ACC. In a study of over 200 human ACC samples, we have shown DLK1 expression is ubiquitous and is an independent prognostic marker of recurrence-free survival. Paradoxically, despite its progenitor role, spatial transcriptomic analysis has identified DLK1 expressing cell populations to have increased steroidogenic potential in human ACC, a finding also observed in four human and one murine ACC cell lines. Finally, the cleavable DLK1 ectodomain is measurable in patients' serum and can discriminate between ACC and other adrenal pathologies with high sensitivity and specificity to aid in diagnosis and follow-up of ACC patients. These data demonstrate a prognostic role for DLK1 in ACC, detail its hierarchical expression in homeostasis and oncogenic transformation and propose a role for its use as a biomarker in this malignancy.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James F H Pittaway
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technical, University Dresden, Dresden, Germany
| | - Jiang A Lim
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julie Foster
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Julie Cleaver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jane Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Nafis Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milena Doroszko
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| | - Margaret Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, United Kingdom
| | - Tarek E Abdel-Aziz
- Department of Surgery, University College London Hospitals NHS Foundation Trust, London NW1 2PG, United Kingdom
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, United Kingdom
| | - Aimee Di Marco
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - David R Taylor
- Department of Clinical Biochemistry (Synnovis Analytics), King's College Hospital, London SE5 9RS, United Kingdom
| | - Oliver Rayner
- Department of Clinical Biochemistry (Synnovis Analytics), King's College Hospital, London SE5 9RS, United Kingdom
| | - Cristina L Ronchi
- Institute of Metabolism and System Research College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - William M Drake
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, 80336 München, Germany
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Cioppi F, Cantini G, Ercolino T, Chetta M, Zanatta L, Nesi G, Mannelli M, Maggi M, Canu L, Luconi M. Targeted Next Generation Sequencing molecular profiling and its clinical application in adrenocortical cancer. Eur J Endocrinol 2024; 191:17-30. [PMID: 38917236 DOI: 10.1093/ejendo/lvae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Adrenal cortical carcinoma (ACC) is a rare malignancy with a generally poor but heterogeneous prognosis, especially depending on the tumour stage at diagnosis. Identification of somatic gene alterations combined with clinical/histopathological evaluation of the tumour can help improve prognostication. We applied a simplified targeted-Next-Generation Sequencing (NGS) panel to characterise the mutational profiles of ACCs, providing potentially relevant information for better patient management. DESIGN AND METHODS Thirty frozen tumour specimens from a local ACC series were retrospectively analysed by a custom-NGS panel (CDKN2A, CTNNB1, DAXX, MED12, NF1, PRKAR1A, RB1, TERT, TP53, ZNRF3) to detect somatic prioritised single-nucleotide variants. This cohort was integrated with 86 patients from the ACC-TCGA series bearing point-mutations in the same genes and their combinations identified by our panel. Primary endpoints of the analysis on the total cohort (113 patients) were overall survival (OS) and progression-free survival (PFS), and hazard ratio (HR) for the different alterations grouped by the signalling pathways/combinations affected. RESULTS Different PFS, OS, and HR were associated to the different pathways/combinations, being NF1 + TP53 and Wnt/β-catenin + Rb/p53 combined mutations the most deleterious, with a statistical significance for progression HR which is retained only in low-(I/II) stages-NF1 + TP53 combination: HR = 2.96[1.01-8.69] and HR = 13.23[3.15-55.61], all and low stages, respectively; Wnt/β-catenin + Rb/p53 combined pathways: HR = 6.47[2.54-16.49] and HR = 16.24[3.87-68.00], all and low-stages, respectively. CONCLUSIONS A simplified targeted-NGS approach seems the best routinely applicable first step towards somatic genetic characterisation of ACC for prognostic assessment. This approach proved to be particularly promising in low-stage cases, suggesting the need for more stringent surveillance and personalised treatment.
Collapse
Affiliation(s)
- Francesca Cioppi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
| | - Giulia Cantini
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Massimiliano Chetta
- Medical Genetics, Azienda Ospedaliera di Rilievo Nazionale (A.O.R.N.) Cardarelli, Padiglione, 80131 Naples, Italy
| | - Lorenzo Zanatta
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Massimo Mannelli
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Mario Maggi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Letizia Canu
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Michaela Luconi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| |
Collapse
|
3
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Warde KM, Smith LJ, Basham KJ. Age-related Changes in the Adrenal Cortex: Insights and Implications. J Endocr Soc 2023; 7:bvad097. [PMID: 37564884 PMCID: PMC10410302 DOI: 10.1210/jendso/bvad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological function. This process affects all organs including the adrenal cortex, which normally functions to produce essential steroid hormones including mineralocorticoids, glucocorticoids, and androgens. With increasing age, features such as reduced adrenal cortex size, altered zonation, and increased myeloid immune cell infiltration substantially alter the structure and function of the adrenal cortex. Many of these hallmark features of adrenal cortex aging occur both in males and females, yet are more enhanced in males. Hormonally, a substantial reduction in adrenal androgens is a key feature of aging, which is accompanied by modest changes in aldosterone and cortisol. These hormonal changes are associated with various pathological consequences including impaired immune responses, decreased bone health, and accelerated age-related diseases. One of the most notable changes with adrenal aging is the increased incidence of adrenal tumors, which is sex dimorphic with a higher prevalence in females. Increased adrenal tumorigenesis with age is likely driven by both an increase in genetic mutations as well as remodeling of the tissue microenvironment. Novel antiaging strategies offer a promising avenue to mitigate adrenal aging and alleviate age-associated pathologies, including adrenal tumors.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Sedlack AJH, Hatfield SJ, Kumar S, Arakawa Y, Roper N, Sun NY, Nilubol N, Kiseljak-Vassiliades K, Hoang CD, Bergsland EK, Hernandez JM, Pommier Y, del Rivero J. Preclinical Models of Adrenocortical Cancer. Cancers (Basel) 2023; 15:2873. [PMID: 37296836 PMCID: PMC10251941 DOI: 10.3390/cancers15112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Adrenocortical cancer is an aggressive endocrine malignancy with an incidence of 0.72 to 1.02 per million people/year, and a very poor prognosis with a five-year survival rate of 22%. As an orphan disease, clinical data are scarce, meaning that drug development and mechanistic research depend especially on preclinical models. While a single human ACC cell line was available for the last three decades, over the last five years, many new in vitro and in vivo preclinical models have been generated. Herein, we review both in vitro (cell lines, spheroids, and organoids) and in vivo (xenograft and genetically engineered mouse) models. Striking leaps have been made in terms of the preclinical models of ACC, and there are now several modern models available publicly and in repositories for research in this area.
Collapse
Affiliation(s)
- Andrew J. H. Sedlack
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samual J. Hatfield
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nai-Yun Sun
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80016, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emily K. Bergsland
- University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | | | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Hofstedter R, Sanabria-Salas MC, Di Jiang M, Ezzat S, Mete O, Kim RH. FLCN-Driven Functional Adrenal Cortical Carcinoma with High Mitotic Tumor Grade: Extending the Endocrine Manifestations of Birt-Hogg-Dubé Syndrome. Endocr Pathol 2023:10.1007/s12022-023-09748-2. [PMID: 36701047 DOI: 10.1007/s12022-023-09748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Adrenal cortical carcinoma is an aggressive and rare malignancy of steroidogenic cells of the adrenal gland. Most adult adrenal cortical carcinomas are sporadic, but a small fraction may be associated with inherited tumor syndromes, such as Li-Fraumeni, multiple endocrine neoplasia 1, Lynch syndrome, and Beckwith-Wiedemann syndrome, as well as isolated case reports of non-syndromic manifestations occurring in the context of other pathogenic germline variants. Birt-Hogg-Dubé (BHD) is a rare autosomal dominant syndrome caused by germline pathogenic variants in the FLCN gene. BHD syndrome causes a constellation of symptoms, including cutaneous manifestations, pulmonary cysts and pneumothorax, and risk of renal tumors. With the exception of a single case of adrenal cortical carcinoma, very few reports on the occurrence of adrenal cortical neoplasia in patients with BHD syndrome have been described. However, information on variant allele fraction in the tumor was not available in the index case, which precludes any mechanism supporting loss of heterozygosity. Here we present a case of an adult-onset adrenal cortical carcinoma in a 50-year-old female, found to harbor a germline likely pathogenic variant in the FLCN gene, denoted as c.694C > T (p.Gln232Ter). Genetic testing on the tumor revealed the same FLCN variant at an allele fraction of 83%, suggesting a contributory role to the pathogenesis of the adrenal cortical carcinoma. This case further supports the expansion of the clinical presentation and tumor spectrum of BHD syndrome and the need to consider germline FLCN testing in the clinical genetic workup of patients with adrenal cortical carcinomas.
Collapse
Affiliation(s)
- Renee Hofstedter
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - María Carolina Sanabria-Salas
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2C1, Canada
| | - Maria Di Jiang
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2C1, Canada
| | - Shereen Ezzat
- Endocrine Oncology Site Group, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto General Hospital, 11th floor, Toronto, ON, M5G 2C4, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Raymond H Kim
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2C1, Canada.
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
7
|
Dufour D, Dumontet T, Sahut-Barnola I, Carusi A, Onzon M, Pussard E, Wilmouth JJ, Olabe J, Lucas C, Levasseur A, Damon-Soubeyrand C, Pointud JC, Roucher-Boulez F, Tauveron I, Bossis G, Yeh ET, Breault DT, Val P, Lefrançois-Martinez AM, Martinez A. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat Commun 2022; 13:7858. [PMID: 36543805 PMCID: PMC9772323 DOI: 10.1038/s41467-022-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.
Collapse
Affiliation(s)
- Damien Dufour
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Typhanie Dumontet
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Sahut-Barnola
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aude Carusi
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Méline Onzon
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Eric Pussard
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Physiologie et Physiopathologie Endocriniennes, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - James Jr Wilmouth
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Julie Olabe
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécily Lucas
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Adrien Levasseur
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Christelle Damon-Soubeyrand
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Jean-Christophe Pointud
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Florence Roucher-Boulez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Igor Tauveron
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Service d'Endocrinologie, Centre Hospitalier Universitaire Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Edward T Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pierre Val
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne-Marie Lefrançois-Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Antoine Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
8
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
9
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
10
|
Ruggiero C, Doghman-Bouguerra M, Lalli E. How good are the current models of adrenocortical carcinoma for novel drug discovery? Expert Opin Drug Discov 2021; 17:211-213. [PMID: 34666583 DOI: 10.1080/17460441.2022.1993817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR, Valbonne, France.,Université Côte d'Azur, Valbonne, France
| | - Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR, Valbonne, France.,Université Côte d'Azur, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR, Valbonne, France.,Université Côte d'Azur, Valbonne, France.,Inserm, Valbonne, France
| |
Collapse
|
11
|
Adjuvant platinum-based chemotherapy in radically resected adrenocortical carcinoma: a cohort study. Br J Cancer 2021; 125:1233-1238. [PMID: 34400803 PMCID: PMC8548516 DOI: 10.1038/s41416-021-01513-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND After radical resection, patients with adrenocortical carcinoma (ACC) frequently experience recurrence and, therefore, effective adjuvant treatment is urgently needed. The aim of the study was to investigate the role of adjuvant platinum-based therapy. METHODS In this retrospective multicentre cohort study, we identified patients treated with adjuvant platinum-based chemotherapy after radical resection and compared them with patients without adjuvant chemotherapy. Recurrence-free and overall survival (RFS/OS) were investigated in a matched group analysis and by applying a propensity score matching using the full control cohort (n = 268). For both approaches, we accounted for immortal time bias. RESULTS Of the 31 patients in the platinum cohort (R0 n = 25, RX n = 4, R1 n = 2; ENSAT Stage II n = 11, III n = 16, IV n = 4, median Ki67 30%, mitotane n = 28), 14 experienced recurrence compared to 29 of 31 matched controls (median RFS after the landmark at 3 months 17.3 vs. 7.3 months; adjusted HR 0.19 (95% CI 0.09-0.42; P < 0.001). Using propensity score matching, the HR for RFS was 0.45 (0.29-0.89, P = 0.021) and for OS 0.25 (0.09-0.69; P = 0.007). CONCLUSIONS Our study provides the first evidence that adjuvant platinum-based chemotherapy may be associated with prolonged recurrence-free and overall survival in patients with ACC and a very high risk for recurrence.
Collapse
|
12
|
Alyateem G, Nilubol N. Current Status and Future Targeted Therapy in Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:613248. [PMID: 33732213 PMCID: PMC7957049 DOI: 10.3389/fendo.2021.613248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The current treatment standards include complete surgical resection for localized resectable disease and systemic therapy with mitotane alone or in combination with etoposide, doxorubicin, and cisplatin in patients with advanced ACC. However, the efficacy of systemic therapy in ACC is very limited, with high rates of toxicities. The understanding of altered molecular pathways is critically important to identify effective treatment options that currently do not exist. In this review, we discuss the results of recent advanced in molecular profiling of ACC with the focus on dysregulated pathways from various genomic and epigenetic dysregulation. We discuss the potential translational therapeutic implication of molecular alterations. In addition, we review and summarize the results of recent clinical trials and ongoing trials.
Collapse
|
13
|
Francis JC, Gardiner JR, Renaud Y, Chauhan R, Weinstein Y, Gomez-Sanchez C, Lefrançois-Martinez AM, Bertherat J, Val P, Swain A. HOX genes promote cell proliferation and are potential therapeutic targets in adrenocortical tumours. Br J Cancer 2020; 124:805-816. [PMID: 33214683 PMCID: PMC7884796 DOI: 10.1038/s41416-020-01166-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Understanding the pathways that drive adrenocortical carcinoma (ACC) is essential to the development of more effective therapies. This study investigates the role of the transcription factor HOXB9 and other HOX factors in ACC and its treatment. Methods We used transgenic mouse models to determine the role of Hoxb9 in adrenal tumour development. Patient transcriptomic data was analysed for the expression of HOX genes and their association with disease. Drug response studies on various adrenocortical models were done to establish novel therapeutic options. Results Our human ACC dataset analyses showed high expression of HOXB9, and other HOX factors, are associated with poorer prognosis. Transgenic overexpression of Hoxb9 in the adrenal cortex of mice with activated Ctnnb1 led to larger adrenal tumours. This phenotype was preferentially observed in male mice and was characterised by more proliferating cells and an increase in the expression of cell cycle genes, including Ccne1. Adrenal tumour cells were found to be dependent on HOX function for survival and were sensitive to a specific peptide inhibitor. Conclusions These studies show Hoxb9 can promote adrenal tumour progression in a sex-dependent manner and have identified HOX factors as potential drug targets, leading to novel therapeutic approaches in ACC.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, UK
| | - Jennifer R Gardiner
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, UK
| | - Yoan Renaud
- Genétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Ritika Chauhan
- Tumour Profiling Unit, The Institute of Cancer Research, 237 Fulham Road, London, UK
| | - Yacob Weinstein
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Celso Gomez-Sanchez
- Division of Endocrinology, Medical Service, G.V. (Sonny) Montgomery VA Medical Center, 1500 E. Woodrow Wilson Dr, Jackson, MS, 39216, USA
| | - Anne-Marie Lefrançois-Martinez
- Genétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Jérôme Bertherat
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes, UMR-S1016, 75014, Paris, France
| | - Pierre Val
- Genétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Amanda Swain
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, UK.
| |
Collapse
|
14
|
Duan K, Gucer H, Kefeli M, Asa SL, Winer DA, Mete O. Immunohistochemical Analysis of the Metabolic Phenotype of Adrenal Cortical Carcinoma. Endocr Pathol 2020; 31:231-238. [PMID: 32367334 DOI: 10.1007/s12022-020-09624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metabolic reprogramming is a cellular process contributing to carcinogenesis. However, it remains poorly understood in adrenal cortical carcinoma (ACC), an aggressive malignancy with overall poor prognosis and limited therapeutic options. We characterized the metabolic phenotype of ACC, by examining the immunoprofile of key proteins involved in glucose metabolism, hexokinase (HK1), pyruvate kinase (PKM1, PKM2), succinate dehydrogenase (SDHB), and phospho-S6 ribosomal protein (pS6), in a tissue microarray of 137 adrenal cortical tissue samples. Protein expression was compared between ACC (n = 42), adrenal cortical adenoma (ACA; n = 50), and normal adrenal cortical tissue samples (n = 45). Cytoplasmic expression of HK1 and PKM2 was significantly higher in ACC than in ACA (p < 0.001 and p = 0.014, respectively) or normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). Expression of HK1 and PKM2 was also higher in ACA than in normal adrenal cortical tissue samples (p < 0.001 and p < 0.001, respectively). PKM1 expression was overall low in ACC, ACA, and normal samples, although expression of PKM1 was higher in ACC than in ACA (p = 0.027). There was no loss of cytoplasmic granular SDHB expression in our cohort of adrenal cortical tumors, and cytoplasmic expression of pS6 was lower in ACC than in ACA (p = 0.003) or normal adrenal cortical tissue samples (p = 0.008). Significantly, HK1 expression correlated with pyruvate kinase isoform (PKM2 and PKM1) expression (p < 0.001 and p = 0.007, respectively). Although functional validation was not performed, this study provides further evidence that metabolic reprogramming and altered glucose metabolism may occur in a subset of ACC through overexpression of intracellular glycolytic enzymes, notably HK1 and PKM2. The possibility of utilizing the reprogrammed glucose metabolism in ACC for novel therapeutic strategies should be explored in future studies.
Collapse
Affiliation(s)
- Kai Duan
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hasan Gucer
- Department of Pathology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mehmet Kefeli
- Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| | - Sylvia L Asa
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Daniel A Winer
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Canada
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, USA
| | - Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
16
|
Borges KS, Pignatti E, Leng S, Kariyawasam D, Ruiz-Babot G, Ramalho FS, Taketo MM, Carlone DL, Breault DT. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 2020; 39:5282-5291. [PMID: 32561853 PMCID: PMC7378041 DOI: 10.1038/s41388-020-1358-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options. The lack of mouse models that recapitulate the genetics of ACC has hampered progress in the field. We analyzed The Cancer Genome Atlas (TCGA) dataset for ACC and found that patients harboring alterations in both p53/Rb and Wnt/β-catenin signaling pathways show a worse prognosis compared with patients that harbored alterations in only one. To model this, we utilized the Cyp11b2(AS)Cre mouse line to generate mice with adrenocortical-specific Wnt/β-catenin activation, Trp53 deletion, or the combination of both. Mice with targeted Wnt/β-catenin activation or Trp53 deletion showed no changes associated with tumor formation. In contrast, alterations in both pathways led to ACC with pulmonary metastases. Similar to ACCs in humans, these tumors produced increased levels of corticosterone and aldosterone and showed a high proliferation index. Gene expression analysis revealed that mouse tumors exhibited downregulation of Star and Cyp11b1 and upregulation of Ezh2, similar to ACC patients with a poor prognosis. Altogether, these data show that altering both Wnt/β-catenin and p53/Rb signaling is sufficient to drive ACC in mouse. This autochthonous model of ACC represents a new tool to investigate the biology of ACC and to identify new treatment strategies.
Collapse
Affiliation(s)
- Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Dulanjalee Kariyawasam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Fernando Silva Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8506, Japan
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Kar A, Wierman ME, Kiseljak-Vassiliades K. Update on in-vivo preclinical research models in adrenocortical carcinoma. Curr Opin Endocrinol Diabetes Obes 2020; 27:170-176. [PMID: 32304391 PMCID: PMC8103733 DOI: 10.1097/med.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize recent advances on development of in vivo preclinical models of adrenocortical carcinoma (ACC). RECENT FINDINGS Significant progress has been achieved in the underlying molecular mechanisms of adrenocortical tumorigenesis over the last decade, and recent comprehensive profiling analysis of ACC tumors identified several genetic and molecular drivers of this disease. Therapeutic breakthroughs, however, have been limited because of the lack of preclinical models recapitulating the molecular features and heterogeneity of the tumors. Recent publications on genetically engineered mouse models and development of patient-derived ACC xenografts in both nude mice and humanized mice now provide researchers with novel tools to explore therapeutic targets in the context of heterogeneity and tumor microenvironment in human ACC. SUMMARY We review current in-vivo models of ACC and discuss potential therapeutic opportunities that have emerged from these studies.
Collapse
Affiliation(s)
- Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
18
|
Cluzet V, Devillers MM, Petit F, Chauvin S, François CM, Giton F, Genestie C, di Clemente N, Cohen-Tannoudji J, Guigon CJ. Aberrant granulosa cell-fate related to inactivated p53/Rb signaling contributes to granulosa cell tumors and to FOXL2 downregulation in the mouse ovary. Oncogene 2019; 39:1875-1890. [DOI: 10.1038/s41388-019-1109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
|
19
|
Bie J, Liu K, Song G, Hu X, Xiong R, Zhang X, Shi X, Wang Z. ENST00000489707.5 Is a Preferred Alternative Splicing Variant of PTK7 in Adrenocortical Cancer and Shows Potential Prognostic Value. Med Sci Monit 2019; 25:8326-8334. [PMID: 31689287 PMCID: PMC6857428 DOI: 10.12659/msm.919818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the transcript preference of PTK7 in adrenocortical cancer (ACC), the prognostic value, and the potential underlying genetic alterations. Material/Methods Data from the Cancer Genome Atlas-Adrenocortical Cancer (TCGA-ACC) and the Genotype-Tissue Expression (GTEx)-normal adrenal gland were used for analysis. Results A non-canonical alternative transcript, ENST00000489707.5, which only encodes an extracellular immunoglobulin (Ig)-like domain and an intracellular kinase domain, is the dominant isoform of PTK7 in both ACC and normal adrenal gland. Its expression percentage was significantly higher in ACC than in normal adrenal gland. ACC tissues showed preferred expression of this transcript compared with other cancers with known PTK7 expression. Prognostic analysis showed that ENST00000489707.5 had independent prognostic value in progression-free survival (PFS) (HR: 1.227, 95%CI: 1.077–1.398, p=0.002) and disease-specific survival (DSS) (HR: 1.419, 95%CI: 1.154–1.745, p=0.001) after adjustment of other risk factors. cg20819617 methylation was negatively correlated with both PTK7 and ENST00000489707.5 expression. Conclusions ENST00000489707.5 is a preferred alternative splicing product of PTK7, with a significantly increased proportion in ACC compared with other cancers. Its expression shows potential prognostic value in terms of PFS and DSS in ACC patients. The methylation status of cg20819617 might play a critical role in modulating PTK7 transcription and ENST00000489707.5 expression.
Collapse
Affiliation(s)
- Jun Bie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland).,Cancer Center, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Guiqin Song
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland).,Department of Biology, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xin Hu
- Cancer Center, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xinping Zhang
- Cancer Center, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Xianwei Shi
- Cancer Center, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
20
|
Levasseur A, Dumontet T, Martinez A. “Sexual dimorphism in adrenal gland development and tumorigenesis”. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive, and frequently deadly cancer. Up to 75% of all patients will eventually develop metastatic disease, and our current medical therapies for ACC provide limited - if any - survival benefit. These statistics highlight a crucial need for novel approaches. Recent studies performing comprehensive molecular profiling on ACC have illuminated that ACC is comprised of three clinically distinct molecular subtypes, bearing differential regulation of cell cycle, epigenetics, Wnt/β-catenin signaling, PKA signaling, steroidogenesis and immune cell biology. Furthermore, these studies have spurred the development of molecular subtype-based biomarkers, contextualized outcomes of recent clinical trials, and advanced our understanding of the underlying biology of adrenocortical homeostasis and cancer. In this review, we describe these findings and their implications for new strategies to apply targeted therapies to ACC.
Collapse
|
22
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
23
|
Dumontet T, Sahut‐Barnola I, Dufour D, Lefrançois‐Martinez A, Berthon A, Montanier N, Ragazzon B, Djari C, Pointud J, Roucher‐Boulez F, Batisse‐Lignier M, Tauveron I, Bertherat J, Val P, Martinez A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J 2019; 33:10218-10230. [DOI: 10.1096/fj.201900557r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Typhanie Dumontet
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Isabelle Sahut‐Barnola
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Damien Dufour
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Anne‐Marie Lefrançois‐Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Annabel Berthon
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Nathanaëlle Montanier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieCentre Hospitalier Régional (CHR)Hôpital de la Source Orléans France
| | - Bruno Ragazzon
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
| | - Cyril Djari
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Jean‐Christophe Pointud
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Florence Roucher‐Boulez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Endocrinologie Moléculaire et Maladies RaresCHUUniversité Claude Bernard Lyon 1 Bron France
| | - Marie Batisse‐Lignier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Igor Tauveron
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Jérôme Bertherat
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
- Centre Maladies Rares de la SurrénaleService d'EndocrinologieHôpital CochinAssistance Publique Hôpitaux de Paris Paris France
| | - Pierre Val
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Antoine Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| |
Collapse
|
24
|
Pereira SS, Monteiro MP, Antonini SR, Pignatelli D. Apoptosis regulation in adrenocortical carcinoma. Endocr Connect 2019; 8:R91-R104. [PMID: 30978697 PMCID: PMC6510712 DOI: 10.1530/ec-19-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis evading is a hallmark of cancer. Tumor cells are characterized by having an impaired apoptosis signaling, a fact that deregulates the balance between cell death and survival, leading to tumor development, invasion and resistance to treatment. In general, patients with adrenocortical carcinomas (ACC) have an extremely bad prognosis, which is related to disease progression and significant resistance to treatments. In this report, we performed an integrative review about the disruption of apoptosis in ACC that may underlie the characteristic poor prognosis in these patients. Although the apoptosis has been scarcely studied in ACC, the majority of the deregulation phenomena already described are anti-apoptotic. Most importantly, in a near future, targeting apoptosis modulation in ACC patients may become a promising therapeutic.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
- Correspondence should be addressed to D Pignatelli:
| |
Collapse
|
25
|
Abstract
The diagnosis of low-grade adrenal cortical carcinoma (ACC) confined to the adrenal gland can be challenging. Although there are diagnostic and prognostic molecular tests for ACC, they remain largely unutilized. We examined the diagnostic and prognostic value of altered reticulin framework and the immunoprofile of biomarkers including IGF-2, proteins involved in cell proliferation and mitotic spindle regulation (Ki67, p53, BUB1B, HURP, NEK2), DNA damage repair (PBK, γ-H2AX), telomere regulation (DAX, ATRX), wnt-signaling pathway (beta-catenin) and PI3K signaling pathway (PTEN, phospho-mTOR) in a tissue microarray of 50 adenomas and 43 carcinomas that were characterized for angioinvasion as defined by strict criteria, Weiss score, and mitotic rate-based tumor grade. IGF-2 and proteins involved in cell proliferation and mitotic spindle regulation (Ki67, p53, BUB1B, HURP, NEK2), DNA damage proteins (PBK, γ-H2AX), regulators of telomeres (DAXX, ATRX), and beta-catenin revealed characteristic expression profiles enabling the distinction of carcinomas from adenomas. Not all biomarkers were informative in all carcinomas. IGF-2 was the most useful biomarker of malignancy irrespective of tumor grade and cytomorphologic features, as juxtanuclear Golgi-pattern IGF-2 reactivity optimized for high specificity was identified in up to 80% of carcinomas and in no adenomas. Loss rather than qualitative alterations of the reticulin framework yielded statistical difference between carcinoma and adenoma. Angioinvasion defined as tumor cells invading through a vessel wall and intravascular tumor cells admixed with thrombus proved to be the best prognostic parameter, predicting adverse outcome in the entire cohort as well as within low-grade ACCs. Low mitotic tumor grade, Weiss score, global loss of DAXX expression, and high phospho-mTOR expression correlated with disease-free survival, but Weiss score and biomarkers failed to predict adverse outcome in low-grade disease. Our results underscore the importance of careful morphologic assessment coupled with ancillary diagnostic and prognostic biomarkers of ACC.
Collapse
|
26
|
The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ 2018; 26:68-82. [PMID: 30224638 DOI: 10.1038/s41418-018-0193-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Necroinflammation is defined as the inflammatory response to necrotic cell death. Different necrotic cell death pathways exhibit different immune reponses, despite a comparable level of intracellular content release (referred to as damage associated molecular patterns or DAMPs). In addition to DAMP release, which is inevitably associated with necrotic cell death, the active production of pro/anti-inflammatory cytokines characterizes certain necrotic pathways. Necroptosis, ferroptosis and pyroptosis, therefore, are immunogenic to a different extent. In this review, we discuss the clinical relevance of necroinflammation highlighting potential human serum markers. We focus on the role of the adrenal glands and the lungs as central organs affected by systemic and/or local DAMP release and underline their role in intensive care medicine. In addition, data from models of acute kidney injury (AKI) and kidney transplantation have significantly shaped the field of necroinflammation and may be helpful for the understanding of the potential role of dialysis and plasma exchange to treat ongoing necroinflammation upon intensive care unit (ICU) conditions. In conclusion, we are only beginning to understand the importance of necroinflammation in diseases and transplantation, including xenotransplantation. However, given the existing efforts to develop inhibitors of necrotic cell death (ferrostatins, necrostatins, etc), we consider it likely that interference with necroinflammation reaches clinical routine in the near future.
Collapse
|
27
|
Crona J, Beuschlein F, Pacak K, Skogseid B. Advances in adrenal tumors 2018. Endocr Relat Cancer 2018; 25:R405-R420. [PMID: 29794126 PMCID: PMC5976083 DOI: 10.1530/erc-18-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
This review aims to provide clinicians and researchers with a condensed update on the most important studies in the field during 2017. We present the academic output measured by active clinical trials and peer-reviewed published manuscripts. The most important and contributory manuscripts were summarized for each diagnostic entity, with a particular focus on manuscripts that describe translational research that have the potential to improve clinical care. Finally, we highlight the importance of collaborations in adrenal tumor research, which allowed for these recent advances and provide structures for future success in this scientific field.
Collapse
Affiliation(s)
- J Crona
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVKlinikum der Universität München, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - K Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - B Skogseid
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Mazzoni E, Bononi I, Benassi MS, Picci P, Torreggiani E, Rossini M, Simioli A, Casali MV, Rizzo P, Tognon M, Martini F. Serum Antibodies Against Simian Virus 40 Large T Antigen, the Viral Oncoprotein, in Osteosarcoma Patients. Front Cell Dev Biol 2018; 6:64. [PMID: 30013971 PMCID: PMC6036318 DOI: 10.3389/fcell.2018.00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Human osteosarcoma (OS) is a rare human cancer, mostly occurring in children and adolescents. Simian virus 40 (SV40 = Macaca mulatta polyomavirus 1) sequences have been detected in different human cancers, including osteosarcoma. SV40 is an oncogenic virus in vivo, whereas it transforms different kinds of mammalian cells, as well as distinct human cell types. SV40 injected in rodents induces tumors of different histotypes, such as bone and brain tumors. Herein, the association between OS and SV40 large T antigen (Tag) was studied by employing indirect ELISAs using synthetic peptides that mimic different epitopes of the SV40 Tag, the viral oncoprotein. Indirect ELISAs were used to detect serum IgG antibodies against this oncogenic virus in samples from OS patients. Controls were sera from healthy subjects (HS) and oncological patients affect by breast cancer (BC), which is not associated with SV40. It turned out that sera of OS patients had a higher prevalence of SV40 Tag antibodies, 35%, compared to HS, 20% and BC, 19%, respectively. The different prevalence of SV40 Tag antibodies revealed in OS vs. HS and vs. BC is statistically significant with P < 0.05 and P < 0.01, respectively. Our immunological data indicate a significantly higher prevalence of antibodies against SV40 Tag epitopes in serum samples from OS patients compared to HS and BC, the controls. These results suggest an association between OS and SV40 Tag, indicating that this oncogenic virus may be a cofactor in OS development.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Maria S Benassi
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Elena Torreggiani
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marika Rossini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Andrea Simioli
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Maria V Casali
- Headquarter Department, State Hospital, Republic of San Marino, San Marino, San Marino
| | - Paola Rizzo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Lalli E, Luconi M. The next step: mechanisms driving adrenocortical carcinoma metastasis. Endocr Relat Cancer 2018; 25:R31-R48. [PMID: 29142005 DOI: 10.1530/erc-17-0440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Endocrine tumors have the peculiarity to become clinically evident not only due to symptoms related to space occupation by the growing lesion, similarly to most other tumors, but also, and most often, because of their specific hormonal secretion, which significantly contributes to their pathological burden. Malignant endocrine tumors, in addition, have the ability to produce distant metastases. Here, we critically review the current knowledge about mechanisms and biomarkers characterizing the metastatic process in adrenocortical carcinoma (ACC), a rare endocrine malignancy with a high risk of relapse and metastatization even when the primary tumor is diagnosed and surgically removed at an early stage. We highlight perspectives of future research in the domain and possible new therapeutic avenues based on targeting factors having an important role in the metastatic process of ACC.
Collapse
Affiliation(s)
- Enzo Lalli
- Université Côte d'AzurValbonne, France
- CNRS UMR7275Valbonne, France
- NEOGENEX CNRS International Associated LaboratoryValbonne, France
- Institut de Pharmacologie Moléculaire et CellulaireValbonne, France
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio'University of Florence, Florence, Italy
| |
Collapse
|