1
|
Caerts D, Garmyn M, Güvenç C. A Narrative Review of the Role of Estrogen (Receptors) in Melanoma. Int J Mol Sci 2024; 25:6251. [PMID: 38892441 PMCID: PMC11173079 DOI: 10.3390/ijms25116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In this narrative review, we attempt to provide an overview of the evidence regarding the role of estrogen (receptors) in cutaneous melanoma (CM). We reviewed 68 studies and 4 systematic reviews and meta-analyses published from 2002 up to and including 2022. The prevailing presence of estrogen receptor β (ERβ) instead of estrogen receptor α (ERα) in CM is notable, with ERβ potentially playing a protective role and being less frequently detected in progressive cases. While men with CM generally experience a less favorable prognosis, this distinction may become negligible with advancing age. The role of oral contraceptives (OC) and hormone replacement therapy (HRT) in CM remains controversial. However, recent studies tend to associate the use of these exogenous hormones with a heightened risk of CM, mostly only when using estrogen therapy and not in combination with progesterone. On the contrary, the majority of studies find no substantial influence of in vitro fertilization (IVF) treatment on CM risk. Reproductive factors, including younger age at first childbirth, higher parity, and shorter reproductive life, show conflicting evidence, with some studies suggesting a lower CM risk. We suggest an important role for estrogens in CM. More research is needed, but the integration of estrogens and targeting the estrogen receptors in melanoma therapy holds promise for future developments in the field.
Collapse
Affiliation(s)
| | | | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, 3000 Leuven, Belgium; (D.C.); (M.G.)
| |
Collapse
|
2
|
Bae SH, Lee KY, Han S, Yun CW, Park C, Jang H. SOX2 Expression Does Not Guarantee Cancer Stem Cell-like Characteristics in Lung Adenocarcinoma. Cells 2024; 13:216. [PMID: 38334608 PMCID: PMC10854781 DOI: 10.3390/cells13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.
Collapse
Affiliation(s)
- Seung-Hyun Bae
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Kyung Yong Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Suji Han
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - Chul Won Yun
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
| | - ChanHyeok Park
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| | - Hyonchol Jang
- Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.-H.B.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea;
| |
Collapse
|
3
|
Xiao H, Shiu J, Chen CF, Wu J, Zhou P, Telang SS, Ruiz-Vega R, Nie Q, Lander AD, Ganesan AK. Uncovering Minimal Pathways in Melanoma Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570336. [PMID: 38106189 PMCID: PMC10723457 DOI: 10.1101/2023.12.08.570336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.
Collapse
|
4
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
5
|
Expression of Cell Cycle Markers and Proliferation Factors during Human Eye Embryogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23169421. [PMID: 36012688 PMCID: PMC9409163 DOI: 10.3390/ijms23169421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Collapse
|
6
|
Deng J, Li Y, Song J, Zhu F. Regulation of the TUG1/miR‑145‑5p/SOX2 axis on the migratory and invasive capabilities of melanoma cells. Exp Ther Med 2022; 24:599. [PMID: 35949341 PMCID: PMC9353493 DOI: 10.3892/etm.2022.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most prevalent malignancy of cutaneous carcinomas. Taurine-upregulated gene 1 (TUG1), a lncRNA, is a pivotal regulator of cutaneous malignancies. The present study aimed to investigate the impact and possible mechanisms of action of TUG1 behind the progression of melanomas. Reverse transcription-quantitative PCR was conducted to detect the expression levels of TUG1, microRNA (miR)-145-5p and SOX2 in melanoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) assays were performed to measure the proliferative ability of melanoma cells and transwell assays were used to examine the migration and invasion of melanoma cells. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were utilized to identify the interactions among TUG1, miR-145-5p and SOX2. Western blotting and immunohistochemical assays were performed to determine the expression profile of SOX2. The impact of TUG1 on melanoma tumorigenesis was assessed using tumorigenicity assays. TUG1 expression levels were elevated in melanoma tumor tissues and cell lines. Reduced TUG1 expression levels significantly inhibited the proliferative, migratory and invasive abilities of melanoma cells. The expression levels of miR-145-5p were decreased in melanoma tumor tissues and cell lines. TUG1 directly targeted miR-145-5p and downregulated miR-145-5p. Upregulation of TUG1 counteracted the promotion of the proliferative, migratory and invasive abilities of melanoma cells induced by the overexpression of miR-145-5p. SOX2 was a target of miR-145-5p and its expression was negatively regulated by miR-145-5p, while positively regulated by TUG1. TUG1 regulated SOX2 expression through sponging miR-145-5p. Silencing of TUG1 also inhibited melanoma tumorigenesis in mice. In conclusion, the TUG1/miR-145-5p/SOX2 axis regulated the migration and invasion of melanoma cells.
Collapse
Affiliation(s)
- Jiabin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yinqiu Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqian Song
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
7
|
Kwiatkowska D, Mazur E, Reich A. YY1 Is a Key Player in Melanoma Immunotherapy/Targeted Treatment Resistance. Front Oncol 2022; 12:856963. [PMID: 35719931 PMCID: PMC9198644 DOI: 10.3389/fonc.2022.856963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Malignant melanoma, with its increasing incidence and high potential to form metastases, is one of the most aggressive types of skin malignancies responsible for a significant number of deaths worldwide. However, melanoma also demonstrates a high potential for induction of a specific adaptive anti-tumor immune response being one of the most immunogenic malignancies. Yin Yang 1 (YY1) transcription factor is essential to numerous cellular processes and the regulation of transcriptional and posttranslational modifications of various genes. It regulates programmed cell death 1 (PD1) and lymphocyte-activation gene 3 (LAG3) by binding to its promoters, as well as suppresses both Fas and TRAIL by negatively regulating DR5 transcription and expression and interaction with the silencer region of the Fas promoter, rendering cells resistant to apoptosis. Moreover, YY1 is considered a master regulator in various stages of embryogenesis, especially in neural crest stem cells (NCSCs) survival and proliferation as it acts as transcriptional repressor on cancer stem cells-related transcription factors. In addition, YY1 increases the metastatic potential of melanoma through negative regulation of microRNA-9 (miR-9) expression, acts as a cofactor of transcription factor EB (TFEB) and contributes to autophagy regulation, mainly due to increased transcription of genes related to autophagy and lysosome biogenesis. Therefore, focusing on the detailed biology and administration of therapies that directly target YY1 or crosstalk pathways in malignant melanoma could facilitate the development of new and more effective treatment strategies and improve patients’ outcomes.
Collapse
|
8
|
Huang C, Radi RH, Arbiser JL. Mitochondrial Metabolism in Melanoma. Cells 2021; 10:cells10113197. [PMID: 34831420 PMCID: PMC8618235 DOI: 10.3390/cells10113197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma and its associated alterations in cellular pathways have been growing areas of interest in research, especially as specific biological pathways are being elucidated. Some of these alterations include changes in the mitochondrial metabolism in melanoma. Many mitochondrial metabolic changes lead to differences in the survivability of cancer cells and confer resistance to targeted therapies. While extensive work has gone into characterizing mechanisms of resistance, the role of mitochondrial adaptation as a mode of resistance is not completely understood. In this review, we wish to explore mitochondrial metabolism in melanoma and how it impacts modes of resistance. There are several genes that play a major role in melanoma mitochondrial metabolism which require a full understanding to optimally target melanoma. These include BRAF, CRAF, SOX2, MCL1, TRAP1, RHOA, SRF, SIRT3, PTEN, and AKT1. We will be discussing the role of these genes in melanoma in greater detail. An enhanced understanding of mitochondrial metabolism and these modes of resistance may result in novel combinatorial and sequential therapies that may lead to greater therapeutic benefit.
Collapse
Affiliation(s)
- Christina Huang
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Rakan H. Radi
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
| | - Jack L. Arbiser
- Department of Dermatology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (C.H.); (R.H.R.)
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-(404)-727-5063; Fax: +1-(404)-727-0923
| |
Collapse
|
9
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
10
|
Sangster AB, Chang-McDonald B, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Expression of cathepsins B and D by cancer stem cells in head and neck metastatic malignant melanoma. Melanoma Res 2021; 31:426-438. [PMID: 34116545 DOI: 10.1097/cmr.0000000000000752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously demonstrated cancer stem cell (CSC) subpopulations in head and neck metastatic malignant melanoma (HNmMM), and the expression of components of the renin-angiotensin system (RAS) by these CSCs. Cathepsins B, D and G are involved in carcinogenesis and constitute bypass loops of the RAS. This study investigated the expression and localization of cathepsins B, D and G, in relation to these CSCs. Immunohistochemical staining demonstrated expression of cathepsins B, D and G in HNmMM sections from all 20 patients. Western blotting confirmed the presence of cathepsins B and D proteins in all six HNmMM tissue samples and four HNmMM-derived primary cell lines. RT-qPCR showed transcript expression of cathepsins B, D and G in all six HNmMM tissue samples, and cathepsins B and D but not cathepsin G in all four HNmMM-derived primary cell lines. Enzymatic activity assays demonstrated cathepsins B and D were active in all six HNmMM tissue samples. Immunofluorescence staining performed on two of the HNmMM tissue samples demonstrated expression of cathepsins B and D by the CSCs, and cathepsin G by cells within the peritumoral stroma. Our novel findings suggest the possibility of targeting these CSCs by modulation of paracrine RAS signaling.
Collapse
Affiliation(s)
| | | | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Potu H, Kandarpa M, Peterson LF, Durham A, Donato NJ, Talpaz M. Downregulation of SOX2 by inhibition of Usp9X induces apoptosis in melanoma. Oncotarget 2021; 12:160-172. [PMID: 33613844 PMCID: PMC7869572 DOI: 10.18632/oncotarget.27869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Melanoma tumors driven by BRAF mutations often do not respond to BRAF/MEK/ERK pathway inhibitors currently used in treatment. One documented mechanism of resistance is upregulation of SOX2, a transcription factor that is essential for tumor growth and expansion, particularly in melanoma tumors with BRAF mutations. Targeting transcription factors pharmacologically has been elusive for drug developers, limiting treatment options. Here we show that ubiquitin-specific peptidase 9, X-linked (Usp9x), a deubiquitinase (DUB) enzyme controls SOX2 levels in melanoma. Usp9x knockdown in melanoma increased SOX2 ubiquitination, leading to its depletion, and enhanced apoptotic effects of BRAF inhibitor and MEK inhibitors. Primary metastatic melanoma samples demonstrated moderately elevated Usp9x and SOX2 protein expression compared to tumors without metastatic potential. Usp9x knockdown, as well as inhibition with DUB inhibitor, G9, blocked SOX2 expression, suppressed in vitro colony growth, and induced apoptosis of BRAF-mutant melanoma cells. Combined treatment with Usp9x and mutant BRAF inhibitors fully suppressed melanoma growth in vivo. Our data demonstrate a novel mechanism for targeting the transcription factor SOX2, leveraging Usp9x inhibition. Thus, development of DUB inhibitors may add to the limited repertoire of current melanoma treatments.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Luke F Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Alison Durham
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Nicholas J Donato
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA.,These authors jointly supervised this work
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.,These authors jointly supervised this work
| |
Collapse
|
12
|
Assenmacher CA, Santagostino SF, Oyama MA, Marine JC, Bonvin E, Radaelli E. Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. J Histochem Cytochem 2020; 69:203-218. [PMID: 33283624 DOI: 10.1369/0022155420977970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse line carrying the Tg(Tyr-NRAS*Q61K)1Bee transgene is widely used to model in vivo NRAS-driven melanomagenesis. Although the pathological features of this model are well described, classification and interpretation of the resulting proliferative lesions-including their origin, evolution, grading, and pathobiological significance-are still unclear and not supported by molecular and biological evidence. Focusing on their classification and grading, this work combines histopathology and expression analysis (using both immunohistochemistry [IHC] and quantitative PCR) of selected biomarkers to study the full spectrum of cutaneous and lymph nodal melanocytic proliferations in the Tg(Tyr-NRAS*Q61K)1Bee mouse. The analysis of cutaneous and lymph nodal melanocytic proliferations has demonstrated that a linear correlation exists between tumor grade and Ki-67, microphthalmia-associated transcription factor (MITF), gp100, and nestin IHC, with a significantly increased expression in high-grade lesions compared with low-grade lesions. The accuracy of the assessment of MITF IHC in melanomas was also confirmed by quantitative PCR analysis. In conclusion, we believe the incorporation of MITF, Ki-67, gp100, and nestin analysis into the histopathological classification/grading scheme of melanocytic proliferations described for this model will help to assess with accuracy the nature and evolution of the phenotype, monitor disease progression, and predict response to experimental treatment or other preclinical manipulations.
Collapse
Affiliation(s)
| | | | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Elise Bonvin
- Laboratory of Cancer Epigenetics, Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Chen YN, Li Y, Wei WB. Research Progress of Cancer Stem Cells in Uveal Melanoma. Onco Targets Ther 2020; 13:12243-12252. [PMID: 33273829 PMCID: PMC7708312 DOI: 10.2147/ott.s284262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is the most common malignant tumor in adult eyes, mostly in the choroid, but also in the iris and ciliary body. Distant metastasis is found in nearly half of the patients. Cancer stem cells are a kind of cells with the ability of self-renewal and multidirectional differentiation, which are related to tumor invasion and metastasis. Although the concept of cancer stem cells is relatively mature in other tumors, its existence and verification methods in uveal melanoma are still uncertain. A more in-depth understanding of cancer stem cells and their mechanism may reveal new strategies to treat uveal melanoma. This article reviews the concept of cancer stem cells and their research progress in uveal melanoma, including identification, probable markers, cancer stem cell targeted drug therapy and the controversies and prospects in this field.
Collapse
Affiliation(s)
- Yu Ning Chen
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Diener J, Sommer L. Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 2020; 10:522-533. [PMID: 33258291 PMCID: PMC7980219 DOI: 10.1002/sctm.20-0351] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest of all skin cancers due to its high metastatic potential. In recent years, advances in targeted therapy and immunotherapy have contributed to a remarkable progress in the treatment of metastatic disease. However, intrinsic or acquired resistance to such therapies remains a major obstacle in melanoma treatment. Melanoma disease progression, beginning from tumor initiation and growth to acquisition of invasive phenotypes and metastatic spread and acquisition of treatment resistance, has been associated with cellular dedifferentiation and the hijacking of gene regulatory networks reminiscent of the neural crest (NC)—the developmental structure which gives rise to melanocytes and hence melanoma. This review summarizes the experimental evidence for the involvement of NC stem cell (NCSC)‐like cell states during melanoma progression and addresses novel approaches to combat the emergence of stemness characteristics that have shown to be linked with aggressive disease outcome and drug resistance.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| | - Lukas Sommer
- University of Zurich, Institute of Anatomy, Zürich, Switzerland
| |
Collapse
|
15
|
Induced Pluripotency: A Powerful Tool for In Vitro Modeling. Int J Mol Sci 2020; 21:ijms21238910. [PMID: 33255453 PMCID: PMC7727808 DOI: 10.3390/ijms21238910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.
Collapse
|
16
|
Barone C, Buccarelli M, Alessandrini F, Pagin M, Rigoldi L, Sambruni I, Favaro R, Ottolenghi S, Pallini R, Ricci-Vitiani L, Malatesta P, Nicolis SK. Sox2-dependent maintenance of mouse oligodendroglioma involves the Sox2-mediated downregulation of Cdkn2b, Ebf1, Zfp423, and Hey2. Glia 2020; 69:579-593. [PMID: 32975900 DOI: 10.1002/glia.23914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain gliomas, and is essential to maintain CSC. In mouse high-grade glioma pHGG cells in culture, Sox2 deletion causes cell proliferation arrest and inability to reform tumors after transplantation in vivo; in Sox2-deleted cells, 134 genes are derepressed. To identify genes mediating Sox2 deletion effects, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Ebf1, Hey2, Zfp423, and Cdkn2b, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis of each gene, individually or in combination (Ebf1 + Cdkn2b), significantly antagonized the proliferation arrest caused by Sox2 deletion. The same genes also repressed clonogenicity in primary human glioblastoma-derived CSC-like lines. These experiments identify a network of critical tumor suppressive Sox2-targets whose inhibition by Sox2 is involved in glioma CSC maintenance, defining new potential therapeutic targets.
Collapse
Affiliation(s)
- Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Alessandrini
- Dipartimento di Medicina Sperimentale, Università di Genova, and Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Rigoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Irene Sambruni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rebecca Favaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Malatesta
- Dipartimento di Medicina Sperimentale, Università di Genova, and Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Kilmister EJ, Patel J, van Schaijik B, Bockett N, Brasch HD, Paterson E, Sim D, Davis PF, Roth IM, Itinteang T, Tan ST. Cancer Stem Cell Subpopulations Are Present Within Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma. Front Oncol 2020; 10:1091. [PMID: 32850316 PMCID: PMC7406827 DOI: 10.3389/fonc.2020.01091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in many cancer types including primary head and neck cutaneous squamous cell carcinoma (HNcSCC). This study aimed to identify and characterize CSCs in metastatic HNcSCC (mHNcSCC). Immunohistochemical staining performed on mHNcSCC samples from 15 patients demonstrated expression of the induced pluripotent stem cell (iPSC) markers OCT4, SOX2, NANOG, KLF4, and c-MYC in all 15 samples. In situ hybridization and RT-qPCR performed on four of these mHNcSCC tissue samples confirmed transcript expression of all five iPSC markers. Immunofluorescence staining performed on three of these mHNcSCC samples demonstrated expression of c-MYC on cells within the tumor nests (TNs) and the peri-tumoral stroma (PTS) that also expressed KLF4. OCT4 was expressed on the SOX2+/NANOG+/KLF4+ cells within the TNs, and the SOX2+/NANOG+/KLF4+ cells within the PTS. RT-qPCR demonstrated transcript expression of all five iPSC markers in all three mHNcSCC-derived primary cell lines, except for SOX2 in one cell line. Western blotting showed the presence of SOX2, KLF4, and c-MYC but not OCT4 and NANOG in the three mHNcSCC-derived primary cell lines. All three cell lines formed tumorspheres, at the first passage. We demonstrated an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ CSC subpopulation and an OCT4+/NANOG-/SOX2+/KLF4+/c-MYC+ subpopulation within the TNs, and an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ subpopulation within the PTS of mHNcSCC.
Collapse
Affiliation(s)
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | | | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Dalice Sim
- Biostatistical Group/Dean's Department, University of Otago, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Imogen M Roth
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
19
|
Varum S, Baggiolini A, Zurkirchen L, Atak ZK, Cantù C, Marzorati E, Bossart R, Wouters J, Häusel J, Tuncer E, Zingg D, Veen D, John N, Balz M, Levesque MP, Basler K, Aerts S, Zamboni N, Dummer R, Sommer L. Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell 2020; 24:637-653.e9. [PMID: 30951662 DOI: 10.1016/j.stem.2019.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
Increasing evidence suggests that cancer cells highjack developmental programs for disease initiation and progression. Melanoma arises from melanocytes that originate during development from neural crest stem cells (NCSCs). Here, we identified the transcription factor Yin Yang 1 (Yy1) as an NCSCs regulator. Conditional deletion of Yy1 in NCSCs resulted in stage-dependent hypoplasia of all major neural crest derivatives due to decreased proliferation and increased cell death. Moreover, conditional ablation of one Yy1 allele in a melanoma mouse model prevented tumorigenesis, indicating a particular susceptibility of melanoma cells to reduced Yy1 levels. Combined RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and untargeted metabolomics demonstrated that YY1 governs multiple metabolic pathways and protein synthesis in both NCSCs and melanoma. In addition to directly regulating a metabolic gene set, YY1 can act upstream of MITF/c-MYC as part of a gene regulatory network controlling metabolism. Thus, both NCSC development and melanoma formation depend on an intricate YY1-controlled metabolic program.
Collapse
Affiliation(s)
- Sandra Varum
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | - Luis Zurkirchen
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Zeynep Kalender Atak
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Elisa Marzorati
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Raphaël Bossart
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Jasper Wouters
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Jessica Häusel
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Eylül Tuncer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Zingg
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Dominiek Veen
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Nessy John
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Marcel Balz
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, 8091 Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
21
|
Genes Involved in the Transcriptional Regulation of Pluripotency Are Expressed in Malignant Tumors of the Uterine Cervix and Can Induce Tumorigenic Capacity in a Nontumorigenic Cell Line. Stem Cells Int 2019; 2019:7683817. [PMID: 31885625 PMCID: PMC6914900 DOI: 10.1155/2019/7683817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Transcription factors OCT4, SOX2, KLF4, C-MYC, and NANOG (OSKM-N) regulate pluripotency and stemness, and their ectopic expression reprograms human and murine fibroblasts that constitute the key of regenerative medicine. To determine their contribution to cell transformation, we analyzed the gene expression profiles of these transcription factors in cervical cancer samples and found that they are preferentially expressed in the tumor component. Also, cancer stem cell-enriched cultures grown as sphere cultures showed overexpression of OSKM-N genes. Importantly, we observed that lentiviral-mediated transduction of these factors confers, to a nontumorigenic immortalized human cell line, properties of cancer stem cells as the ability to form tumors in a mouse model. When we performed a meta-analysis using microarray data from cervical cancer biopsies and normal tissues, we found that the expression of OSKM-N and some target genes allowed separating tumor and normal tissues between samples, which enhanced the importance of OSKM-N in the tumorigenesis. Finally, we analyzed and compared both transcript and protein expression profiles of these factors within a cohort of patients with cervical cancer. To our knowledge, this is the first time that the expression of OSKM-N is described to induce one of the main characteristics of the cancer stem cell, the tumorigenicity. And, more importantly, its exogenous expression in a nontumorigenic cell line is sufficient to induce a tumorigenic phenotype; furthermore, the differential expression of this transcription factor distinguishes tumor tissue and normal tissue in cervical samples.
Collapse
|
22
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
23
|
Menon DR, Fujita M. A state of stochastic cancer stemness through the CDK1-SOX2 axis. Oncotarget 2019; 10:2583-2585. [PMID: 31080551 PMCID: PMC6498994 DOI: 10.18632/oncotarget.26819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 01/19/2023] Open
Abstract
The concept of cancer stemness has undergone a paradigm shift during the last decade where there is wider acceptance of the idea that stemness in cancer is a more dynamic and plastic phenomenon than previously thought. However, we have yet to understand the mechanisms on how this stochastic plasticity arises and is maintained. Recently, we have shown that CDK1 plays a critical role in stochastic stemness and tumor initiation potential through regulating SOX2 phosphorylation in multiple cancer types. The phosphorylation of SOX2 affects its nuclear localization, thereby determining the transcriptional fate of its downstream targets. We have also validated the significance of these findings using clinical samples by demonstrating that CDK1high tumor samples displayed upregulation of MYC target genes, which were reported to overlap with SOX2 targets. In the current article, we further discuss the possibility of a closed, feed-forward loop between SOX2 and CDK1 through a long non-coding RNA, CCAT1, which would explain the sustained activation of this loop. Despite the extensive investigation of the cancer stemness as a cause of drug resistance, its role in immune evasion still requires further understanding, and hence, in this article, we further discuss the possibility of this CDK1-SOX2 axis contributing to immune resistance through modulating cell-to-cell interaction directly or indirectly in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, USA.,Denver VA Medical Center, Denver, CO, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
24
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
25
|
Andreucci E, Pietrobono S, Peppicelli S, Ruzzolini J, Bianchini F, Biagioni A, Stecca B, Calorini L. SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Commun Signal 2018; 16:87. [PMID: 30466459 PMCID: PMC6249961 DOI: 10.1186/s12964-018-0297-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Deregulated metabolism is a hallmark of cancer and recent evidence underlines that targeting tumor energetics may improve therapy response and patient outcome. Despite the general attitude of cancer cells to exploit the glycolytic pathway even in the presence of oxygen (aerobic glycolysis or "Warburg effect"), tumor metabolism is extremely plastic, and such ability to switch from glycolysis to oxidative phosphorylation (OxPhos) allows cancer cells to survive under hostile microenvironments. Recently, OxPhos has been related with malignant progression, chemo-resistance and metastasis. OxPhos is induced under extracellular acidosis, a well-known characteristic of most solid tumors, included melanoma. METHODS To evaluate whether SOX2 modulation is correlated with metabolic changes under standard or acidic conditions, SOX2 was silenced and overexpressed in several melanoma cell lines. To demonstrate that SOX2 directly represses HIF1A expression we used chromatin immunoprecipitation (ChIP) and luciferase assay. RESULTS In A375-M6 melanoma cells, extracellular acidosis increases SOX2 expression, that sustains the oxidative cancer metabolism exploited under acidic conditions. By studying non-acidic SSM2c and 501-Mel melanoma cells (high- and very low-SOX2 expressing cells, respectively), we confirmed the metabolic role of SOX2, attributing SOX2-driven OxPhos reprogramming to HIF1α pathway disruption. CONCLUSIONS SOX2 contributes to the acquisition of an aggressive oxidative tumor phenotype, endowed with enhanced drug resistance and metastatic ability.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Silvia Pietrobono
- Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Silvia Peppicelli
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Jessica Ruzzolini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Francesca Bianchini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Lido Calorini
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy. .,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, Florence, Italy.
| |
Collapse
|
26
|
Ravindran Menon D, Luo Y, Arcaroli JJ, Liu S, KrishnanKutty LN, Osborne DG, Li Y, Samson JM, Bagby S, Tan AC, Robinson WA, Messersmith WA, Fujita M. CDK1 Interacts with Sox2 and Promotes Tumor Initiation in Human Melanoma. Cancer Res 2018; 78:6561-6574. [PMID: 30297536 DOI: 10.1158/0008-5472.can-18-0330] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
: Cancers are composed of heterogeneous subpopulations with various tumor-initiating capacities, yet key stem cell genes associated with enhanced tumor-initiating capacities and their regulatory mechanisms remain elusive. Here, we analyzed patient-derived xenografts from melanoma, colon, and pancreatic cancer tissues and identified enrichment of tumor-initiating cells in MHC class I-hi cells, where CDK1, a master regulator of the cell cycle, was upregulated. Overexpression of CDK1, but not its kinase-dead variant, in melanoma cells increased their spheroid forming ability, tumorigenic potential, and tumor-initiating capacity; inhibition of CDK1 with pharmacologic agents reduced these characteristics, which was unexplained by the role of CDK1 in regulating the cell cycle. Proteomic analysis revealed an interaction between CDK1 and the pluripotent stem cell transcription factor Sox2. Blockade or knockdown of CDK1 resulted in reduced phosphorylation, nuclear localization, and transcriptional activity of Sox2. Knockout of Sox2 in CDK1-overexpressing cells reduced CDK1-driven tumor-initiating capacity substantially. Furthermore, GSEA analysis of CDK1hi tumor cells identified a pathway signature common in all three cancer types, including E2F, G2M, MYC, and spermatogenesis, confirming a stem-like nature of CDK1hi tumor cells. These findings reveal a previously unrecognized role for CDK1 in regulating tumor-initiating capacity in melanoma and suggest a novel treatment strategy in cancer via interruption of CDK1 function and its protein-protein interactions. SIGNIFICANCE: These findings uncover CDK1 as a new regulator of Sox2 during tumor initiation and implicate the CDK1-Sox2 interaction as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
| | - Yuchun Luo
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado
| | - John J Arcaroli
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Sucai Liu
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado
| | | | - Douglas G Osborne
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado
| | - Yang Li
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado
| | - Stacey Bagby
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, Colorado. .,Denver VA Medical Center, Denver, Colorado.,Department of Immunology & Microbiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
27
|
Cesarini V, Guida E, Todaro F, Di Agostino S, Tassinari V, Nicolis S, Favaro R, Caporali S, Lacal PM, Botti E, Costanzo A, Rossi P, Jannini EA, Dolci S. Sox2 is not required for melanomagenesis, melanoma growth and melanoma metastasis in vivo. Oncogene 2017; 36:4508-4515. [PMID: 28368402 DOI: 10.1038/onc.2017.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Melanoma is a dangerous form of skin cancer derived from the malignant transformation of melanocytes. The transcription factor SOX2 is not expressed in melanocytes, however, it has been shown to be differentially expressed between benign nevi and malignant melanomas and to be essential for melanoma stem cell maintenance and expansion in vitro and in xenograft models. By using a mouse model in which BRafV600E mutation cooperates with Pten loss to induce the development of metastatic melanoma, we investigated if Sox2 is required during the process of melanomagenesis, melanoma growth and metastasis and in the acquisition of resistance to BRAF inhibitors (BRAFi) treatments. We found that deletion of Sox2 specifically in Pten null and BRafV600E-expressing melanocytes did not prevent tumor formation and did not modify the temporal kinetics of melanoma occurrence compared to Sox2 wt mice. In addition, tumor growth was similar between Sox2 wt and Sox2 deleted (del) melanomas. By querying publicly available databases, we did not find statistically significant differences in SOX2 expression levels between benign nevi and melanomas, and analysis on two melanoma patient cohorts confirmed that Sox2 levels did not significantly change between primary and metastatic melanomas. Melanoma cell lines derived from both Sox2 genotypes showed a similar sensitivity to vemurafenib treatment and the same ability to develop vemurafenib resistance in long-term cultures. Development of vemurafenib resistance was not dependent on SOX2 expression also in human melanoma cell lines in vitro. Our findings exclude an oncogenic function for Sox2 during melanoma development and do not support a role for this transcription factor in the acquisition of resistance to BRAFi treatments.
Collapse
Affiliation(s)
- V Cesarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - F Todaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - S Di Agostino
- Regina Elena National Cancer Institute - IFO, Oncogenomic and Epigenetic Unit, Rome, Italy
| | - V Tassinari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - S Nicolis
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - R Favaro
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - S Caporali
- Molecular Oncology Laboratory, Istituto Dermopatico dell'Immacolata - IRCCS, Rome, Italy
| | - P M Lacal
- Molecular Oncology Laboratory, Istituto Dermopatico dell'Immacolata - IRCCS, Rome, Italy
| | - E Botti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A Costanzo
- Department of Biomedicine, Humanitas University, Milan, Italy
| | - P Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E A Jannini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|