1
|
Hidmi S, Nechushtan H, Razin E, Tshori S. Role of Nudt2 in Anchorage-Independent Growth and Cell Migration of Human Melanoma. Int J Mol Sci 2023; 24:10513. [PMID: 37445693 PMCID: PMC10341887 DOI: 10.3390/ijms241310513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Nudt2 encodes a diadenosine tetraphosphate (Ap4A) hydrolase that catalyzes the hydrolysis of Ap4A and is involved in the lysyl tRNA synthetase-Ap4A-Nudt2 (LysRS-Ap4A-Nudt2) signaling pathway. We have previously demonstrated that this pathway is active in non-small cell lung cancer. Nudt2 was shown to be involved in cell proliferation in breast cancer, making it an important target in cancer therapy. Currently, the function of Nudt2 in malignant melanoma has not been demonstrated. Therefore, we investigated the role played by Nudt2 in the growth of human melanoma. Our study showed that Nudt2 knockdown suppressed anchorage-independent growth of human melanoma cells in vitro. The in vivo effect of Nudt2 was determined by investigating the role played by Nudt2 knockdown on the ability of the cells to form tumors in a mice xenograft model. Nudt2 knockdown significantly suppressed tumor growth in this model. Moreover, overexpression of Nudt2 resulted in an increase in anchorage-independent growth of these cells, whereas Nudt2 knockdown decreased their migration. In addition, Nudt2 knockdown reduced vimentin expression. Vimentin is one of the mesenchymal markers that are involved in the epithelial mesenchymal transition (EMT) process. Thus, Nudt2 plays an important role in promoting anchorage-independent growth and cell migration in melanoma.
Collapse
Affiliation(s)
- Sana’ Hidmi
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.H.); (S.T.)
| | - Hovav Nechushtan
- Department of Oncology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.H.); (S.T.)
| | - Sagi Tshori
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.H.); (S.T.)
- Kaplan Medical Center, Rehovot 76100, Israel
| |
Collapse
|
2
|
Yao J, Miao Y, Zhu L, Wan M, Lu Y, Tang W. Histidine trinucleotide binding protein 2: from basic science to clinical implications. Biochem Pharmacol 2023; 212:115527. [PMID: 37004779 DOI: 10.1016/j.bcp.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Histidine triad nucleotide-binding protein 2 (HINT2) is a dimeric protein that belongs to the histidine triad protein superfamily, predominantly expressed in the liver, pancreas, and adrenal gland, and localised to the mitochondrion. HINT2 binds nucleotides and catalyses the hydrolysis of nucleotidyl substrates. Moreover, HINT2 has been identified as a key regulator of multiple biological processes, including mitochondria-dependent apoptosis, mitochondrial protein acetylation, and steroidogenesis. Genetic manipulation has provided new insights into the physiological roles of HINT2 in several processes, such as inhibition of cancer progression, regulation of hepatic lipid metabolism, and protective effects on the cardiovascular system. The current review outlines the background and functions of HINT2. In addition, it summarises research progress on the correlation between HINT2 and human malignancies, hepatic metabolic diseases, and cardiovascular diseases, with an attempt to provide new research directions emerging in this field and to unveil the therapeutic value of HINT2 as a target in the combat of human diseases.
Collapse
|
3
|
Strom A, Shah R, Dolot R, Rogers MS, Tong CL, Wang D, Xia Y, Lipscomb JD, Wagner CR. Dynamic Long-Range Interactions Influence Substrate Binding and Catalysis by Human Histidine Triad Nucleotide-Binding Proteins (HINTs), Key Regulators of Multiple Cellular Processes and Activators of Antiviral ProTides. Biochemistry 2022; 61:2648-2661. [PMID: 36398895 PMCID: PMC9854251 DOI: 10.1021/acs.biochem.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human histidine triad nucleotide-binding (hHINT) proteins catalyze nucleotide phosphoramidase and acyl-phosphatase reactions that are essential for the activation of antiviral proTides, such as Sofosbuvir and Remdesivir. hHINT1 and hHINT2 are highly homologous but exhibit disparate roles as regulators of opioid tolerance (hHINT1) and mitochondrial activity (hHINT2). NMR studies of hHINT1 reveal a pair of dynamic surface residues (Q62, E100), which gate a conserved water channel leading to the active site 13 Å away. hHINT2 crystal structures identify analogous residues (R99, D137) and water channel. hHINT1 Q62 variants significantly alter the steady-state kcat and Km for turnover of the fluorescent substrate (TpAd), while stopped-flow kinetics indicate that KD also changes. hHINT2, like hHINT1, exhibits a burst phase of adenylation, monitored by fluorescent tryptamine release, prior to rate-limiting hydrolysis and nucleotide release. hHINT2 exhibits a much smaller burst-phase amplitude than hHINT1, which is further diminished in hHINT2 R99Q. Kinetic simulations suggest that amplitude variations can be accounted for by a variable fluorescent yield of the E·S complex from changes in the environment of bound TpAd. Isothermal titration calorimetry measurements of inhibitor binding show that these hHINT variants also alter the thermodynamic binding profile. We propose that these altered surface residues engender long-range dynamic changes that affect the orientation of bound ligands, altering the thermodynamic and kinetic characteristics of hHINT active site function. Thus, studies of the cellular roles and proTide activation potential by hHINTs should consider the importance of long-range interactions and possible protein binding surfaces far from the active site.
Collapse
Affiliation(s)
- Alexander Strom
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rachit Shah
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rafal Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455,United States
| | - Cher-Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David Wang
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Youlin Xia
- Department of Structural Biology, St. Jude’s Research Hospital, Memphis, Tennessee 38105, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455,United States
| | - Carston R. Wagner
- Department of Medicinal Chemistry University of Minnesota, Minneapolis, Minnesota 55455, United States,Address correspondence to: Carston R. Wagner, University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street S.E., Cancer & Cardiovascular Research Building, Minneapolis, Minnesota 55455, USA,
| |
Collapse
|
4
|
Chen J, Bie R, Qin Y, Li Y, Ma S. Lq-based robust analytics on ultrahigh and high dimensional data. Stat Med 2022; 41:5220-5241. [PMID: 36098057 DOI: 10.1002/sim.9563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
Ultrahigh and high dimensional data are common in regression analysis for various fields, such as omics data, finance, and biological engineering. In addition to the problem of dimension, the data might also be contaminated. There are two main types of contamination: outliers and model misspecification. We develop an unique method that takes into account the ultrahigh or high dimensional issues and both types of contamination. In this article, we propose a framework for feature screening and selection based on the minimum Lq-likelihood estimation (MLqE), which accounts for the model misspecification contamination issue and has also been shown to be robust to outliers. In numerical analysis, we explore the robustness of this framework under different outliers and model misspecification scenarios. To examine the performance of this framework, we conduct real data analysis using the skin cutaneous melanoma data. When comparing with traditional screening and feature selection methods, the proposed method shows superiority in both variable identification effectiveness and parameter estimation accuracy.
Collapse
Affiliation(s)
- Jiachen Chen
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Ruofan Bie
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Yichen Qin
- Department of Operations, Business Analytics and Information Systems, University of Cincinnati, Cincinnati, OH, USA
| | - Yang Li
- Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China.,RSS and China-Re Life Joint Lab on Public Health and Risk Management, Renmin University of China, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Boston University, Boston, MA, USA.,RSS and China-Re Life Joint Lab on Public Health and Risk Management, Renmin University of China, Beijing, China
| |
Collapse
|
5
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
6
|
Zhang C, Bao T, Ke Y, Liu X, Wang X, Liao W, He Y, Wang L. Integrated analysis of ceRNA network reveals potential prognostic Hint1-related lncRNAs involved in hepatocellular carcinoma progression. World J Surg Oncol 2022; 20:67. [PMID: 35241097 PMCID: PMC8896107 DOI: 10.1186/s12957-022-02535-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hint1 is a novel tumor suppressor gene, and inactivation of its expression is closely associated with the carcinogenesis of a variety of malignancies. The effects of Hint1 deficiency on the competing endogenous RNA (ceRNA) regulatory network in the context of HCC remains to be fully characterized. This study aims to explore Hint1-related hub lncRNAs in HCC and to establish a reliable prognostic model for HCC patients based on these hub lncRNAs. METHODS lncRNA + mRNA microarray was used to identify differentially expressed (DE) lncRNAs and mRNAs in Huh7 cells before and after Hint1 knockdown. A Hint1-related ceRNA network was mapped by bioinformation technology. The DEmRNAs in the network were analyzed via GO and KEGG enrichment analyses. Hub DElncRNAs associated with HCC patient prognosis were then detected through univariate and multivariate Cox regression analyses and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, and nomograms. We also utilized Kaplan-Meier curves to validate the relationship between hub lncRNAs and the overall survival (OS) of HCC patients. Finally, A Hint1-related core ceRNA network based on the hub DElncRNAs and DEmRNAs was mapped. RESULTS We identified 417 differentially expressed DElncRNAs and 2096 DEmRNAs in Huh7 cells before and after Hint1 knockdown. Three hub DElncRNAs (LINC00324, SNHG3, and DIO3OS) in the Hint1-associated ceRNA network were screened out using univariate and multivariate Cox regression analyses. A hepatocellular carcinoma (HCC) prognostic risk-scoring model and nomogram were constructed using these three hub lncRNAs, and it was confirmed that the risk score of the model could be used as an independent predictor of HCC prognosis. A Hint1-related core ceRNA network based on the hub DElncRNAs and DEmRNAs was also mapped. CONCLUSION We constructed a reliable prognostic model for HCC patients based on three Hint1-related hub lncRNAs, and we believe these three hub lncRNAs may play critical roles in hepatocarcinogenesis, and progression.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
- Department of Hepatobiliary Surgery, The Second People's Hospital of Chengdu, Chengdu, China
| | - Tianhao Bao
- Mental Health Center of Kunming Medical University, Kunming, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
| | - Xin Liu
- Department of Dermatology, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinghong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
| | - Weiran Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
| | - Yutao He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong District, Kunming, Yunnan Province, China.
| |
Collapse
|
7
|
Fu L, Yao M, Liu X, Zheng D. Using bioinformatics and systems biology to discover common pathogenetic processes between sarcoidosis and COVID-19. GENE REPORTS 2022; 27:101597. [PMID: 35317263 PMCID: PMC8931993 DOI: 10.1016/j.genrep.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
The coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 is ongoing. Individuals with sarcoidosis tend to develop severe COVID-19; however, the underlying pathological mechanisms remain elusive. To determine common transcriptional signatures and pathways between sarcoidosis and COVID-19, we investigated the whole-genome transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and sarcoidosis and conducted bioinformatic analysis, including gene ontology and pathway enrichment, protein-protein interaction (PPI) network, and gene regulatory network (GRN) construction. We identified 33 abnormally expressed genes that were common between COVID-19 and sarcoidosis. Functional enrichment analysis showed that these differentially expressed genes were associated with cytokine production involved in the immune response and T cell cytokine production. We identified several hub genes from the PPI network encoded by the common genes. These hub genes have high diagnostic potential for COVID-19 and sarcoidosis and can be potential biomarkers. Moreover, GRN analysis identified important microRNAs and transcription factors that regulate the common genes. This study provides a novel characterization of the transcriptional signatures and biological processes commonly dysregulated in sarcoidosis and COVID-19 and identified several critical regulators and biomarkers. This study highlights a potential pathological association between COVID-19 and sarcoidosis, establishing a theoretical basis for future clinical trials.
Collapse
|
8
|
Landscape of the oncogenic role of fatty acid synthase in human tumors. Aging (Albany NY) 2021; 13:25106-25137. [PMID: 34879004 PMCID: PMC8714155 DOI: 10.18632/aging.203730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Background: Identifying a unique and common regulatory pathway that drives tumorigenesis in cancers is crucial to foster the development of effective treatments. However, a systematic analysis of fatty acid synthase across pan-cancers has not been carried out. Methods: We investigated the oncogenic roles of fatty acid synthase in 33 cancers based on the cancer genome atlas and gene expression omnibus. Results: Fatty acid synthase is profoundly expressed in most cancers and is an important factor in predicting the outcome of cancer patients. Further, the level of S207 phosphorylation was found to be improved in several neoplasms (e.g., colon cancer). Fatty acid synthase expression is related to tumor-infiltrating immune cells in tumors (e.g., CD8+ T-cell infiltration level in cervical squamous cell carcinoma). Moreover, hormone receptor binding- and fatty acid metabolic process-associated pathways are involved in the functional mechanisms of fatty acid synthase. Conclusions: This study provides a complete understanding of the oncogenic role of fatty acid synthase in human tumors.
Collapse
|
9
|
Zheng T, Jing M, Gong T, Yan J, Zeng J, Li Y. Deletion of the yqeK gene leads to the accumulation of Ap4A and reduced biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2021; 37:9-21. [PMID: 34761536 DOI: 10.1111/omi.12356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Diadenosine-5',5'''-P1, P4-tetraphosphate (Ap4A) is a second messenger playing a crucial role in various life activities of bacteria. The increase of Ap4A expression is pleiotropic, resulting in an impairment in the formation of biofilm and other physiological functions in some bacteria. However, Ap4A function in Streptococcus mutans, an important pathogen related to dental caries, remains unknown. In this work, the Ap4A hydrolase, YqeK, was identified and characterized in S. mutans. Then, the effects of yqeK deletion on the growth, biofilm formation, and exopolysaccharide (EPS) quantification in S. mutans were determined by the assessment of the growth curve, crystal violet, and anthrone-sulfuric acid, respectively, and visualized by microscopy. The results showed that the in-frame deletion of the yqeK gene in S. mutans UA159 led to an increase in Ap4A levels, lag phase in the early growth, as well as decrease in biofilm formation and water-insoluble exopolysaccharide production. Global gene expression profile showed that the expression of 88 genes was changed in the yqeK mutant, and among these, 42 were upregulated and 46 were downregulated when compared with the wild-type S. mutans UA159. Upregulated genes were mainly involved in post-translational modification, protein turnover, and chaperones, while downregulated genes were mainly involved in carbohydrate transport and metabolism. Important virulence genes related to biofilms, such as gtfB, gtfC, and gbpC, were also significantly downregulated. In conclusion, these results indicated that YqeK affected the formation of biofilms and the expression of biofilm-related genes in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Carrillo-Najar C, Rembao-Bojórquez D, Tena-Suck ML, Zavala-Vega S, Gelista-Herrera N, Ramos-Peek MA, Gómez-Amador JL, Cazares-Raga F, Hernández-Hernández FDLC, Ortiz-Plata A. Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics (Basel) 2021; 11:diagnostics11020330. [PMID: 33671384 PMCID: PMC7922225 DOI: 10.3390/diagnostics11020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pituitary adenomas (PAs) can be unpredictable and aggressive tumors. No reliable markers of their biological behavior have been found. Here, a proteomic analysis was applied to identify proteins in the expression profile between invasive and non-invasive PAs to search for possible biomarkers. A histopathological and immunohistochemical (adenohypophyseal hormones, Ki-67, p53, CD34, VEGF, Flk1 antibodies) analysis was done; a proteomic map was evaluated in 64 out of 128 tumors. There were 107 (84%) invasive and 21 (16%) non-invasive PAs; 80.5% belonged to III and IV grades of the Hardy–Vezina classification. Invasive PAs (n = 56) showed 105 ± 43 spots; 86 ± 32 spots in non-invasive PAs (n = 8) were observed. The 13 most prominent spots were selected and 11 proteins related to neoplastic process in different types of tumors were identified. Hint1 (Histidine triad nucleotide-binding protein 1) high expression in invasive PA was found (11.8 ± 1.4, p = 0.005), especially at high index (>10; p = 0.0002). High Hint1 expression was found in invasive VEGF positive PA (13.8 ± 2.3, p = 0.005) and in Flk1 positive PA (14.04 ± 2.28, p = 0.006). Hint1 is related to human tumorigenesis by its interaction with signaling pathways and transcription factors. It could be related to invasive behavior in PAs. This is the first report on Hint expression in PAs. More analysis is needed to find out the possible role of Hint in these tumors.
Collapse
Affiliation(s)
- Carolina Carrillo-Najar
- Experimental Neuropathology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico;
| | - Daniel Rembao-Bojórquez
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Martha L. Tena-Suck
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Sergio Zavala-Vega
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Noemí Gelista-Herrera
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Miguel A. Ramos-Peek
- Neurosurgery Division, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (M.A.R.-P.); (J.L.G.-A.)
| | - Juan L. Gómez-Amador
- Neurosurgery Division, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (M.A.R.-P.); (J.L.G.-A.)
| | - Febe Cazares-Raga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, IPN Avenue 2508, Mexico City 07360, Mexico; (F.C.-R.); (F.d.l.C.H.-H.)
| | - Fidel de la Cruz Hernández-Hernández
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, IPN Avenue 2508, Mexico City 07360, Mexico; (F.C.-R.); (F.d.l.C.H.-H.)
| | - Alma Ortiz-Plata
- Experimental Neuropathology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico;
- Correspondence: ; Tel.: +52-(55)5606-3822 (ext. 2008)
| |
Collapse
|
11
|
Strom A, Shah R, Wagner CR. "Switching On" Enzyme Substrate Specificity Analysis with a Fluorescent Competitive Inhibitor. Biochemistry 2021; 60:440-450. [PMID: 33513008 DOI: 10.1021/acs.biochem.0c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatically driven change to the spectroscopic properties of a chemical substrate or product has been a linchpin in the development of continuous enzyme kinetics assays. These assays inherently necessitate substrates or products that naturally comply with the constraints of the spectroscopic technique being used, or they require structural changes to the molecules involved to make them observable. Here we demonstrate a new analytical kinetics approach with enzyme histidine triad nucleotide binding protein 1 (HINT1) that allows us to extract both useful kcat values and a rank-ordered list of substrate specificities without the need to track substrates or products directly. Instead, this is accomplished indirectly using a "switch on" competitive inhibitor that fluoresces maximally only when bound to the HINT1 enzyme active site. Kinetic information is extracted from the duration of the diminished fluorescence when the monitorable inhibitor-bound enzyme is challenged with saturating concentrations of a nonfluorescent substrate. We refer to the loss of fluorescence, while the substrate competes for the fluorescent probe in the active site, as the substrate's residence transit time (RTT). The ability to assess kcat values and substrate specificity by monitoring the RTTs for a set of substrates with a competitive "switch on" inhibitor should be broadly applicable to other enzymatic reactions in which the "switch on" inhibitor has sufficient binding affinity over the enzymatic product.
Collapse
Affiliation(s)
- Alexander Strom
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rachit Shah
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
13
|
Ferguson F, McLennan AG, Urbaniak MD, Jones NJ, Copeland NA. Re-evaluation of Diadenosine Tetraphosphate (Ap 4A) From a Stress Metabolite to Bona Fide Secondary Messenger. Front Mol Biosci 2020; 7:606807. [PMID: 33282915 PMCID: PMC7705103 DOI: 10.3389/fmolb.2020.606807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular homeostasis requires adaption to environmental stress. In response to various environmental and genotoxic stresses, all cells produce dinucleoside polyphosphates (NpnNs), the best studied of which is diadenosine tetraphosphate (Ap4A). Despite intensive investigation, the precise biological roles of these molecules have remained elusive. However, recent studies have elucidated distinct and specific signaling mechanisms for these nucleotides in prokaryotes and eukaryotes. This review summarizes these key discoveries and describes the mechanisms of Ap4A and Ap4N synthesis, the mediators of the cellular responses to increased intracellular levels of these molecules and the hydrolytic mechanisms required to maintain low levels in the absence of stress. The intracellular responses to dinucleotide accumulation are evaluated in the context of the "friend" and "foe" scenarios. The "friend (or alarmone) hypothesis" suggests that ApnN act as bona fide secondary messengers mediating responses to stress. In contrast, the "foe" hypothesis proposes that ApnN and other NpnN are produced by non-canonical enzymatic synthesis as a result of physiological and environmental stress in critically damaged cells but do not actively regulate mitigating signaling pathways. In addition, we will discuss potential target proteins, and critically assess new evidence supporting roles for ApnN in the regulation of gene expression, immune responses, DNA replication and DNA repair. The recent advances in the field have generated great interest as they have for the first time revealed some of the molecular mechanisms that mediate cellular responses to ApnN. Finally, areas for future research are discussed with possible but unproven roles for intracellular ApnN to encourage further research into the signaling networks that are regulated by these nucleotides.
Collapse
Affiliation(s)
- Freya Ferguson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Alexander G McLennan
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Nigel J Jones
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nikki A Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
14
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
15
|
Deacetylation by SIRT1 promotes the tumor-suppressive activity of HINT1 by enhancing its binding capacity for β-catenin or MITF in colon cancer and melanoma cells. Exp Mol Med 2020; 52:1075-1089. [PMID: 32636443 PMCID: PMC8080686 DOI: 10.1038/s12276-020-0465-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023] Open
Abstract
Histidine triad nucleotide-binding protein 1 (HINT1), which belongs to the evolutionarily conserved HIT superfamily, has been shown to possess a tumor-suppressive function by binding to and inhibiting several oncogenic transcription factors, such as β-catenin and microphthalmia transcription factor (MITF), in various types of cancer cells. However, the regulatory mechanism that mediates the binding capacity of HINT1 for partner transcription factors remains elusive. Here, we report that HINT1 is acetylated by CBP at K21 and K30 and deacetylated by SIRT1. Deacetylation of HINT1 by SIRT1 increases the capacity of HINT1 to bind to β-catenin or MITF. As a result, the tumor-suppressive function of HINT1 is increased. In support of this, the deacetylation mimetic HINT1 mutant HINT1 2KR was found to significantly reduce cellular proliferation in colon cancer and melanoma cells and tumorigenesis in xenograft assays. Thus, this study reveals an acetylation-dependent regulatory mechanism that governs the tumor-suppressive function of HINT1. A crucial modification to the tumor-suppressing gene HINT1 helps slow the spread of colon cancer and melanoma according to researchers in South Korea. HINT1 is known to bind to and inhibit several tumor-promoting transcription factors, but it is unclear how this process is regulated. Hyun-Seok Kim at Ewha Womans University in Seoul and co-workers focused on SIRT1, an enzyme that deacetylates, i.e., removes acetyl groups from, various important proteins. They found that the deacetylation of HINT1 by SIRT1 promotes the capacity of HINT1 to bind to transcription factors, thereby enhancing its tumor-suppressing function. Mutant colon cancer and melanoma cell lines with completely deacetylated HINT1 showed significantly reduced growth. The researchers suggest that acetylation and other reversible modifications of HINT1, such as phosphorylation, could be useful in clinical treatments.
Collapse
|
16
|
Ju M, Qi A, Bi J, Zhao L, Jiang L, Zhang Q, Wei Q, Guan Q, Li X, Wang L, Wei M, Zhao L. A five-mRNA signature associated with post-translational modifications can better predict recurrence and survival in cervical cancer. J Cell Mol Med 2020; 24:6283-6297. [PMID: 32306508 PMCID: PMC7294153 DOI: 10.1111/jcmm.15270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
High mortality of patients with cervical cancer (CC) stresses the imperative of prognostic biomarkers for CC patients. Additionally, the vital status of post‐translational modifications (PTMs) in the progression of cancers has been reported by numerous researches. Therefore, the purpose of this research was to dig a prognostic signature correlated with PTMs for CC. We built a five‐mRNA (GALNTL6, ARSE, DPAGT1, GANAB and FURIN) prognostic signature associated with PTMs to predict both disease‐free survival (DFS) (hazard ratio [HR] = 3.967, 95% CI = 1.985‐7.927; P < .001) and overall survival (HR = 2.092, 95% CI = 1.138‐3.847; P = .018) for CC using data from The Cancer Genome Atlas database. Then, the robustness of the signature was validated using GSE44001 and the Human Protein Atlas (HPA) database. CIBERSORT algorithm analysis displayed that activated CD4 memory T cell was also an independent indicator for DFS (HR = 0.426, 95% CI = 0.186‐0.978; P = .044) which could add additional prognostic value to the signature. Collectively, the PTM‐related signature and activated CD4 memory T cell can provide new avenues for the prognostic predication of CC. These findings give further insights into effective treatment strategies for CC, providing opportunities for further experimental and clinical validations.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| |
Collapse
|
17
|
Mo L, Wei B, Liang R, Yang Z, Xie S, Wu S, You Y. Exploring potential biomarkers for lung adenocarcinoma using LC-MS/MS metabolomics. J Int Med Res 2020; 48:300060519897215. [PMID: 32316791 PMCID: PMC7177994 DOI: 10.1177/0300060519897215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background The average 5-year survival rate of lung adenocarcinoma patients is only 15% to 17%, which is primarily due to late-stage diagnosis and a lack of specific prognostic evaluations that can recommend effective therapies. Additionally, there is no clinically recognized biomarker that is effective for early-stage diagnosis. Methods Tissue samples from 10 lung adenocarcinoma patients (both tumor and non-tumor tissues) and 10 benign lung tumor samples were collected. The significantly differentially represented metabolites from the three groups were analyzed by liquid chromatography and tandem mass spectrometry. Results Pathway analysis indicated that central carbon metabolism was the top altered pathway in lung adenocarcinoma, while protein digestion and absorption, and central carbon metabolism were the top altered pathways in benign lung tumors. Receiver operating characteristic curve analysis revealed that adenosine 3′-monophosphate, creatine, glycerol, and 14 other differential metabolites were potential sensitive and specific biomarkers for the diagnosis and prognosis of lung adenocarcinoma. Conclusion Our findings suggest that the metabolomics approach may be a useful method to detect potential biomarkers in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Liang Mo
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Bing Wei
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Renji Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Zhi Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Shouzhi Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Shengrong Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of
University of South China, Hengyang, Hunan Province, China
| | - Yong You
- Medical College, University of South China, Hengyang, Hunan
Province, China
| |
Collapse
|
18
|
Strom A, Tong CL, Wagner CR. Histidine triad nucleotide-binding proteins HINT1 and HINT2 share similar substrate specificities and little affinity for the signaling dinucleotide Ap4A. FEBS Lett 2020; 594:1497-1505. [PMID: 31990367 DOI: 10.1002/1873-3468.13745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 11/07/2022]
Abstract
Human histidine triad nucleotide-binding protein 2 (hHINT2) is an important player in human mitochondrial bioenergetics, but little is known about its catalytic capabilities or its nucleotide phosphoramidate prodrug (proTide)-activating activity akin to the cytosolic isozyme hHINT1. Here, a similar substrate specificity profile (kcat /Km ) for model phosphoramidate substrates was found for hHINT2 but with higher kcat and Km values when compared with hHINT1. A broader pH range for maximum catalytic activity was determined for hHINT2 (pK1 = 6.76 ± 0.16, pK2 = 8.41 ± 0.07). In addition, the known hHINT1-microphthalmia-inducing transcription factor-regulating molecule Ap4 A was found to have no detectable binding to HINT1 nor HINT2 by isothermal titration calorimetry. These results demonstrate that despite differences in their sequence and localization, HINT1 and HINT2 have similar nucleotide substrate specificities, which should be considered in future proTide design and in studies of their natural function.
Collapse
Affiliation(s)
- Alexander Strom
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Cher Ling Tong
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Tatip S, Taggart J, Wang Y, MacDiarmid CW, Eide DJ. Changes in transcription start sites of Zap1-regulated genes during zinc deficiency: Implications for HNT1 gene regulation. Mol Microbiol 2019; 113:285-296. [PMID: 31692084 DOI: 10.1111/mmi.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
Changes in RNA are often poor predictors of protein accumulation. One factor disrupting this relationship are changes in transcription start sites (TSSs). Therefore, we explored how alterations in TSS affected expression of genes regulated by the Zap1 transcriptional activator of Saccharomyces cerevisiae. Zap1 controls their response to zinc deficiency. Among over 80 known Zap1-regulated genes, several produced long leader transcripts (LLTs) in one zinc status condition and short leader transcripts (SLTs) in the other. Fusing LLT and SLT transcript leaders to green fluorescent protein indicated that for five genes, the start site shift likely has little effect on protein synthesis. For four genes, however, the different transcript leaders greatly affected translation. We focused on the HNT1 gene. Zap1 caused a shift from SLT HNT1 RNA in zinc-replete cells to LLT HNT1 RNA in deficient cells. This shift correlated with decreased protein production despite increased RNA. The LLT RNA contains multiple upstream open reading frames that can inhibit translation. Expression of the LLT HNT1 RNA was dependent on Zap1. However, expression of the long transcript was not required to decrease SLT HNT1 mRNA. Our results suggest that the Zap1-activated LLT RNA is a "fail-safe" mechanism to ensure decreased Hnt1 protein in zinc deficiency.
Collapse
Affiliation(s)
- Supinda Tatip
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Shah RM, Peterson C, Strom A, Dillenburg M, Finzel B, Kitto KF, Fairbanks C, Wilcox G, Wagner CR. Inhibition of HINT1 Modulates Spinal Nociception and NMDA Evoked Behavior in Mice. ACS Chem Neurosci 2019; 10:4385-4393. [PMID: 31503445 DOI: 10.1021/acschemneuro.9b00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interactions between the mu-opioid (MOR) and N-methyl-d-aspartate receptor (NMDAR) constitute an area of intense investigation because of their contributions to maladaptive neuroplasticity. Recent evidence suggests that their association requires the involvement of histidine triad nucleotide-binding protein (HINT1) with the enzyme's active site being critical in its regulatory role. Since it is known that spinal blockade of NMDA receptors prevents the development of opioid analgesic tolerance, we hypothesized that spinal inhibition of the HINT1 enzyme may similarly inhibit opioid tolerance. To address these questions, we evaluated novel HINT1 active-site inhibitors in two models of NMDAR and MOR interaction, namely, MOR inhibition of spinal NMDA activation and acute endomorphin-2 tolerance. These studies revealed that while the tryptamine carbamate of guanosine inhibitor, TrpGc, blocked both the development of opioid tolerance and the inhibitory effect of opioids on NMDA activation of the NMDA receptor, acyl-sulfamate analogues could only block the latter. Thermodynamic binding and X-ray crystallographic studies suggested that there are key differences between the bound HINT1-inhibitor surfaces that may be responsible for their differential ability to probe the ability of HINT1 to regulate cross talk between the mu-opioid receptor and NMDA receptor in the spinal cord.
Collapse
|
21
|
Yu J, Liu Z, Liang Y, Luo F, Zhang J, Tian C, Motzik A, Zheng M, Kang J, Zhong G, Liu C, Fang P, Guo M, Razin E, Wang J. Second messenger Ap 4A polymerizes target protein HINT1 to transduce signals in FcεRI-activated mast cells. Nat Commun 2019; 10:4664. [PMID: 31604935 PMCID: PMC6789022 DOI: 10.1038/s41467-019-12710-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Signal transduction systems enable organisms to monitor their external environments and accordingly adjust the cellular processes. In mast cells, the second messenger Ap4A binds to the histidine triad nucleotide-binding protein 1 (HINT1), disrupts its interaction with the microphthalmia-associated transcription factor (MITF), and eventually activates the transcription of genes downstream of MITF in response to immunostimulation. How the HINT1 protein recognizes and is regulated by Ap4A remain unclear. Here, using eight crystal structures, biochemical experiments, negative stain electron microscopy, and cellular experiments, we report that Ap4A specifically polymerizes HINT1 in solution and in activated rat basophilic leukemia cells. The polymerization interface overlaps with the area on HINT1 for MITF interaction, suggesting a possible competitive mechanism to release MITF for transcriptional activation. The mechanism depends precisely on the length of the phosphodiester linkage of Ap4A. These results highlight a direct polymerization signaling mechanism by the second messenger.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaizhou Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuanyuan Liang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jie Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Mengmeng Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Kangma BioTech, Co., Ltd, 1131 Cailun Road, Shanghai, 201203, China
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, 91120, Israel.
- NUS-HUJ-CREATE Cellular and Molecular Mechanisms of Inflammation Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
22
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
23
|
Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci U S A 2019; 116:9578-9585. [PMID: 31004054 PMCID: PMC6511005 DOI: 10.1073/pnas.1822026116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper demonstrates that aminoglycoside antibiotics induce the production of the Ap4A in bacteria. Increased intracellular Ap4A, in turn, promotes bacterial cell killing by this class of antibiotics, which correlated well with elevated damage to the bacterial membrane upon aminoglycoside treatment. These findings reveal a striking connection between aminoglycoside killing and the Ap4A production particularly under conditions of oxidative stress. Importantly, the results of this study suggest that targeting Ap4A degradation or inducing its hypersynthesis during therapy with aminoglycosides might help solve the well-known toxicity issue associated with this class of antibiotics by reducing the level of drug needed for effective treatment. Second messenger molecules play important roles in the responses to various stimuli that can determine a cell's fate under stress conditions. Here, we report that lethal concentrations of aminoglycoside antibiotics result in the production of a dinucleotide alarmone metabolite–diadenosine tetraphosphate (Ap4A), which promotes bacterial cell killing by this class of antibiotics. We show that the treatment of Escherichia coli with lethal concentrations of kanamycin (Kan) dramatically increases the production of Ap4A. This elevation of Ap4A is dependent on the production of a hydroxyl radical and involves the induction of the Ap4A synthetase lysyl-tRNA synthetase (LysU). Ectopic alteration of intracellular Ap4A concentration via the elimination of the Ap4A phosphatase diadenosine tetraphosphatase (ApaH) and the overexpression of LysU causes over a 5,000-fold increase in bacterial killing by aminoglycosides. This increased susceptibility to aminoglycosides correlates with bacterial membrane disruption. Our findings provide a role for the alarmone Ap4A and suggest that blocking Ap4A degradation or increasing its synthesis might constitute an approach to enhance aminoglycoside killing potency by broadening their therapeutic index and thereby allowing lower nontoxic dosages of these antibiotics to be used in the treatment of multidrug-resistant infections.
Collapse
|
24
|
Krakowiak A, Piotrzkowska D, Kocoń-Rębowska B, Kaczmarek R, Maciaszek A. The role of the Hint1 protein in the metabolism of phosphorothioate oligonucleotides drugs and prodrugs, and the release of H 2S under cellular conditions. Biochem Pharmacol 2019; 163:250-259. [PMID: 30772266 DOI: 10.1016/j.bcp.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
Phosphorothioate oligonucleotides (PS-oligos) containing sulfur atom attached in a nonbridging position to the phosphorus atom at one or more internucleotide bond(s) are often used in medicinal applications. Their hydrolysis in cellular media proceeds mainly from the 3'-end, resulting in the appearance of nucleoside 5'-O-phosphorothioates ((d)NMPS), whose further metabolism is poorly understood. We hypothesize that the enzyme responsible for (d)NMPS catabolism could be Hint1, an enzyme that belongs to the histidine triad (HIT) superfamily and is present in all organisms. We previously found that (d)NMPS were desulfurated in vitro to yield (d)NMP and H2S in a Hint1-assisted reaction. Here, we demonstrate that AMPS/GMPS/dGMPS introduced into HeLa/A549 cells are intracellularly converted into AMP/GMP/dGMP and H2S. The level of the released H2S was relative to the concentration of the compounds used and the reaction time. Using RNAi technology, we have shown decreased levels of AMPS/GMPS desulfuration in HeLa/A549 cells with reduced Hint1 levels. Finally, after transfection of a short Rp-d(APSAPSA) oligomer into HeLa cells, the release of H2S was observed. These results suggest that the metabolic pathway of PS-oligos includes hydrolysis into (d)NMPS (by cellular nucleases) followed by Hint1-promoted conversion of the resulting (d)NMPS into (d)NMP accompanied by H2S elimination. Our observations may be also important for possible medicinal applications of (d)NMPS because H2S is a gasotransmitter involved in many physiological and pathological processes.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz 91-063, Poland.
| | - Danuta Piotrzkowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz 91-063, Poland
| | - Beata Kocoń-Rębowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz 91-063, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz 91-063, Poland
| | - Anna Maciaszek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz 91-063, Poland
| |
Collapse
|
25
|
New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration. Cells 2018; 7:cells7110220. [PMID: 30463392 PMCID: PMC6262450 DOI: 10.3390/cells7110220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.
Collapse
|
26
|
Liu X, Han X, Wan X, He C, Wang Y, Mao A, Yu F, Zhou T, Feng L, Zhang P, Jin J, Ma X. SPZ1 is critical for chemoresistance and aggressiveness in drug-resistant breast cancer cells. Biochem Pharmacol 2018; 156:43-51. [PMID: 30076850 DOI: 10.1016/j.bcp.2018.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
It is believed that chemotherapeutic agents can enhance the malignancy of treated cancer cells in clinical situations, which is a major problem for chemotherapy. However, the underlying molecular mechanisms are still not fully understood. Here, we demonstrated that chemotherapy up-regulates the levels of spermatogenic bHLH transcription factor zip 1 (SPZ1), and knockdown of SPZ1 in drug resistant breast cancers showed that SPZ1 is critical for regulating the chemoresistance, migration, invasion and epithelial-mesenchymal transition (EMT) in a Twist1-dependent manner. Moreover, suppressing SPZ1-Twist1 axis decreased the growth of tumor xenografts. Notably, we found a positive correlation between SPZ1 and Twist1 in breast cancer samples from patients with anthracycline or taxane-based chemotherapy. Thus, our results revealed a novel role of SPZ1 as an inducer of chemoresistance and aggressiveness under chemotherapy, and this suggests that therapeutic targeting of SPZ1 may not only enhance the sensitivity of breast cancer to chemotherapy, but also suppress breast cancer invasion and metastases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiping Han
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xu Wan
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Chao He
- Department of Emergency and Critical Care, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, Taiyuan, China
| | - Aiqin Mao
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Fan Yu
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lei Feng
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Peng Zhang
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| | - Jian Jin
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| | - Xin Ma
- School of Medicine and School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
Bao T, Ke Y, Wang Y, Wang W, Li Y, Wang Y, Kui X, Zhou Q, Zhou H, Zhang C, Zhou D, Wang L, Xiao C. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J Mol Med (Berl) 2018; 96:661-672. [PMID: 29806073 DOI: 10.1007/s00109-018-1652-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
|
28
|
Poltronieri P, Čerekovic N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. CHALLENGES 2018; 9:3. [DOI: 10.3390/challe9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.
Collapse
|