1
|
Bibbò S, Capone E, Lovato G, Ponziani S, Lamolinara A, Iezzi M, Lattanzio R, Mazzocco K, Morini M, Giansanti F, De Laurenzi V, Whitfield J, Iacobelli S, Ippoliti R, Beaulieu ME, Soucek L, Sala A, Sala G. EV20/Omomyc: A novel dual MYC/HER3 targeting immunoconjugate. J Control Release 2024; 374:171-180. [PMID: 39128771 DOI: 10.1016/j.jconrel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
MYC is one of the most important therapeutic targets in human cancer. Many attempts have been made to develop small molecules that could be used to curb its activity in patients, but most failed to identify a suitable direct inhibitor. After years of preclinical characterization, a tissue-penetrating peptide MYC inhibitor, called Omomyc, has been recently successfully used in a Phase I dose escalation study in late-stage, all-comers solid tumour patients. The study showed drug safety and positive signs of clinical activity, prompting the beginning of a new Phase Ib combination study currently ongoing in metastatic pancreatic adenocarcinoma patients. In this manuscript, we have explored the possibility to improve Omomyc targeting to specific cancer subtypes by linking it to a therapeutic antibody. The new immunoconjugate, called EV20/Omomyc, was developed by linking a humanised anti-HER3 antibody, named EV20, to Omomyc using a bifunctional linker. EV20/Omomyc shows antigen-dependent penetrating activity and therapeutic efficacy in a metastatic model of neuroblastoma. This study suggests that directing Omomyc into specific cell types using antibodies recognising tumour antigens could improve its therapeutic activity in specific indications, like in the paediatric setting.
Collapse
Affiliation(s)
- Sandra Bibbò
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulio Lovato
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Katia Mazzocco
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Martina Morini
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy.
| | | | - Laura Soucek
- Peptomyc S.L., Barcelona 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM); College, of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom,.
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
2
|
Capone E, Tryggvason T, Cela I, Dufrusine B, Pinti M, Del Pizzo F, Gunnarsdottir HS, Grottola T, De Laurenzi V, Iacobelli S, Lattanzio R, Sala G. HER-3 surface expression increases in advanced colorectal cancer representing a potential therapeutic target. Cell Death Discov 2023; 9:400. [PMID: 37898642 PMCID: PMC10613198 DOI: 10.1038/s41420-023-01692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
HER-3 (also known as ErbB-3) is a human epidermal growth factor receptor tyrosine kinases family member, and its expression in CRC (colorectal cancer) tissues was previously associated with poor prognosis. In this study, HER-3 expression was analyzed by immunohistochemistry in two cohorts of early and advanced metastatic CRC patients. The first cohort included 180 patients diagnosed with CRC in absence of lymph nodes or distant metastases (Stage I and Stage II), while the second was obtained from 53 advanced metastatic CRC patients who developed synchronous (SM) and metachronous (MM) liver metastases. In the first early-stage CRC cohort, 86 out of 180 (47.8%) tumors showed membranous expression of HER-3, with a mean percentage of positive tumor cells of 25.7%; conversely, in advanced metastatic CRC primary tumors, HER-3 was detected in all specimens, with a mean percentage of positive tumor cells of 76.1%. Kaplan-Meier curves showed that in the advanced metastatic CRC group, patients with HER-3high tumors had a significantly lower Cancer-Specific Survival (CSS) rate compared to patients with HER-3low tumors (p = 0.021). Importantly, this worse CSS rate was observed only in the MM subgroup of patients with HER-3high tumors (p = 0.002). Multivariate analysis confirmed that high HER-3 expression represents a significant and strong risk factor for death in patients developing MM liver metastases (Hazard Ratio = 64.9; 95% Confidence Interval, 4.7-886.6; p = 0.002). In addition, using a specific anti-HER-3 antibody-drug conjugate, named EV20/MMAF, we showed that HER-3 + CRC cells can be efficiently targeted in vitro and in vivo. Overall, this study confirms that surface HER-3 is highly expressed in CRC and reveals that HER-3 expression increases in metastatic CRC patients compared to early stage. Importantly, the results suggest that HER-3 has a prognostic and therapeutic value in patients developing MM liver metastases.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Thordur Tryggvason
- Department of Pathology, Landspítali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Dufrusine
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Morena Pinti
- Department of Medical, Oral and Biotechnological Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Tommaso Grottola
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124, Pescara, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
3
|
Yan FF, Jiang Q, Ru B, Fei XJ, Ruan J, Zhang XC. Metastatic urothelial carcinoma harboring ERBB2/3 mutations dramatically respond to chemotherapy plus anti-PD-1 antibody: A case report. World J Clin Cases 2022; 10:2497-2503. [PMID: 35434068 PMCID: PMC8968593 DOI: 10.12998/wjcc.v10.i8.2497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) targeting the programmed death (PD)-1 pathway have substantially changed the clinical management of metastatic urothelial carcinoma (mUC); however, the response rate remains low. There are ongoing efforts to identify robust biomarkers that can effectively predict the treatment response to ICIs. Previous studies have suggested that ERBB2/3 mutations are associated with the efficacy of ICIs in gallbladder carcinoma.
CASE SUMMARY We present a 59-year-old man with mUC harboring ERBB2/3 mutations (in-frame insertion of ERBB2 and ERBB3 amplification), negative PD-ligand 1 expression, and low tumor mutation burden. He received anti-PD-1 antibodies and paclitaxel as second-line treatment. After two cycles of treatment, the lung metastases had significantly shrunk, achieving good partial remission. After six cycles of combination therapy, the patient received sindilimab 200 mg once every 3 wk as maintenance monotherapy. At the last follow-up, the patient continued to exhibit a partial response and progression-free survival for as long as 19 mo.
CONCLUSION ERBB2/3 mutations may represent a predictive biomarker for selecting a subgroup of mUC patients who will benefit from ICIs.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Qi Jiang
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Bin Ru
- Department of Pain Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Xiao-Jie Fei
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 313000, Zhejiang Province, China
| | - Jian Ruan
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Chen Zhang
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
4
|
Liu S, Cai Y, Changyong E, Sheng J, Zhang X. Screening and Validation of Independent Predictors of Poor Survival in Pancreatic Cancer. Pathol Oncol Res 2021; 27:1609868. [PMID: 34321959 PMCID: PMC8310909 DOI: 10.3389/pore.2021.1609868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a digestive system malignant tumor with high mortality and poor prognosis, but the mechanisms of progression remain unclear in pancreatic cancer. It's necessary to identify the hub genes in pancreatic cancer and explore the novel potential predictors in the prognosis of pancreatic cancer. We downloaded two mRNA expression profiles from Gene Expression Omnibus and The Cancer Genome Atlas Pancreatic Cancer (TCGA-PAAD) datasets to screen the commonly differentially expressed genes in pancreatic cancer by limma package in R. Subsequently, measurement of the functional similarity among the 38 DEGs in common was performed to identify the hub genes using GOSemSim package. Then, survival analysis and Cox regression were applied to explore prognosis-related hub genes using the survival package. Statistics analysis by two-tailed Student's t-test or one-way based on TCGA-PAAD datasets and qPCR detection in clinical samples were performed to explore the correlations between expression of hub genes in pancreatic cancer tissues and clinical parameters. Based on integrated analysis of TCGA and GEO datasets, we screened 38 DEGs in common, which were all up-regulated. The functional similarity results showed that 10 DEGs including TSPAN1, MSLN, C1orf116, PKP3, CEACAM6, BAIAP2L1, PPL, RAB25, ERBB3, and AP1M2 in the DEGs in common, which had the higher average functional similarity, were considered as the hub genes. Survival analysis results and Cox regression analysis showed that TSPAN1, CEACAM6, as well as ERBB3 were all associated with poor overall survival of PC. qPCR results showed that the expression levels of TSPAN1 and ERBB3 were significantly upregulated in the PC tissues. The statistical analysis results revealed that TSPAN1 expression correlated significantly with histologic grade, T stage, clinical stage, and vital status by two-tailed Student's t-test or one-way ANOVA; ERBB3 expression correlated significantly with T stage, clinical stage, and vital status by two-tailed Student's t-test or one-way ANOVA. We found that TSPAN1 and ERBB3 could be independent predictors of poor survival in pancreatic cancer.
Collapse
Affiliation(s)
- Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Cai
- Hospital of Stomatology, Jilin University, Changchun, China
| | - E. Changyong
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Capone E, Lattanzio R, Gasparri F, Orsini P, Rossi C, Iacobelli V, De Laurenzi V, Natali PG, Valsasina B, Iacobelli S, Sala G. EV20/NMS-P945, a Novel Thienoindole Based Antibody-Drug Conjugate Targeting HER-3 for Solid Tumors. Pharmaceutics 2021; 13:pharmaceutics13040483. [PMID: 33918158 PMCID: PMC8066800 DOI: 10.3390/pharmaceutics13040483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
HER-3 is becoming an attractive target for antibody-drug conjugate (ADC)-based therapy. Indeed, this receptor and its ligands are found to be overexpressed in several malignancies, and re-activation of its downstream signaling axis is known to play a critical role in modulating the sensitivity of targeted therapeutics in different tumors. In this study, we generated a novel ADC named EV20/NMS-P945 by coupling the anti-HER-3 antibody EV20 with a duocarmycin-like derivative, the thienoindole (TEI) NMS-P528, a DNA minor groove alkylating agent through a peptidic cleavable linker. This ADC showed target-dependent cytotoxic activity in vitro on several tumor cell lines and therapeutic activity in mouse xenograft tumor models, including those originating from pancreatic, prostatic, head and neck, gastric and ovarian cancer cells and melanoma. Pharmacokinetics and toxicological studies in monkeys demonstrated that this ADC possesses a favorable terminal half-life and stability and it is well tolerated. These data support further EV20/NMS-P945 clinical development as a therapeutic agent against HER-3-expressing malignancies.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Fabio Gasparri
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Paolo Orsini
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Cosmo Rossi
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Valentina Iacobelli
- Department of Gynecology and Obstetrics, Catholic University, 00168 Rome, Italy;
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | | | - Barbara Valsasina
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Stefano Iacobelli
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| |
Collapse
|
6
|
Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020; 21:ijms21155510. [PMID: 32752132 PMCID: PMC7432430 DOI: 10.3390/ijms21155510] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.
Collapse
|
7
|
Differential impact of the ERBB receptors EGFR and ERBB2 on the initiation of precursor lesions of pancreatic ductal adenocarcinoma. Sci Rep 2020; 10:5241. [PMID: 32251323 PMCID: PMC7090067 DOI: 10.1038/s41598-020-62106-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) requires better understanding of the mechanisms driving tumorigenesis. In this context, depletion of Epidermal Growth Factor Receptor (EGFR) is known to impair development of PDAC-initiating lesions called acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN). In contrast, the role of v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), the preferred dimerization partner of EGFR, remains poorly understood. Here, using a mouse model with inactivation of Erbb2 in pancreatic acinar cells, we found that Erbb2 is dispensable for inflammation- and KRasG12D-induced development of ADM and PanIN. A mathematical model of EGFR/ERBB2-KRAS signaling, which was calibrated on mouse and human data, supported the observed roles of EGFR and ERBB2. However, this model also predicted that overexpression of ERBB2 stimulates ERBB/KRAS signaling; this prediction was validated experimentally. We conclude that EGFR and ERBB2 differentially impact ERBB signaling during PDAC tumorigenesis, and that the oncogenic potential of ERBB2 is only manifested when it is overexpressed. Therefore, the level of ERBB2, not only its mere presence, needs to be considered when designing therapies targeting ERBB signaling.
Collapse
|
8
|
Nguyen ATQ, Lee SY, Chin HJ, Le QVC, Lee D. Kinase activity of ERBB3 contributes to intestinal organoids growth and intestinal tumorigenesis. Cancer Sci 2019; 111:137-147. [PMID: 31724799 PMCID: PMC6942447 DOI: 10.1111/cas.14235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
As a member of the epidermal growth factor receptor (EGFR) family, ERBB3 plays an essential role in development and disease independent of inherently inactive kinase domain. Recently, ERBB3 has been found to bind to ATP and has catalytic activity in vitro. However, the biological function of ERBB3 kinase activity remains elusive in vivo. Here we have identified the physiological function of inactivated ERBB3 kinase activity by creating Erbb3‐K740M knockin mice in which ATP cannot bind to ERBB3. Unlike Erbb3 knockout mice, kinase‐inactive Erbb3K740M homozygous mice were born in Mendelian ratios and showed normal development. After dextran sulfate sodium‐induced colitis, the kinase‐inactive Erbb3 mutant mice showed normal recovery. However, the outgrowth of ileal organoids by neuregulin‐1 treatment was more attenuated in Erbb3 mutant mice than in WT mice. Moreover, in combination with the ApcMin mouse, the proportion of polyps less than 1 mm in diameter in mutant mice was higher than in control mice and an increase in the number of apoptotic cells was observed in polyps from mutant mice compared with polyps from control mice. Taken together, the ERBB3 kinase activity contributes to the outgrowth of ileal organoids and intestinal tumorigenesis, and the development of ERBB3 kinase inhibitors, including epidermal growth factor receptor family members, can be a potential way to target colorectal cancer.
Collapse
Affiliation(s)
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Hyun Jung Chin
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Quy Van-Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
9
|
Shen Y, Pu K, Zheng K, Ma X, Qin J, Jiang L, Li J. Differentially Expressed microRNAs in MIA PaCa-2 and PANC-1 Pancreas Ductal Adenocarcinoma Cell Lines are Involved in Cancer Stem Cell Regulation. Int J Mol Sci 2019; 20:E4473. [PMID: 31510100 PMCID: PMC6770012 DOI: 10.3390/ijms20184473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and thus better understanding of its molecular pathology is crucial for us to devise more effective treatment of this deadly disease. As cancer cell line remains a convenient starting point for discovery and proof-of-concept studies, here we report the miRNA expression characteristics of two cell lines, MIA PaCa-2 and PANC-1, and discovered three miRNAs (miR-7-5p, let-7d, and miR-135b-5p) that are involved in cancer stem cells (CSCs) suppression. After transfection of each miRNA's mimic into PANC-1 cells which exhibits higher stemness feature than MIA-PaCa-2 cells, partial reduction of CSC surface markers and inhibition of tumor sphere formation were observed. These results enlighten us to consider miRNAs as potential therapeutic agents for pancreatic cancer patients via specific and effective inhibition of CSCs.
Collapse
Affiliation(s)
- Ye Shen
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kefeng Pu
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kexiao Zheng
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingyi Qin
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Li Jiang
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiong Li
- Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
10
|
Liao X, Wang X, Huang K, Yang C, Yu T, Han C, Zhu G, Su H, Huang R, Peng T. Genome-scale analysis to identify prognostic microRNA biomarkers in patients with early stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Cancer Manag Res 2018; 10:2537-2551. [PMID: 30127641 PMCID: PMC6089101 DOI: 10.2147/cmar.s168351] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of the study was to investigate potential prognostic microRNA (miRNA) biomarkers for patients with early stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using a miRNA-sequencing (miRNA-seq) data set from The Cancer Genome Atlas (TCGA). A miRNA expression-based prognostic signature was generated, and the potential role of target genes in overall survival (OS) in patients with PDAC was examined. Methods A miRNA-seq data set of 112 PDAC patients who underwent pancreaticoduodenectomy was obtained from TCGA. Survival analysis was performed to identify potential prognostic biomarkers. Results Eleven miRNAs (hsa-mir-501, hsa-mir-4521, hsa-mir-5091, hsa-mir-24-1, hsa-mir-126, hsa-mir-30e, hsa-mir-3157, hsa-let-7a-3, hsa-mir-133a-1, hsa-mir-4709, and hsa-mir-421) were used to construct a prognostic signature using the step function. The 11-miRNA prognostic signature showed good performance for prognosis prediction (adjusted P<0.0001, adjusted hazard ratio =4.285, 95% confidence interval =2.146–8.554), and the time-dependent receiver operating characteristic analysis showed an area under the curve of 0.864, 0.877, and 0.787 for 1-, 2-, and 3-year PDAC OS predictions, respectively. Comprehensive survival analysis suggested that the prognostic signature could serve as an independent prognostic factor for PDAC OS and performs better in prognosis prediction than other traditional clinical indicators. Functional assessment of the target genes of the miRNAs indicated that they were significantly enriched in multiple biological processes and pathways, including cell proliferation, cell cycle biological processes, the forkhead box O, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription signaling pathways, pathways in cancer, and the ErbB signaling pathway. Several target genes of these miRNAs were also associated with PDAC OS. Conclusion The present study identified a novel miRNA expression signature that showed potential as a prognostic biomarker for PDAC after pancreaticoduodenectomy.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China,
| |
Collapse
|
11
|
D'Abronzo LS, Pan CX, Ghosh PM. Evaluation of Protein Levels of the Receptor Tyrosine Kinase ErbB3 in Serum. Methods Mol Biol 2018; 1655:319-334. [PMID: 28889394 DOI: 10.1007/978-1-4939-7234-0_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTK) consists of four members: EGFR1/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and HER4/ErbB4. Signaling through these receptors regulates many key cellular activities, such as cell division, migration, adhesion, differentiation, and apoptosis. The ErbB family has been shown to be overexpressed in different types of cancers and is a target of several inhibitors already in clinical trials. ErbB3 lacks a functional tyrosine kinase domain and therefore has not been as extensively studied as the other members of this family, but its importance in activating downstream pathways, such as the PI3K/Akt pathway, makes this RTK a worthy investigation target, especially in urothelial carcinoma where the PI3K/Akt pathway is vital for progression. In recent times, ErbB3 overexpression has been linked to drug resistance and progression of various diseases, especially cancer. ErbB3 levels in the serum were shown in many cases to be reflective of its role in disease progression, and therefore detection of serum ErbB3 levels during treatment may be of importance.Here we describe two methods for detecting ErbB3 protein in serum from patients who have undergone a clinical trial, utilizing two well-established methods in molecular biology-western blotting and ELISA, focusing on sample preparation and troubleshooting.
Collapse
Affiliation(s)
- Leandro S D'Abronzo
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California at Davis, Sacramento, CA, USA
| | - Chong-Xian Pan
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California at Davis, Sacramento, CA, USA.,Division of Hematology and Oncology, Department of Internal Medicine, University of California at Davis, Sacramento, CA, USA
| | - Paramita M Ghosh
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA. .,Department of Urology, University of California at Davis, Sacramento, CA, USA. .,Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA. .,Department of Urology, University of California Davis School of Medicine, 4860 YStreet, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Capone E, Giansanti F, Ponziani S, Lamolinara A, Iezzi M, Cimini A, Angelucci F, Sorda RL, Laurenzi VD, Natali PG, Ippoliti R, Iacobelli S, Sala G. EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma. Oncotarget 2017; 8:95412-95424. [PMID: 29221137 PMCID: PMC5707031 DOI: 10.18632/oncotarget.20728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.
Collapse
Affiliation(s)
- Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology Temple University, Philadelphia, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | | | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ) Italy
| | - Stefano Iacobelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l., Via della Colonnetta, Chieti, Italy
| |
Collapse
|
13
|
Prasetyanti PR, Capone E, Barcaroli D, D'Agostino D, Volpe S, Benfante A, van Hooff S, Iacobelli V, Rossi C, Iacobelli S, Medema JP, De Laurenzi V, Sala G. ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs). Oncotarget 2016; 6:16902-11. [PMID: 26160848 PMCID: PMC4627280 DOI: 10.18632/oncotarget.4642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance. Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer.
Collapse
Affiliation(s)
- Pramudita R Prasetyanti
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Daniela Barcaroli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Daniela D'Agostino
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Silvia Volpe
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Antonina Benfante
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Sander van Hooff
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Valentina Iacobelli
- Department of Gynecology and Obstetrics, La Sapienza University of Rome, Rome, Italy
| | - Cosmo Rossi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy.,MediaPharma s.r.l., Chieti, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Vincenzo De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy.,MediaPharma s.r.l., Chieti, Italy
| |
Collapse
|
14
|
Zhang C, Zhao H, Li J, Liu H, Wang F, Wei Y, Su J, Zhang D, Liu T, Zhang Y. The identification of specific methylation patterns across different cancers. PLoS One 2015; 10:e0120361. [PMID: 25774687 PMCID: PMC4361543 DOI: 10.1371/journal.pone.0120361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Abnormal DNA methylation is known as playing an important role in the tumorgenesis. It is helpful for distinguishing the specificity of diagnosis and therapeutic targets for cancers based on characteristics of DNA methylation patterns across cancers. High throughput DNA methylation analysis provides the possibility to comprehensively filter the epigenetics diversity across various cancers. We integrated whole-genome methylation data detected in 798 samples from seven cancers. The hierarchical clustering revealed the existence of cancer-specific methylation pattern. Then we identified 331 differentially methylated genes across these cancers, most of which (266) were specifically differential methylation in unique cancer. A DNA methylation correlation network (DMCN) was built based on the methylation correlation between these genes. It was shown the hubs in the DMCN were inclined to cancer-specific genes in seven cancers. Further survival analysis using the part of genes in the DMCN revealed high-risk group and low-risk group were distinguished by seven biomarkers (PCDHB15, WBSCR17, IGF1, GYPC, CYGB, ACTG2, and PRRT1) in breast cancer and eight biomarkers (ZBTB32, OR51B4, CCL8, TMEFF2, SALL3, GPSM1, MAGEA8, and SALL1) in colon cancer, respectively. At last, a protein-protein interaction network was introduced to verify the biological function of differentially methylated genes. It was shown that MAP3K14, PTN, ACVR1 and HCK sharing different DNA methylation and gene expression across cancers were relatively high degree distribution in PPI network. The study suggested that not only the identified cancer-specific genes provided reference for individual treatment but also the relationship across cancers could be explained by differential DNA methylation.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongyan Zhao
- Department of Gastroenterology, The fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbo Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dongwei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tiefu Liu
- Department of Gastroenterology, The fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail: (YZ); (TL)
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- * E-mail: (YZ); (TL)
| |
Collapse
|