1
|
Maharati A, Moghbeli M. Role of microRNA-505 during tumor progression and metastasis. Pathol Res Pract 2024; 258:155344. [PMID: 38744001 DOI: 10.1016/j.prp.2024.155344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Late diagnosis of cancer in advanced stages due to the lack of screening methods is considered as the main cause of poor prognosis and high mortality rate among these patients. Therefore, it is necessary to investigate the molecular tumor biology in order to introduce biomarkers that can be used in cancer screening programs and early diagnosis. MicroRNAs (miRNAs) have key roles in regulation of the cellular pathophysiological processes. Due to the high stability of miRNAs in body fluids, they are widely used as the non-invasive tumor markers. According to the numerous reports about miR-505 deregulation in a wide range of cancers, we investigated the role of miR-505 during tumor progression. It was shown that miR-505 mainly has the tumor suppressor functions through the regulation of signaling pathways, chromatin remodeling, and cellular metabolism. This review has an effective role in introducing miR-505 as a suitable marker for the early cancer diagnosis.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Cheng Y, Xie L, Xu Z, Hao M, Yang B, Shan W, Wang Y, Lv Q, Chen X. NrCAM secreted by endometrial stromal cells enhances the progestin sensitivity of endometrial cancer cells through epigenetic modulation of PRB. Cancer Gene Ther 2022; 29:1452-1462. [PMID: 35388173 PMCID: PMC9576598 DOI: 10.1038/s41417-022-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Progestin is one of the main hormone treatment regimens for early-stage estrogen receptor- and progesterone receptor (PR)-positive endometrial cancer (EC). However, the response rate of EC to progestins is unsatisfactory. Investigating the mechanisms related to progestin treatment could help improve treatment efficacy. Studies have demonstrated that normal endometrial stromal cells (ESCs) increase the inhibitory effect of progestin on EC cell proliferation via paracrine signaling, but the mechanisms involved remain unclear. In this study, we found that ESCs had different morphological features between progestin-sensitive and -insensitive EC tissues. ESCs presented typical decidualization changes in progestin-sensitive cases, while they remained slim in progestin-insensitive EC lesions, indicating no response. Furthermore, ESCs enhanced the inhibitory effect of medroxyprogesterone acetate (MPA) on EC cell proliferation by secreting neuron cell adhesion molecule (NrCAM). MPA treatment enhanced NrCAM secretion by ESCs. EC xenografts in BALB/C nude mice demonstrated that MPA combined with NrCAM had an increased tumor inhibitory effect compared with MPA or NrCAM alone. Mechanistically, MPA upregulated NrCAM expression in ESCs through PR. Specifically, NrCAM increased PR expression in EC cells through TET1-induced hydroxymethylation of the PRB gene promoter region. These findings indicate that NrCAM or NrCAM combined with progestins could be a new EC treatment.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Liying Xie
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Zhiying Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Mengxin Hao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Bingyi Yang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Weiwei Shan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China
| | - Yiqin Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qiaoying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China.
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
3
|
Hu G, Wang R, Wei B, Wang L, Yang Q, Kong D, Du C. Prognostic Markers Identification in Glioma by Gene Expression Profile Analysis. J Comput Biol 2019; 27:81-90. [PMID: 31433208 DOI: 10.1089/cmb.2019.0217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore more gene markers associated with glioma or its prognosis. The glioma-related RNAseq data from the Gene Expression Omnibus database and The Cancer Genome Atlas dataset in UCSC Xena database were downloaded. There was a total of 971 tumor samples and 102 normal samples in the 2 datasets. The differentially expressed genes (DEGs) data between tumor and normal samples were analyzed, on which were then performed function and pathway enrichment analyses. Pearson correlation coefficient between DEGs was calculated to construct the coexpression network. Finally, prognostic genes were screened. A total of 634 upregulated and 769 downregulated DEGs were identified between tumor and control groups. These DEGs were significantly involved in 15 upregulated pathways, such as p53 signaling pathway, and 16 downregulated pathways, such as neuroactive ligand-receptor interaction, and cell adhesion molecules. In the coexpression network, pseudouridine synthase 7 (PUS7), EFR3 homolog B (EFR3B), and neuronal cell adhesion molecule (NRCAM) had the top three highest degrees. Additionally, 17 prognostic genes were selected, such as thrombospondin-1 (THBS1), caspase-8 (CASP8), glutamate ionotropic receptor AMPA type subunit 2 (GRIA2), GRIA4, and ADCYAP receptor type I (ADCYAP1R1). Pathways of p53 signaling pathway and neuroactive ligand-receptor interaction may play important roles in glioma progression. PUS7, EFR3B, and NRCAM may be potential biomarkers of glioma. THBS1, CASP8, GRIA2, GRIA4, and ADCYAP1R1 may serve as prognostic markers in glioma.
Collapse
Affiliation(s)
- Guozhang Hu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Radiology, and China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Qi Yang
- Department of Obstetrics and Gynecology, and China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ling XH, Fu H, Chen ZY, Lu JM, Zhuo YJ, Chen JH, Zhong WD, Jia Z. miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncol Rep 2019; 42:991-1004. [PMID: 31322225 PMCID: PMC6667922 DOI: 10.3892/or.2019.7231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Previous researchers have demonstrated that microRNA-505 (miR-505) is negatively correlated with progression in various malignancies. However, the detailed function and molecular mechanisms of miR-505 have yet to be completely elucidated in prostate cancer (PCa). The present study initially identified the potential role of miR-505 in PCa using in vitro experiments, and demonstrated that restoration of miR-505 inhibited proliferation, invasion and migration, yet induced cell cycle arrest and promoted apoptosis in PCa cells. The present study also demonstrated that the expression of neuron-glial-related cell adhesion molecule (NRCAM) was markedly upregulated in PCa cells when compared with benign prostate epithelium. A luciferase reporter assay demonstrated that miR-505 directly targeted NRCAM in PCa cells. In addition, NRCAM stimulation antagonized the inhibitory effects of miR-505 on the proliferation, migration, and invasion of PCa cells. Furthermore, lower levels of miR-505 and higher levels of NRCAM may serve as a predictor of worse biochemical recurrence-free survival or disease-free survival in patients with PCa. In conclusion, the present study revealed the inhibitory effects of miR-505 on PCa tumorigenesis, which potentially occur by targeting NRCAM. The combined analysis of NRCAM and miR-505 may predict disease progression in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Xiao-Hui Ling
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Fu
- Department of Urology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jia-Hong Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
VEGFR-1 overexpression identifies a small subgroup of aggressive prostate cancers in patients treated by prostatectomy. Int J Mol Sci 2015; 16:8591-606. [PMID: 25894226 PMCID: PMC4425098 DOI: 10.3390/ijms16048591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 01/30/2023] Open
Abstract
The VEGFR-1 is suggested to promote tumor progression. In the current study we analyzed prevalence and prognostic impact of the VEGFR-1 by immunohistochemistry on a tissue microarray containing more than 3000 prostate cancer specimens. Results were compared to tumor phenotype, ETS-related gene (ERG) status, and biochemical recurrence. Membranous VEGFR-1 expression was detectable in 32.6% of 2669 interpretable cancers and considered strong in 1.7%, moderate in 6.7% and weak in 24.2% of cases. Strong VEGFR-1 expression was associated with TMPRSS2:ERG fusion status as determined by fluorescence in situ hybridization (FISH) and immunohistochemistry (p < 0.0001 each). Elevated VEGFR-1 expression was linked to high Gleason grade and advanced pT stage in TMPRSS2:ERG negative cancers (p = 0.0008 and p = 0.001), while these associations were absent in TMPRSS2:ERG positive cancers. VEGFR-1 expression was also linked to phosphatase and tensin homolog (PTEN) deletions. A comparison with prostate specific antigen (PSA) recurrence revealed that the 1.7% of prostate cancers with the highest VEGFR-1 levels had a strikingly unfavorable prognosis. This could be seen in all cancers, in the subsets of TMPRSS2:ERG positive or negative, PTEN deleted or undeleted carcinomas (p < 0.0001 each). High level VEGFR-1 expression is infrequent in prostate cancer, but identifies a subgroup of aggressive cancers, which may be candidates for anti-VEGFR-1 targeted therapy.
Collapse
|
6
|
Kaufman HL, Kim DW, Kim-Schulze S, DeRaffele G, Jagoda MC, Broucek JR, Zloza A. Results of a randomized phase I gene therapy clinical trial of nononcolytic fowlpox viruses encoding T cell costimulatory molecules. Hum Gene Ther 2014; 25:452-60. [PMID: 24484178 DOI: 10.1089/hum.2013.217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have shown promise as gene delivery vehicles in the treatment of cancer; however, their efficacy may be inhibited by the induction of anti-viral antibody titers. Fowlpox virus is a nonreplicating and nononcolytic vector that has been associated with lesser humoral but greater cell-mediated immunity in animal tumor models. To test whether fowlpox virus gene therapy is safe and can elicit immune responses in patients with cancer, we conducted a randomized phase I clinical trial of two recombinant fowlpox viruses encoding human B7.1 or a triad of costimulatory molecules (B7.1, ICAM-1, and LFA-3; TRICOM). Twelve patients (10 with melanoma and 2 with colon adenocarcinoma) enrolled in the trial and were randomized to rF-B7.1 or rF-TRICOM administered in a dose escalation manner (~3.7×10(7) or ~3.7×10(8) plaque-forming units) by intralesional injection every 4 weeks. The therapy was well tolerated, with only four patients experiencing grade 1 fever or injection site pain, and there were no serious adverse events. All patients developed anti-viral antibody titers after vector delivery, and posttreatment anti-carcinoembryonic antigen antibody titers were detected in the two patients with colon cancer. All patients developed CD8(+) T cell responses against fowlpox virus, but few responses against defined tumor-associated antigens were observed. This is the first clinical trial of direct (intratumoral) gene therapy with a nononcolytic fowlpox virus. Treatment was well tolerated in patients with metastatic cancer; all subjects exhibited anti-viral antibody responses, but limited tumor-specific T cell responses were detected. Nononcolytic fowlpox viruses are safe and induce limited T cell responses in patients with cancer. Further development may include prime-boost strategies using oncolytic viruses for initial priming.
Collapse
Affiliation(s)
- Howard L Kaufman
- 1 Rutgers Cancer Institute of New Jersey, Rutgers University , New Brunswick, NJ 08903
| | | | | | | | | | | | | |
Collapse
|
7
|
Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, Schlomm T, Graefen M, Huland H, Salomon G, Steuber T, Wilczak W, Sirma H, Simon R, Sauter G, Minner S, Quaas A. βIII-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:609-17. [PMID: 24378408 DOI: 10.1016/j.ajpath.2013.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 02/08/2023]
Abstract
Evidence suggests that class III β-tubulin (βIII-tubulin) may represent a prognostic and predictive molecular marker in prostate cancer. βIII-Tubulin expression was determined by IHC in 8179 prostate cancer specimens in a TMA format. Results were compared with tumor phenotype, biochemical recurrence, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) status, and deletions on PTEN, 3p13, 5q21, and 6q15. βIII-Tubulin expression was detectable in 25.6% of 8179 interpretable cancers. High βIII-tubulin expression was strongly associated with both TMPRSS2:ERG rearrangement and ERG expression (P < 0.0001 each). High βIII-tubulin expression was tightly linked to high Gleason grade, advanced pT stage, and early prostate-specific antigen (PSA) recurrence in all cancers (P < 0.0001 each), but also in the subgroups of ERG-negative and ERG-positive cancers. When all tumors were analyzed, the prognostic role of βIII-tubulin expression was independent of Gleason grade, pT stage, pN stage, surgical margin status, and preoperative PSA. Independent prognostic value became even more evident if the analysis was limited to preoperatively available features, such as biopsy specimen Gleason grade, preoperative PSA, cT stage, and βIII-tubulin expression (P < 0.0001 each). βIII-Tubulin expression was associated with PTEN (P < 0.0001) when all tumors were analyzed, but also in the subgroups of ERG-negative and ERG-positive cancers. βIII-Tubulin expression is an independent prognostic parameter. The significant associations with key genomic alterations of prostate cancer, such as TMPRSS2:ERG fusions and PTEN deletions, suggest interactions with several pivotal pathways involved in prostate cancer.
Collapse
Affiliation(s)
- Maria C Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Prostate Cancer Center, Section for Translational Prostate Cancer Research, the Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Salomon
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Steuber
- Martini-Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hüseyin Sirma
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Quaas
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|