1
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Chakrabarti C, Khan Pathan S, Deep Punetha V, Pillai SA. Interaction of Tetronics® micelles with stimuli and additives and a commanding aspect towards drug delivery: An overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
4
|
Song X, Zhang X, Li T, Li Z, Chi H. Mechanically Robust Hybrid POSS Thermoplastic Polyurethanes with Enhanced Surface Hydrophobicity. Polymers (Basel) 2019; 11:E373. [PMID: 30960357 PMCID: PMC6419223 DOI: 10.3390/polym11020373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/16/2023] Open
Abstract
A series of hybrid thermoplastic polyurethanes (PUs) were synthesized from bi-functional polyhedral oligomeric silsesquioxane (B-POSS) and polycaprolactone (PCL) using 1,6-hexamethylene diisocyanate (HDI) as a coupling agent for the first time. The newly synthesized hybrid materials were fully characterized in terms of structure, morphology, thermal and mechanical performance, as well as their toughening effect toward polyesters. Thermal gravimeter analysis (TGA) and differential scanning calorimetry (DSC) showed enhanced thermal stability by 76 °C higher in decomposition temperature (Td) of the POSS PUs, and 22 °C higher glass transition temperature (Tg) when compared with control PU without POSS. Static contact angle results showed a significant increment of 49.8° and 53.4° for the respective surface hydrophobicity and lipophilicity measurements. More importantly, both storage modulus (G') and loss modulus (G'') are improved in the hybrid POSS PUs and these parameters can be further adjusted by varying POSS content in the copolymer. As a biodegradable hybrid filler, the as-synthesized POSS PUs also demonstrated a remarkable effect in toughening commercial polyesters, indicating a simple yet useful strategy in developing high-performance polyester for advanced biomedical applications.
Collapse
Affiliation(s)
- Xiuhuan Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoxiao Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
5
|
Franco-Marquès E, Parra J, Pèlach MA, Méndez JA. Synthesis and characterization of self-curing hydrophilic bone cements for protein delivery. J Biomed Mater Res B Appl Biomater 2014; 103:992-1001. [PMID: 25209322 DOI: 10.1002/jbm.b.33283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 11/06/2022]
Abstract
New formulations of acrylic bone cements for bone defect reparation, based on self-hardening methyl methacrylate (MMA)/methacrylic acid (MAA), with a high capacity for protein delivery, have been developed. The self-curing formulations were prepared by partial substitution of solid phase PMMA microparticles by newly obtained PMAA microspheres. The PMAA microspheres were prepared by inverse suspension polymerization of their monomer and were cross-linked with N,N'-methylene-bis-acrylamide (MBA) (10-15 wt %) to produce stable systems in contact with aqueous media. PMAA microspheres were loaded with hydrolyzed collagen (HC) as a model protein to simulate bone morphogenetic protein delivery useful for hard tissue reconstruction. Solid phase PMMA microparticles in the formulation were partially substituted by new PMAA-HC microspheres and were characterized to determine viability as an acrylic bone cement in minimally invasive surgery. The incorporation of PMAA-HC microspheres decreased peak temperature by 20°C, which minimized thermal necrotic risk after implantation. Mechanical compression tests revealed a behavior, under dry conditions, close to ISO 5833 standard requirements. However, a drastic drop in mechanical strength, ∼64%, was obtained after 15 days of immersion in simulated physiological conditions (37°C and pH 7.4) and was attributed to water absorption and a subsequent plasticizing effect. The increase in water uptake and retention enhanced the capability for controlled protein delivery. Finally, the biocompatibility of the cements was determined; some toxicity of the material during the first hours of culture incubation was observed. Later, toxicity was observed to decrease due to nonreacted monomer leaching, which ensured the low toxicity of the already polymerized phase.
Collapse
Affiliation(s)
- E Franco-Marquès
- LEPAMAP Group, Universitat de Girona, Maria Aurèlia Capmany 61, 17071, Girona, Spain
| | - J Parra
- Unidad Asociada de I+D al CSIC de Investigación Clínica y Biopatología Experimental, Complejo Asistencial de Ávila (SACYL), Jesús del Gran Poder 42, 05003, Avila, Spain
| | - M A Pèlach
- LEPAMAP Group, Universitat de Girona, Maria Aurèlia Capmany 61, 17071, Girona, Spain
| | - J A Méndez
- LEPAMAP Group, Universitat de Girona, Maria Aurèlia Capmany 61, 17071, Girona, Spain
| |
Collapse
|
6
|
Yang L, Xiao H, Yan L, Wang R, Huang Y, Xie Z, Jing X. Lactose targeting oxaliplatin prodrug loaded micelles for more effective chemotherapy of hepatocellular carcinoma. J Mater Chem B 2014; 2:2097-2106. [DOI: 10.1039/c3tb21709d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Ghasdian N, Church E, Cottam AP, Hornsby K, Leung MY, Georgiou TK. Novel “core-first” star-based quasi-model amphiphilic polymer networks. RSC Adv 2013. [DOI: 10.1039/c3ra42836b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|