1
|
Chen Y, Hu Z, Wang D, Xue X, Pu H. Reversible Change in Performances of Polymer Networks via Invertible Architecture-Transformation of Cross-Links. ACS Macro Lett 2023; 12:1311-1316. [PMID: 37708566 DOI: 10.1021/acsmacrolett.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
A polymer nanoparticle network using single-chain nanoparticles (SCNPs) as cross-links is designed. The experimental and theoretical study shows that incorporating SCNPs in polymer networks leads to smaller mesh size, faster terminal relaxation time, and reduced fluctuation among cross-links, resulting in a significant increase in shear storage modulus, and enhancement in tensile stress. Notably, the reversible single-chain collapse of SCNPs under thermal stimulation enables the polymer network to undergo coherent changes between two topological states, thereby exhibiting reversible transformations between soft and stiff states. This approach and finding can effectively tailor the mechanical properties of polymer networks, potentially leading to the development of intelligent, responsive materials.
Collapse
Affiliation(s)
- Yangjing Chen
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| | - Zhiyu Hu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Deping Wang
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, China
| | - Hongting Pu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| |
Collapse
|
2
|
|
3
|
Takata T. Stimuli-Responsive Molecular and Macromolecular Systems Controlled by Rotaxane Molecular Switches. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toshikazu Takata
- Department of Chemical Science and Engineering and Research Institute of Polymer Science and Technology (RIPST), Tokyo Institute of Technology, and JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Zheng W, Wang W, Jiang ST, Yang G, Li Z, Wang XQ, Yin GQ, Zhang Y, Tan H, Li X, Ding H, Chen G, Yang HB. Supramolecular Transformation of Metallacycle-linked Star Polymers Driven by Simple Phosphine Ligand-Exchange Reaction. J Am Chem Soc 2018; 141:583-591. [DOI: 10.1021/jacs.8b11642] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ying Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100050, P. R. China
| | - Hongwei Tan
- Department of Chemistry, Beijing Normal University, Beijing 100050, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
5
|
Zhang M, De Bo G. Impact of a Mechanical Bond on the Activation of a Mechanophore. J Am Chem Soc 2018; 140:12724-12727. [DOI: 10.1021/jacs.8b08590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Zhang
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Sato H, Aoki D, Takata T. Which One is Bulkier: The 3,5-Dimethylphenyl or the 2,6-Dimethylphenyl Group? Development of Size-Complementary Molecular and Macromolecular [2]Rotaxanes. Chem Asian J 2018; 13:785-789. [PMID: 29392843 DOI: 10.1002/asia.201800170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/10/2022]
Abstract
We developed novel size-complementary molecular and macromolecular rotaxanes using a 2,6-dimethylphenyl terminal group as the axle-end-cap group in dibenzo-24-crown-8-ether (DB24C8)-based rotaxanes, where the 2,6-dimethylphenyl group was found to be less bulky than the 3,5-dimethylphenyl group. A series of molecular and macromolecular [2]rotaxanes that bear a 2,6-dimethylphenyl group as the axle-end-cap were synthesized using unsubstituted and fluorine-substituted DB24C8. Base-induced decomposition into their constituent components confirmed the occurrence of deslipping, which supports the size-complementarity of these rotaxanes. The deslipping rate was independent of the axle length but dependent on the DB24C8 substituents. A kinetic study indicated the rate-determining step was that in which the wheel is getting over the end-cap group, and deslipping proceeded via a hopping-over mechanism. Finally, the present deslipping behavior was applied to a stimulus-degradable polymer as an example for the versatile utility of this concept in the context of stimulus-responsive materials.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.,JST-CREST, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
7
|
Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J 2017. [DOI: 10.1038/pj.2017.60] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: Synthesis and topology transformation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Liu W, Peck EM, Hendzel KD, Smith BD. Sensitive Structural Control of Macrocycle Threading by a Fluorescent Squaraine Dye Flanked by Polymer Chains. Org Lett 2015; 17:5268-71. [PMID: 26452041 PMCID: PMC4636930 DOI: 10.1021/acs.orglett.5b02633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A macrocyclic tetralactam is threaded by a complementary squaraine dye that is flanked by two polyethylene glycol chains to produce a pseudorotaxane complex with favorable near-infrared fluorescence properties. The association thermodynamics and kinetics were measured for a homologous series of squaraines with different N-alkyl substituents at both ends of the dye. The results show that subtle changes in substituent steric size have profound effects on threading kinetics without greatly altering the very high association constant.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Evan M. Peck
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Kevin D. Hendzel
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
10
|
Ogawa T, Nakazono K, Aoki D, Uchida S, Takata T. Effective Approach to Cyclic Polymer from Linear Polymer: Synthesis and Transformation of Macromolecular [1]Rotaxane. ACS Macro Lett 2015; 4:343-347. [PMID: 35596318 DOI: 10.1021/acsmacrolett.5b00067] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a convenient and scalable synthesis of cyclic poly(ε-caprolactone) (PCL) from its linear counterpart based on the rotaxane protocol. Cyclic PCL was prepared by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by a pseudo[2]rotaxane initiator in the presence of diphenylphosphate (DPP) as a catalyst, followed by capping of the propagation end by using a bulky isocyanate to afford macromolecular [2]rotaxane. The successive intramolecular cyclization to macromolecular [1]rotaxane at the polymer terminus proceeded with good yield. The attractive interaction of the terminal ammonium/crown ether moiety was removed via N-acetylation. This enabled movement of the crown ether wheel along the axle PCL chain to the urethane region of the other terminus in solution state. Size-exclusion chromatography and 2D diffusion-ordered spectroscopy (DOSY) results demonstrated the formation of cyclic PCL from linear PCL, which is further supported by thermal property or crystallinity change before and after transformation.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Kazuko Nakazono
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Aoki
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
11
|
Aoki D, Uchida S, Takata T. Star/Linear Polymer Topology Transformation Facilitated by Mechanical Linking of Polymer Chains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Aoki D, Uchida S, Takata T. Star/Linear Polymer Topology Transformation Facilitated by Mechanical Linking of Polymer Chains. Angew Chem Int Ed Engl 2015; 54:6770-4. [DOI: 10.1002/anie.201500578] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 11/09/2022]
|
13
|
Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T. Linear–cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy. Chem Commun (Camb) 2015; 51:5606-9. [DOI: 10.1039/c4cc08982k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for “polymer structural transformation” was developed. One [1]rotaxane unit was introduced at the chain end of a linear polymer and the wheel component position was defined by controlling the attractive interaction between the polymer ends. Thus, the reversible linear–cyclic structural transformation was demonstrated.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Naoya Usuki
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuko Nakazono
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yasuhito Koyama
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
14
|
UCHIDA S, SAWADA J, IIJIMA K, AOKI D, NAKAZONO K, TAKATA T. Novel Topological Cross-Linkers Synthesized for Vinyl Polymer Systems. KOBUNSHI RONBUNSHU 2015. [DOI: 10.1295/koron.2014-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi UCHIDA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Jun SAWADA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Keisuke IIJIMA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Daisuke AOKI
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Kazuko NAKAZONO
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| | - Toshikazu TAKATA
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology
| |
Collapse
|
15
|
Akae Y, Koyama Y, Kuwata S, Takata T. Cyclodextrin-Based Size-Complementary [3]Rotaxanes: Selective Synthesis and Specific Dissociation. Chemistry 2014; 20:17132-6. [DOI: 10.1002/chem.201405005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 11/09/2022]
|