1
|
Tang B, Li M, Liu L, Li K, Xu J, Ma J, Zhang H. Highly efficient removal of tannic acid from wastewater using biomimetic porous materials. ENVIRONMENTAL RESEARCH 2024; 252:118252. [PMID: 38320716 DOI: 10.1016/j.envres.2024.118252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 04/14/2024]
Abstract
To effectively remove tannic acid (TA) from wastewater, using green and natural materials has attracted increasing attention. Inspired by Galla Chinensis (GC) with high content of TA, this study synthesized a biomimetic porous adsorbent to mimic the GC structure using dialdehyde tapioca starch (DTS) and gelatin (GL). The TA adsorption performance and mechanism of synthetic porous material were investigated. Results revealed that the porous material exhibited a maximum TA adsorption capacity of 1072.01 mg/g, along with a high removal rate of 95.16% under the conditions of a DTS-GL mass ratio of 1:1, DTS aldehyde content of 48.16%, a solid content of 5%, and a pH of 2 at 25 °C. The adsorption of TA by DTS was not affected by water-soluble cationic and anion. The adsorption kinetics of TA on the porous material followed the pseudo-second-order model, and this Langmuir adsorption model (R2 = 0.9954) which were well described the adsorption of TA by the material, indicating that the adsorption primarily occurred in a monolayer. FTIR, XRD, DSC, TG, XPS, and SEM-EDS were employed to characterize the structure characteristics of the porous material. The cross-linking between DTS and GL by Schiff base reaction imparted a chemical structure could absorb TA by hydrogen bonding. The TA desorption rates of in 30% acetone and 40% ethanol solutions were 88.76% and 91.03%, respectively. The porous material prepared by the GC-inspired approach holds promise as an ideal choice for loading polyphenolic compounds and provides a new perspective for the design and application of bioinspired engineering materials.
Collapse
Affiliation(s)
- Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China; Nanjing Forestry University, Nanjing, 210037, China
| | - Meijuan Li
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China.
| |
Collapse
|
2
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Park S, Sharma H, Safdar M, Lee J, Kim W, Park S, Jeong HE, Kim J. Micro/nanoengineered agricultural by-products for biomedical and environmental applications. ENVIRONMENTAL RESEARCH 2024; 250:118490. [PMID: 38365052 DOI: 10.1016/j.envres.2024.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Agriculturally derived by-products generated during the growth cycles of living organisms as secondary products have attracted increasing interest due to their wide range of biomedical and environmental applications. These by-products are considered promising candidates because of their unique characteristics including chemical stability, profound biocompatibility and offering a green approach by producing the least impact on the environment. Recently, micro/nanoengineering based techniques play a significant role in upgrading their utility, by controlling their structural integrity and promoting their functions at a micro and nano scale. Specifically, they can be used for biomedical applications such as tissue regeneration, drug delivery, disease diagnosis, as well as environmental applications such as filtration, bioenergy production, and the detection of environmental pollutants. This review highlights the diverse role of micro/nano-engineering techniques when applied on agricultural by-products with intriguing properties and upscaling their wide range of applications across the biomedical and environmental fields. Finally, we outline the future prospects and remarkable potential that these agricultural by-products hold in establishing a new era in the realms of biomedical science and environmental research.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeongryun Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Dong Y, Ghasemzadeh M, Khorsandi Z, Sheibani R, Nasrollahzadeh M. Starch-based hydrogels for environmental applications: A review. Int J Biol Macromol 2024; 269:131956. [PMID: 38692526 DOI: 10.1016/j.ijbiomac.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Water sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable. Today, hydrogels have attracted considerable attention owing to their broad applications. Hydrogels are polymeric network compositions with significant water-imbibing capacity. Hydrogels have potential applications in diverse fields such as biomedical, personal care products, pharmaceuticals, cosmetics, and biosensors. They can be prepared by using natural (biopolymers) and synthetic polymers. Synthetic polymer-based hydrogels obtained from petrochemicals are not environmentally benign; thus, abundant plant-based polysaccharides are found as more suitable compounds for making biodegradable hydrogels. Polysaccharides with many advantages such as non-toxicity, biodegradability, availability, inexpensiveness, etc. are widely employed for the preparation of environmentally friendly hydrogels. Polysaccharides-based hydrogels containing chitin, chitosan, gum, starch (St), etc. are employed to remove pollutants, metals, and dyes. Among these, St has attracted a lot of attention. St can be mixed with other compounds to make hydrogels, which remove dyes and metal ions to variable degrees of efficiency. Although St has numerous advantages, it suffers from drawbacks such as low stability, low water solubility, and fast degradability in water which limit its application as an environmental adsorbent. As an effective way to overcome these weaknesses, various modification approaches to form starch-based hydrogels (SBHs) employing different compounds have been reported. The preparation methods and applications of SBH adsorbents in organic dyes, hazardous materials, and toxic ions elimination from water resources have been comprehensively discussed in this review.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | - Zahra Khorsandi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | | |
Collapse
|
5
|
Chen Q, Liao J, Zeng S, Zhou L. Facile Fabrication of Porous Adsorbent with Multiple Amine Groups for Efficient and Selective Removal of Amaranth and Tartrazine Dyes from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2391. [PMID: 38793458 PMCID: PMC11122749 DOI: 10.3390/ma17102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
The development of an advanced dye adsorbent that possesses a range of beneficial characteristics, such as high adsorption capacity, swift adsorption kinetics, selective adsorption capability, and robust reusability, remains a challenge. This study introduces a facile method for fabricating an amine-rich porous adsorbent (ARPA), which is specifically engineered for the adsorptive removal of anionic dyes from aqueous solutions. Through a comprehensive assessment, we have evaluated the adsorption performance of ARPA using two benchmark dyes: amaranth (ART) and tartrazine (TTZ). Our findings indicate that the adsorption process reaches equilibrium in a remarkably short timeframe of just 20 min, and it exhibits an excellent correlation with both the Langmuir isotherm model and the pseudo-second-order kinetic model. Furthermore, ARPA has demonstrated an exceptional maximum adsorption capacity, with values of 675.68 mg g-1 for ART and 534.76 mg g-1 for TTZ. In addition to its high adsorption capacity, ARPA has also shown remarkable selectivity, as evidenced by its ability to selectively adsorb TTZ from a mixed dye solution, a feature that is highly desirable for practical applications. Beyond its impressive adsorption capabilities, ARPA can be efficiently regenerated and recycled. It maintains a high level of original removal efficiency for both ART (76.8%) and TTZ (78.9%) even after five consecutive cycles of adsorption and desorption. Considering the simplicity of its synthesis and its outstanding adsorption performance, ARPA emerges as a highly promising material for use in dye removal applications. Consequently, this paper presents a straightforward and feasible method for the production of an effective dye adsorbent for environmental remediation.
Collapse
Affiliation(s)
- Qingli Chen
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Liao
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sihua Zeng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
6
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
7
|
Esidir A, Kayaci N, Kiremitler NB, Kalay M, Sahin F, Sezer G, Kaya M, Onses MS. Food-Grade Physically Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41373-41384. [PMID: 37615185 PMCID: PMC10485800 DOI: 10.1021/acsami.3c09035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Counterfeit products in the pharmaceutical and food industries have posed an overwhelmingly increasing threat to the health of individuals and societies. An effective approach to prevent counterfeiting is the attachment of security labels directly on drugs and food products. This approach requires the development of security labels composed of safely digestible materials. In this study, we present the fabrication of security labels entirely based on the use of food-grade materials. The key idea proposed in this study is the exploitation of food-grade corn starch (CS) as an encoding material based on the microscopic dimensions, particulate structure, and adsorbent characteristics. The strong adsorption of a food colorant, erythrosine B (ErB), onto CS results in fluorescent CS@ErB microparticles. Randomly positioned CS@ErB particles can be obtained simply by spin-coating from aqueous solutions of tuned concentrations followed by transfer to an edible gelatin film. The optical and fluorescence microscopy images of randomly positioned particles are then used to construct keys for a physically unclonable function (PUF)-based security label. The performance of PUFs evaluated by uniformity, uniqueness, and randomness analysis demonstrates the strong promise of this platform. The biocompatibility of the fabricated PUFs is confirmed with assays using murine fibroblast cells. The extremely low-cost and sustainable security primitives fabricated from off-the-shelf food materials offer new routes in the fight against counterfeiting.
Collapse
Affiliation(s)
- Abidin Esidir
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| | - Nilgun Kayaci
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - N. Burak Kiremitler
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| | - Mustafa Kalay
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Electricity and Energy, Kayseri University, Kayseri 38039, Turkey
| | - Furkan Sahin
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, İstanbul 34398, Turkey
| | - Gulay Sezer
- Department
of Pharmacology, Erciyes University, Faculty
of Medicine, Kayseri 38039, Turkey
| | - Murat Kaya
- Department
of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - M. Serdar Onses
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| |
Collapse
|
8
|
Rizwan K, Babar ZB, Munir S, Arshad A, Rauf A. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices. ENVIRONMENTAL RESEARCH 2022; 215:114398. [PMID: 36174757 DOI: 10.1016/j.envres.2022.114398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater is causing serious health problems due to presence of large concentrations of toxic metals. Removal of these metals is still a big challenge using pristine natural biopolymers due to their low surface area, water solubility, and poor recovery. Developing biopolymeric composites with other materials has attained attention because they possess a high surface area and structural porosity, high reactivity, and less water solubility. In simple words, biopolymeric nanohybrids have great adsorption capacity for heavy metals. Biopolymeric materials are abundant, low cost, biodegradable, and possess different functional moieties (carboxyl, amine, hydroxyl, and carbonyl) which play a vital role to adsorb metal ions through various inter-linkages (i.e., electrostatic, hydrogen bonding, ion exchange, chelation, etc.). Biopolymeric nanohybrids have been proven a potent tool in environmental remediation such as the abatement of heavy metal ions from polluted water. Herein, we have reported the adsorption potential of various biopolymers (cellulose, chitosan, pectin, gelatin, and silk proteins) for the removal of heavy metals. This review discusses the suitability of biopolymeric nanohybrids as an adsorbent for heavy metals, their synthesis, modification, adsorption potential, and adsorption mechanism along with best fitted thermodynamic and kinetic models. The influence of pH, contact time, and adsorbent dose on adsorption potential has also been discussed in detail. Lastly, the challenges, research gaps and recommendations have been presented. This review concludes that biopolymers in combination with other materials such as metal-based nanoparticles, clay, and carbon-based materials are excellent materials to remove metallic ions from wastewater. Significant adsorption of heavy metals was obtained at a moderate pH (5-6). Contact time and adsorbent dose also affect the adsorption of heavy metals in certain ways. The Pseudo-first order model fits the data for the initial period of the first step of the reaction. Kinetic studies of different adsorption processes of various biopolymeric nanohybrids described that for majority of bionanohybrids, Pseudo-second order fitted the experimental data very well. Functionalized biopolymeric nanohybrids being biodegradable, environment friendly, cost-effective materials have great potential to adsorb heavy metal ions. These may be the future materials for environmental remediation.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Zaeem Bin Babar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shahid Munir
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ali Arshad
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Abdul Rauf
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
9
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
10
|
Dang X, Yu Z, Yang M, Woo MW, Song Y, Wang X, Zhang H. Sustainable electrochemical synthesis of natural starch-based biomass adsorbent with ultrahigh adsorption capacity for Cr(VI) and dyes removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Melo da Costa MP, Rabelo K, Ferreira ILDM, Cruz MTDM. Sodium alginate/chitosan/glyphosate superabsorbent bio‐foam as a release system for herbicide. J Appl Polym Sci 2022. [DOI: 10.1002/app.51776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kíssila Rabelo
- Instituto de Biologia Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
12
|
Aminated magnetic polymeric resin for removal of anthraquinone and azo dyes from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Rigueto CVT, Nazari MT, Rosseto M, Massuda LA, Alessandretti I, Piccin JS, Dettmer A. Emerging contaminants adsorption by beads from chromium (III) tanned leather waste recovered gelatin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Ahmed FK, Mostafa M, Abd-Elsalam KA. Micro-/nanoscale biodegradable hydrogels: Water purification, management, conservation, and agrochemical delivery. AQUANANOTECHNOLOGY 2021:201-229. [DOI: 10.1016/b978-0-12-821141-0.00002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
16
|
A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 2019; 122:969-996. [DOI: 10.1016/j.ijbiomac.2018.10.092] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 01/30/2023]
|
17
|
Dang X, Chen H, Dai R, Wang Y, Shan Z. Electrochemical-Assisted Synthesis, Spray Granulation and Characterization of Oxidized Corn Starch–Gelatin. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xugang Dang
- The Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Hui Chen
- The Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Rui Dai
- Sichuan University, Chengdu 610065, China
| | - Yajuan Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China
| | - Zhihua Shan
- The Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|