1
|
Golshan-Tafti M, Bahrami R, Dastgheib SA, Lookzadeh MH, Mirjalili SR, Yeganegi M, Marzbanrad Z, Aghasipour M, Shahbazi A, Masoudi A, Noorishadkam M, Neamatzadeh H. A Comprehensive Compilation of Data on the Relationship Between Surfactant Protein-B (SFTPB) Polymorphisms and Susceptibility to Neonatal Respiratory Distress Syndrome. Fetal Pediatr Pathol 2024; 43:399-418. [PMID: 39159013 DOI: 10.1080/15513815.2024.2390932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND This study aims to explore the association between variations in the Surfactant Protein-B (SFTPB) gene and the risk of neonatal respiratory distress syndrome (NRDS). METHODS A comprehensive literature search was conducted across PubMed, Scopus, EMBASE, and CNKI databases up to February 10, 2024, to identify pertinent studies. RESULTS A total of seventeen studies examining the +1580 C/T polymorphism (2,058 cases and 2,596 controls) and five studies investigating the -18 A/C polymorphism (680 cases and 739 controls) were included in the analysis. The pooled data indicated that the +1580 C/T polymorphism confers a protective effect against NRDS in various populations and ethnic groups. Conversely, the -18 A/C polymorphism did not demonstrate a significant association either globally or among Asian neonates. CONCLUSIONS The +1580 C/T variant appears to be protective against NRDS, whereas the -18 A/C polymorphism shows minimal impact on the disease's progression.
Collapse
Affiliation(s)
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Reza Mirjalili
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, OH, USA
| | - Amirhossein Shahbazi
- Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Masoudi
- General Practitioner, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Ruan T, Lu W, Zeng S, Yue Y, Zhou R, Ying J, Tang Y, Qu Y, Mu D. Cumulative evidence of the genetic association between SP-B C1580T polymorphisms and risk of neonatal respiratory distress syndrome. J Matern Fetal Neonatal Med 2023; 36:2240469. [PMID: 37527966 DOI: 10.1080/14767058.2023.2240469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Objective: Surfactant protein SP-B, an important protein in pulmonary surfactant, is required for the stabilization of surfactant films in the lung and maintenance of postnatal lung function. Although the association between SP-B polymorphisms and the risk of neonatal respiratory distress syndrome (RDS) has been evaluated, the results have been inconsistent. We investigated the association between SP-B polymorphisms and the risk of neonatal RDS.Methods: Relevant studies were systematically searched in PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) electronic databases until June 2022. Data were collected independently by two reviewers and converted to odds ratios (ORs) with 95% confidence intervals (CIs). Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias assessment were performed using Stata 12.1 software and Review Manager 5.3.Results: Fourteen studies were included. SP-B C1580T polymorphism was significantly associated with neonatal RDS in five genetic models (T vs. C: OR = 0.70, 95% CI 0.57-0.86, I2 = 78%; TT vs. CC: OR = 0.63, 95% CI 0.53-0.86, I2 = 39%; CT vs. CC: OR = 0.65, 95% CI 0.50-0.84, I2 = 54%; TT + CT vs. CC: OR = 0.62, 95% CI 0.49-0.78, I2 = 59%; TT vs. CC + CT: OR = 0.78, 95% CI 0.67-0.91, I2 = 43%). The CT and TT genotypes may decrease the risk of RDS in neonates. Subgroup analyses revealed that the association of SP-B C1580T polymorphism with neonatal RDS was stable, independent of preterm birth and Hardy-Weinberg equilibrium. In addition, the Han Chinese were more likely to be affected by SP-B C1580T polymorphisms than Caucasians and Finnish.Conclusions: Our findings suggest that SP-B C1580T polymorphism may be a protective factor against neonatal RDS.
Collapse
Affiliation(s)
- Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Wenting Lu
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zeng
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Tang
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Ultrasonic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lavoie PM, Rayment JH. Genetics of bronchopulmonary dysplasia: An update. Semin Perinatol 2023; 47:151811. [PMID: 37775368 DOI: 10.1016/j.semperi.2023.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a multi-factorial disease that results from multiple clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, pulmonary congestion due to increasing cardiac blood shunting, nutritional and immunological factors. Twin studies have indicated that susceptibility to BPD can be strongly inherited in some settings. Studies have reported associations between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette, sub-family A, member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also result in severe form of neonatal-onset interstitial lung diseases and may also potentially affect the course of BPD. This chapter summarizes the current state of knowledge on the genetics of BPD.
Collapse
Affiliation(s)
- Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Jonathan H Rayment
- BC Children's Hospital Research Institute, Vancouver, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
4
|
Greczan M, Rokicki D, Wesół-Kucharska D, Kaczor M, Rawiak A, Jezela-Stanek A. Perinatal manifestations of congenital disorders of glycosylation-A clue to early diagnosis. Front Genet 2022; 13:1019283. [PMID: 36583024 PMCID: PMC9792486 DOI: 10.3389/fgene.2022.1019283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation defects-isolated or mixed with other glycosylation defects-are the most frequent congenital disorders of glycosylation and present mostly in childhood, with a specific combination of non-specific phenotypic features. The diagnosis, however, is often delayed. The aim of this study is to describe the perinatal phenotype of congenital disorders of N-glycosylation. We present an analysis of perinatal symptoms in a group of 24 one-center Polish patients with N-glycosylation defects-isolated or mixed. The paper expands the perinatal phenotype of CDGs and shows that some distinctive combinations of symptoms present in the perinatal period should raise a suspicion of CDGs in a differential diagnosis.
Collapse
Affiliation(s)
- Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland,*Correspondence: Dariusz Rokicki,
| | - Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland
| | - Agata Rawiak
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Disease, Warsaw, Poland
| |
Collapse
|
5
|
Mikolajcikova S, Lasabova Z, Holubekova V, Skerenova M, Zibolenova J, Matasova K, Zibolen M, Calkovska A. The Common Haplotype GATGACA in Surfactant-Protein B Gene Is Protective for Respiratory Distress Syndrome in Preterm Neonates. Front Pediatr 2022; 10:851042. [PMID: 35692980 PMCID: PMC9174893 DOI: 10.3389/fped.2022.851042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory distress syndrome (RDS), a disorder of primary surfactant deficiency resulting in pulmonary insufficiency, remains a significant problem for preterm neonates. Associations between genetic variants of surfactant proteins and RDS have been reported, but haplotypes of the surfactant protein B gene (SFTPB) have not been studied. The aim of the study was to prove the hypothesis that certain haplotypes of SFTPB may be protective or risk factors for RDS. Methods The study was performed with 149 preterm infants, born <34 weeks of gestation, with 86 infants with mild RDS or without RDS (control group) and 63 infants with severe RDS (patient group). RDS was considered severe if multiple doses of exogenous surfactant and/or mechanical ventilation within the first 72 h of life were needed. The venous blood sample was used for the analysis of gene polymorphisms associated with RDS, genotyping, and haplotype estimation. Multivariate logistic regression analysis and the odds ratio were calculated to detect the contribution of the studied variables to the development of RDS. Results A new association of the common single nucleotide polymorphism (SNP) rs2304566 with RDS in premature infants was detected. Analysis of rs2304566 polymorphisms using a logistic regression model showed that there are two significant predictors inversely related to the occurrence of RDS (Apgar score of 5 min, CT and TT genotype in rs2304566 polymorphism). Gestational age, birth weight, and sex have border significance. Moreover, in the patient group, the frequency of the GATGACA haplotype in the SFTPB gene was lower (p = 0.037), and the GATGGCA haplotype was higher (p = 0.059) in comparison with the control group. Conclusion The common haplotype GATGACA of the SFTPB gene can be protective against RDS in preterm infants. The trend of a higher frequency of GATGGCA in the SFTPB gene in infants with severe RDS suggests that this haplotype may be a risk factor for RDS susceptibility.
Collapse
Affiliation(s)
- Silvia Mikolajcikova
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Maria Skerenova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Jana Zibolenova
- Department of Public Health, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Mirko Zibolen
- Clinic of Neonatology, Jessenius Faculty of Medicine, Comenius University and University Hospital, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
6
|
Gandhi CK, Thomas NJ, Meixia Y, Spear D, Fu C, Zhou S, Wu R, Keim G, Yehya N, Floros J. SNP–SNP Interactions of Surfactant Protein Genes in Persistent Respiratory Morbidity Susceptibility in Previously Healthy Children. Front Genet 2022; 13:815727. [PMID: 35401703 PMCID: PMC8989419 DOI: 10.3389/fgene.2022.815727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
We studied associations of persistent respiratory morbidity (PRM) at 6 and 12 months after acute respiratory failure (ARF) in previously healthy children with single-nucleotide polymorphisms (SNPs) of surfactant protein (SP) genes. Of the 250 enrolled subjects, 155 and 127 were followed at 6 and 12 months after an ARF episode, respectively. Logistic regression analysis and SNP–SNP interaction models were used. We found that 1) in the multivariate analysis, an increased risk at 6 and 12 months was associated with rs1124_A and rs4715_A of SFTPC, respectively; 2) in a single SNP model, increased and decreased risks of PRM at both timepoints were associated with rs1124 of SFTPC and rs721917 of SFTPD, respectively; an increased risk at 6 months was associated with rs1130866 of SFTPB and rs4715 of SFTPC, and increased and decreased risks at 12 months were associated with rs17886395 of SFTPA2 and rs2243639 of SFTPD, respectively; 3) in a two-SNP model, PRM susceptibility at both timepoints was associated with a number of intergenic interactions between SNPs of the studied SP genes. An increased risk at 12 months was associated with one intragenic (rs1965708 and rs113645 of SFTPA2) interaction; 4) in a three-SNP model, decreased and increased risks at 6 and 12 months, respectively, were associated with an interaction among rs1130866 of SFTPB, rs721917 of SFTPD, and rs1059046 of SFTPA2. A decreased risk at 6 months was associated with an interaction among the same SNPs of SFTPB and SFTPD and the rs1136450 of SFTPA1. The findings revealed that SNPs of all SFTPs appear to play a role in long-term outcomes of ARF survivors and may serve as markers for disease susceptibility.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ye Meixia
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Debbie Spear
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chenqi Fu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros,
| |
Collapse
|
7
|
Regulatory Roles of Human Surfactant Protein B Variants on Genetic Susceptibility to Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2021; 54:507-519. [PMID: 31851120 DOI: 10.1097/shk.0000000000001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surfactant protein B (SP-B) is essential for life and plays critical roles in host defense and lowering alveolar surface tension. A single-nucleotide polymorphism (SNP rs1130866) of human SP-B (hSP-B) alters the N-linked glycosylation, thus presumably affecting SP-B function. This study has investigated the regulatory roles of hSP-B genetic variants on lung injury in pneumonia-induced sepsis. METHODS Wild-type (WT) FVB/NJ and humanized transgenic SP-B-T and SP-B-C mice (expressing either hSP-B C or T allele without mouse SP-B gene) were infected intratracheally with 50 μL (4 × 10 colony-forming units [CFUs]/mouse) Pseudomonas aeruginosa Xen5 or saline, and then killed 24 or 48 h after infection. Bacterial dynamic growths were monitored from 0 to 48 h postinfection by in vivo imaging. Histopathological, cellular, and molecular changes of lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed. Surface tension of surfactants was determined with constrained drop surfactometry. RESULTS SP-B-C mice showed higher bioluminescence and CFUs, increased inflammation and mortality, the higher score of lung injury, and reduced numbers of lamellar bodies in type II cells compared with SP-B-T or WT (P < 0.05). Minimum surface tension increased dramatically in infected mice (P < 0.01) with the order of SP-B-C > SP-B-T > WT. Levels of multiple cytokines in the lung of infected SP-B-C were higher than those of SP-B-T and WT (P < 0.01). Furthermore, compared with SP-B-T or WT, SP-B-C exhibited lower SP-B, higher NF-κB and NLRP3 inflammasome activation, and higher activated caspase-3. CONCLUSIONS hSP-B variants differentially regulate susceptibility through modulating the surface activity of surfactant, cell death, and inflammatory signaling in sepsis.
Collapse
|
8
|
Banfi C, Brioschi M, Karjalainen MK, Huusko JM, Gianazza E, Agostoni P. Immature surfactant protein-B impairs the antioxidant capacity of HDL. Int J Cardiol 2019; 285:53-58. [PMID: 30857841 DOI: 10.1016/j.ijcard.2019.02.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
Circulating immature surfactant protein B (proSP-B) forms emerged as the most reliable lung-specific circulating marker for alveolar-capillary membrane (ACM) dysfunction and for the overall clinical status of heart failure (HF). Notably, in terms of HF hospitalization, immature SP-B overwhelms the prognostic role of other most frequently used clinical parameters such as those related to lung dysfunction. The strong prognostic value of circulating proSP-B in HF suggests more widespread and possible systemic effects. Thus, we assessed the plasma distribution of proSP-B evaluating whether it exists in a lipoprotein-bound form and its impact on lipoprotein structure and function. ProSP-B forms were detectable in high-density lipoprotein (HDL) only. To assess the impact of proSP-B on HDL, HDL from healthy subjects were enriched with proSP-B produced by a stably transfected CHO cell line that specifically expresses and releases the human proSP-B. After enrichment, HDL size and lipoprotein electrophoretic mobility, and protein composition did not show apparent differences. HDL antioxidant capacity (HOI), assessed as their ability to inhibit air-induced LDL oxidation, was impaired after proSP-B enrichment. HOI was also higher in HF patients with respect to age-matched control healthy subjects (p = 0.013). Circulating proSP-B, besides its potential role as a specific marker for ACM dysfunction in HF patients with diagnostic and prognostic value, binds to human HDL impairing their antioxidant capacity. These findings shed light on proSP-B as a molecule that contributes to the reduction of the defense against oxidative stress, a key mediator in the pathogenesis of HF.
Collapse
Affiliation(s)
| | | | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M Huusko
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Università di Milano, Italy
| |
Collapse
|
9
|
Ge L, Liu X, Chen R, Xu Y, Zuo YY, Cooney RN, Wang G. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia. Biochem Biophys Res Commun 2015; 469:171-5. [PMID: 26620227 DOI: 10.1016/j.bbrc.2015.11.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
Abstract
Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50 μl of Pseudomonas aeruginosa solution (1 × 10(6) CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 h post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo.
Collapse
Affiliation(s)
- Lin Ge
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyu Liu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rimei Chen
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yongan Xu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
To KKW, Zhou J, Chan JFW, Yuen KY. Host genes and influenza pathogenesis in humans: an emerging paradigm. Curr Opin Virol 2015; 14:7-15. [PMID: 26079652 PMCID: PMC7102748 DOI: 10.1016/j.coviro.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The emergence of the pandemic influenza virus A(H1N1)pdm09 in 2009 and avian influenza virus A(H7N9) in 2013 provided unique opportunities for assessing genetic predispositions to severe disease because many patients did not have any underlying risk factor or neutralizing antibody against these agents, in contrast to seasonal influenza viruses. High-throughput screening platforms and large human or animal databases from international collaborations allow rapid selection of potential candidate genes for confirmatory functional studies. In the last 2 years, at least seven new human susceptibility genes have been identified in genetic association studies. Integration of knowledge from genetic and phenotypic studies is essential to identify important gene targets for treatment and prevention of influenza virus infection.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|