1
|
De Silvestro A, Natalucci G, Feldmann M, Hagmann C, Nguyen TD, Coraj S, Jakab A, Kottke R, Latal B, Knirsch W, Tuura R. Effects of hemodynamic alterations and oxygen saturation on cerebral perfusion in congenital heart disease. Pediatr Res 2024; 96:990-998. [PMID: 38438551 PMCID: PMC11502515 DOI: 10.1038/s41390-024-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Patients with severe congenital heart disease (CHD) are at risk for neurodevelopmental impairment. An abnormal cerebral blood supply caused by the altered cardiac physiology may limit optimal brain development. The aim of this study was to evaluate the effect of a systemic-to-pulmonary shunt, aortic arch obstruction and arterial oxygen saturation on cerebral perfusion in patients with severe CHD. METHODS Patients with severe CHD requiring cardiac surgery within the first six weeks of life, who underwent pre- and/or postoperative brain magnetic resonance imaging (MRI), and healthy controls with one postnatal scan were included. Cerebral perfusion in deep and cortical gray matter was assessed by pseudocontinuous arterial spin labeling MRI. RESULTS We included 59 CHD and 23 healthy control scans. The presence of a systemic-to-pulmonary shunt was associated with decreased perfusion in cortical (p = 0.003), but not in deep gray matter (p = 0.031). No evidence for an effect of aortic arch obstruction and arterial oxygen saturation on cerebral perfusion was found. After adjusting for hemodynamic and oxygen saturation parameters, deep (p = 0.018) and cortical (p = 0.012) gray matter perfusion was increased in patients with CHD compared to controls. CONCLUSION We detected regional differences in compensation to the cerebral steal effect in patients with severe CHD. IMPACT Patients with severe congenital heart disease (CHD) have altered postnatal brain hemodynamics. A systemic-to-pulmonary shunt was associated with decreased perfusion in cortical gray matter but preserved perfusion in deep gray matter, pointing towards regional differences in compensation to the cerebral steal effect. No effects of aortic arch obstruction and arterial oxygenation on cerebral perfusion were seen. Cerebral perfusion was increased in patients with CHD compared to healthy controls after adjusting for hemodynamic alterations and oxygen saturation. To improve neuroprotection and neurodevelopmental outcomes, it is important to increase our understanding of the factors influencing cerebral perfusion in neonates with severe CHD.
Collapse
Affiliation(s)
- Alexandra De Silvestro
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- University of Zurich, Zurich, Switzerland
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Feldmann
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thi Dao Nguyen
- University of Zurich, Zurich, Switzerland
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Seline Coraj
- University of Zurich, Zurich, Switzerland
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Andras Jakab
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Raimund Kottke
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Kilgallon KB, Cheifetz IM. MRI measurement of cerebral perfusion in severe congenital heart disease: just the first step. Pediatr Res 2024; 96:836-837. [PMID: 38849486 PMCID: PMC11502488 DOI: 10.1038/s41390-024-03300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Kevin B Kilgallon
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ira M Cheifetz
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
3
|
Lin Z, Jiang D, Hong Y, Zhang Y, Hsu YC, Lu H, Wu D. Vessel-specific quantification of cerebral venous oxygenation with velocity-encoding preparation and rapid acquisition. Magn Reson Med 2024; 92:782-791. [PMID: 38523598 DOI: 10.1002/mrm.30092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.
Collapse
Affiliation(s)
- Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yiwen Hong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
De Silvestro AA, Kellenberger CJ, Gosteli M, O'Gorman R, Knirsch W. Postnatal cerebral hemodynamics in infants with severe congenital heart disease: a scoping review. Pediatr Res 2023; 94:931-943. [PMID: 36944722 PMCID: PMC10444615 DOI: 10.1038/s41390-023-02543-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023]
Abstract
Patients with severe congenital heart disease (CHD) are at risk for impaired neurodevelopment. Cerebral blood supply may be diminished by congenital anomalies of cardiovascular anatomy and myocardial function. The aim of this scoping review was to summarize the current knowledge on cerebral hemodynamics in infants with severe CHD. A scoping review was performed. Five databases were searched for articles published from 01/1990 to 02/2022 containing information on cerebral hemodynamics assessed by neuroimaging methods in patients with severe CHD within their first year of life. A total of 1488 publications were identified, of which 26 were included. Half of the studies used Doppler ultrasound, and half used magnetic resonance imaging techniques. Studies focused on preoperative findings of cerebral hemodynamics, effects of surgical and conservative interventions, as well as on associations between cerebral hemodynamics and brain morphology or neurodevelopment. Cerebral perfusion was most severely affected in patients with single ventricle and other cyanotic disease. Neuroimaging methods provide a large variety of information on cerebral hemodynamics. Nevertheless, small and heterogeneous cohorts complicate this field of research. Further studies are needed to improve our understanding of the link between CHD and altered cerebral hemodynamics to optimize neuroprotection strategies. IMPACT: Postnatal cerebral hemodynamics are altered in infants with congenital heart disease (CHD) as compared to healthy controls, especially in most severe types such as single ventricle or other cyanotic CHD. Associations of these alterations with brain volume and maturation reveal their clinical relevance. Research in this area is limited due to the rarity and heterogeneity of diagnoses. Furthermore, longitudinal studies have rarely been conducted. Further effort is needed to better understand the deviation from physiological cerebral perfusion and its consequences in patients with CHD to optimize neuroprotection strategies.
Collapse
Affiliation(s)
- Alexandra Angela De Silvestro
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Johannes Kellenberger
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Diagnostic Imaging, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Gosteli
- University Library, University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Lindner T, Bolar DS, Achten E, Barkhof F, Bastos-Leite AJ, Detre JA, Golay X, Günther M, Wang DJJ, Haller S, Ingala S, Jäger HR, Jahng GH, Juttukonda MR, Keil VC, Kimura H, Ho ML, Lequin M, Lou X, Petr J, Pinter N, Pizzini FB, Smits M, Sokolska M, Zaharchuk G, Mutsaerts HJMM. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 2023; 89:2024-2047. [PMID: 36695294 PMCID: PMC10914350 DOI: 10.1002/mrm.29572] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | | | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia PA USA
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias Günther
- (1) University Bremen, Germany; (2) Fraunhofer MEVIS, Bremen, Germany; (3) mediri GmbH, Heidelberg, Germany
| | - Danny JJ Wang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles CA USA
| | - Sven Haller
- (1) CIMC - Centre d’Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève 1201 Genève (2) Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (3) Faculty of Medicine of the University of Geneva, Switzerland. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans R Jäger
- UCL Queen Square Institute of Neuroradiology, University College London, London, UK
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Meher R. Juttukonda
- (1) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA USA (2) Department of Radiology, Harvard Medical School, Boston MA USA
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical sciences, University of Fukui, Fukui, JAPAN
| | - Mai-Lan Ho
- Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Maarten Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine | University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jan Petr
- (1) Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany (2) Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, NY, USA. University at Buffalo Neurosurgery, Buffalo, NY, USA
| | - Francesca B. Pizzini
- Radiology Institute, Dept. of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Marion Smits
- (1) Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands (2) The Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering University College London Hospitals NHS Foundation Trust, UK
| | | | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
The future of noninvasive neonatal brain assessment: the measure of cerebral blood flow by diffuse correlation spectroscopy in combination with near-infrared spectroscopy oximetry. J Perinatol 2021; 41:2690-2691. [PMID: 33649445 DOI: 10.1038/s41372-021-00996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
|
7
|
Abstract
The cerebral microcirculation undergoes dynamic changes in parallel with the development of neurons, glia, and their energy metabolism throughout gestation and postnatally. Cerebral blood flow (CBF), oxygen consumption, and glucose consumption are as low as 20% of adult levels in humans born prematurely but eventually exceed adult levels at ages 3 to 11 years, which coincide with the period of continued brain growth, synapse formation, synapse pruning, and myelination. Neurovascular coupling to sensory activation is present but attenuated at birth. By 2 postnatal months, the increase in CBF often is disproportionately smaller than the increase in oxygen consumption, in contrast to the relative hyperemia seen in adults. Vascular smooth muscle myogenic tone increases in parallel with developmental increases in arterial pressure. CBF autoregulatory response to increased arterial pressure is intact at birth but has a more limited range with arterial hypotension. Hypoxia-induced vasodilation in preterm fetal sheep with low oxygen consumption does not sustain cerebral oxygen transport, but the response becomes better developed for sustaining oxygen transport by term. Nitric oxide tonically inhibits vasomotor tone, and glutamate receptor activation can evoke its release in lambs and piglets. In piglets, astrocyte-derived carbon monoxide plays a central role in vasodilation evoked by glutamate, ADP, and seizures, and prostanoids play a large role in endothelial-dependent and hypercapnic vasodilation. Overall, homeostatic mechanisms of CBF regulation in response to arterial pressure, neuronal activity, carbon dioxide, and oxygenation are present at birth but continue to develop postnatally as neurovascular signaling pathways are dynamically altered and integrated. © 2021 American Physiological Society. Compr Physiol 11:1-62, 2021.
Collapse
|
8
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
9
|
Solevåg AL, Schmölzer GM, Cheung PY. Is Supplemental Oxygen Needed in Cardiac Compression?-The Influence of Oxygen on Cerebral Perfusion in Severely Asphyxiated Neonates With Bradycardia or Cardiac Asystole. Front Pediatr 2019; 7:486. [PMID: 31824899 PMCID: PMC6879425 DOI: 10.3389/fped.2019.00486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have investigated hemodynamic recovery using 21% vs. 100% oxygen during cardiopulmonary resuscitation (CPR) with chest compression (CC) in term infants. Animal studies indicate that systemic circulatory recovery is the same whether 21 or 100% oxygen is used during neonatal CPR. One of the main goals of resuscitation is to maintain cerebral oxygen delivery and prevent cerebral hypo- and hyperoxygenation. Oxygen delivery to the brain depends on cerebral hemodynamics, concentration of inhaled oxygen and blood oxygen content. The aim of this paper was to synthesize available research about cerebral oxygen delivery during CPR using different oxygen concentrations. Our research questions included how do different oxygen concentrations during CPR with CC influence cerebral perfusion and oxygen delivery, and how do cerebral hemodynamics during CC influence outcomes. Methods: A search in Medline Ovid using the search terms hypoxia AND oxygen AND cerebrovascular circulation AND infant, newborn. Inclusion criteria included studies of hypoxia and resuscitation of term infants. Studies were excluded if no measures of cerebral blood flow (CBF), oxygenation, or perfusion were reported. Results: The search retrieved 21 papers. None of the studies directly fulfilled our inclusion criteria. The reference lists of some of the retrieved papers provided relevant animal studies with slightly conflicting results regarding blood flow and oxygen delivery to the brain using 21 or 100% oxygen. No study in term infants was identified, but we included one study in preterm infants. Studies in asphyxiated animals indicate that 100% oxygen increases CBF and oxygenation during and after CC with a potential increase in oxidative stress. Conclusion: In asphyxia, cerebral autoregulation may be impaired. Pure oxygen administration during CC may result in cerebral hyperperfusion and increased cerebral oxygen delivery, which may be associated with oxidative stress-related damage to the brain tissue. As systemic circulatory recovery is the same whether 21 or 100% oxygen is used during neonatal CPR, it is important to investigate whether brain damage could be aggravated when 100% oxygen is used.
Collapse
Affiliation(s)
- Anne Lee Solevåg
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Georg M Schmölzer
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, AB, Canada.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Po-Yin Cheung
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, AB, Canada.,Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Ockleford C, Adriaanse P, Hougaard Bennekou S, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Gundert-Remy U, Kersting M, Waalkens-Berendsen I, Chiusolo A, Court Marques D, Dujardin B, Kass GEN, Mohimont L, Nougadère A, Reich H, Wolterink G. Scientific opinion on pesticides in foods for infants and young children. EFSA J 2018; 16:e05286. [PMID: 32625927 PMCID: PMC7009577 DOI: 10.2903/j.efsa.2018.5286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Protection Products and their Residues (PPR Panel) prepared a scientific opinion to provide a comprehensive evaluation of pesticide residues in foods for infants and young children. In its approach to develop this scientific opinion, the EFSA PPR Panel took into account, among the others, (i) the relevant opinions of the Scientific Committee for Food setting a default maximum residue level (MRL) of 0.01 mg/kg for pesticide residues in foods for infants and young children; (ii) the recommendations provided by EFSA Scientific Committee in a guidance on risk assessment of substances present in food intended for infants below 16 weeks of age; (iii) the knowledge on organ/system development in infants and young children. For infants below 16 weeks of age, the EFSA PPR Panel concluded that pesticide residues at the default MRL of 0.01 mg/kg for food for infants and young children are not likely to result in an unacceptable exposure for active substances for which a health-based guidance value (HBGV) of 0.0026 mg/kg body weight (bw) per day or higher applies. Lower MRLs are recommended for active substances with HBGVs below this value. For infants above 16 weeks of age and young children, the established approach for setting HBGVs is considered appropriate. For infants below 16 weeks of age the approach may not be appropriate and the application of the EFSA guidance on risk assessment of substances present in food intended for infants below 16 weeks of age is recommended. The contribution of conventional food to the total exposure to pesticide residues is much higher than that from foods intended for infants and young children. Because of the increased intake of conventional food by young children, these have the highest exposure to pesticide residues, whereas infants 3-6 months of age generally have lower exposure. The impact of cumulative exposure to pesticide residues on infants and young children is not different from the general population and the EFSA cumulative risk assessment methodology is also applicable to these age groups. Residue definitions established under Regulation (EC) No 396/2005 are in general considered appropriate also for foods for infants and young children. However, based on a tier 1 analysis of the hydrolysis potential of pesticides simulating processing, the particular appropriateness of existing residue definitions for monitoring to cover processed food, both intended for infants and young children as well as conventional food, is questionable.
Collapse
|