1
|
Sjöbom U, Hellqvist T, Humayun J, Nilsson AK, Gyllensten H, Hellström A, Löfqvist C. Circulating VEGF-A Levels in Relation to Retinopathy of Prematurity and Treatment Effects: A Systematic Review and Meta-Analysis. OPHTHALMOLOGY SCIENCE 2024; 4:100548. [PMID: 39184225 PMCID: PMC11342886 DOI: 10.1016/j.xops.2024.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/29/2024] [Indexed: 08/27/2024]
Abstract
Topic Retinopathy of prematurity (ROP) is a severe retinal vascular disorder affecting preterm infants, potentially leading to retinal detachment and blindness. This review aims to elucidate the relationship between systemic VEGF levels and ROP. Clinical Relevance This systematic review aims to consolidate evidence from available studies to guide future research and inform clinical practice. In particular, the role of circulating VEGF-A levels in predicting ROP onset and progression, and evaluating the impact of anti-VEGF therapy on these levels, is crucial in ensuring efficacy and safety in patient care. Methods Scopus and PubMed were searched to identify studies investigating circulating VEGF-gene products in ROP patients using immunologic assays. Two authors independently screened the literature and extracted data, employing a random-effects meta-analysis to compare VEGF levels as the ratio of means between ROP patients and controls before and after treatment, heterogeneity was reported by I2-statistics. Risks of bias and publication bias were assessed using Quality Assessment of Diagnostic Accuracy Studies-2 and funnel plots/Egger's tests, respectively. Results Out of 941 papers, 54 were included, with 26 providing posttreatment data and 31 providing biomarker data. Findings show a significant decrease in VEGF-A levels in the first week after ROP treatment (ratio of means [95% confidence interval] 0.34 [0.25-0.45], I2 = 97%, 17 publications). Anti-VEGF therapy showed a significantly more pronounced decrease (0.31 [0.25-0.38], I2 = 40%, 7 publications) than laser treatment in the first week after treatment (0.77 [0.61-0.97], I2 = 42%, 2 publications, subgroup difference, P < 0.01), among studies with a low risk of bias. Serum samples demonstrated a more marked decrease in VEGF-A than plasma (subgroup difference P < 0.01). However, the use of blood VEGF-A concentration as a biomarker for ROP prediction has shown inconsistent trends. The risk of bias mainly stems from unclear patient selection and lack of sample timing or analytical method details. Conclusion While anti-VEGF treatment significantly reduced blood VEGF-A levels in the first week post-ROP treatment, blood VEGF-A levels did not consistently predict ROP development. Heterogeneity in the results underscores the need for optimized analytical methods and emphasizes the importance of considering individual variation in VEGF-A concentrations independent of ROP diagnosis. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Ulrika Sjöbom
- Learning and Leadership for Health Care Professionals At the Institute of Health and Care Science at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Neuroscience At the Institution of Neuroscience and Physiology at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tove Hellqvist
- Department of Clinical Neuroscience At the Institution of Neuroscience and Physiology at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jhangir Humayun
- Learning and Leadership for Health Care Professionals At the Institute of Health and Care Science at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Department of Clinical Neuroscience At the Institution of Neuroscience and Physiology at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Gyllensten
- Learning and Leadership for Health Care Professionals At the Institute of Health and Care Science at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience At the Institution of Neuroscience and Physiology at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Learning and Leadership for Health Care Professionals At the Institute of Health and Care Science at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Neuroscience At the Institution of Neuroscience and Physiology at Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Zamora M, Harris D, Davies N, Ebnet J, Radermacher P, Brucker C, Waller C, Robles JP, Bertsch T, Clapp C, Triebel J. Immunometric and functional measurement of endogenous vasoinhibin in human sera. Front Endocrinol (Lausanne) 2024; 15:1345996. [PMID: 38742198 PMCID: PMC11089174 DOI: 10.3389/fendo.2024.1345996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Circulating levels of the antiangiogenic protein vasoinhibin, a fragment of prolactin, are of interest in vasoproliferative retinopathies, preeclampsia, and peripartum cardiomyopathy; however, it is difficult to determine the circulating levels of vasoinhibin due to the lack of quantitative assays. Methods This study used human serum samples to assess the concentration and bioactivity of vasoinhibin using a novel enzyme-linked immunosorbent assay (ELISA) for human vasoinhibin, which employs an anti-vasoinhibin monoclonal antibody, a human umbilical vein endothelial cell (HUVEC) proliferation assay, and a chick chorioallantoic membrane (CAM) angiogenesis assay. Results Serum samples from 17 pregnant women without (one group) and with preeclampsia and pregnancy induced hypertension (another group) demonstrated endogenous vasoinhibin concentrations in the range of 5-340 ng/ml. Immunoactive vasoinhibin levels were significantly higher in preeclampsia serum compared to healthy pregnancy serum (mean 63.09 ± 22.15 SD vs. 19.67 ± 13.34 ng/ml, p = 0.0003), as was the bioactive vasoinhibin level as determined by the HUVEC proliferation assay (56.12 ± 19.83 vs. 13.38 ± 4.88 ng/ml, p < 0.0001). There was a correlation between the concentration of vasoinhibin measured by ELISA and the HUVEC proliferation assay (Pearson r = 0.95, p < 0.0001). Healthy serum demonstrated a proangiogenic effect in the CAM assay (p < 0.05, compared to control), while serum from preeclamptic patients demonstrated an antiangiogenic effect (p < 0.05 vs. control), as did recombinant human vasoinhibin and a synthetic circular retro-inverse vasoinhibin analogue (CRIVi45-51). The antiangiogenic effects in the CAM assay and the inhibition of HUVEC proliferation were abolished by addition of the ELISA anti-vasoinhibin monoclonal antibody, but not by mouse IgG. Discussion These results demonstrate the first quantitation of endogenous vasoinhibin in human sera and the elevation of it levels and antiangiogenic activity in sera from women with preeclampsia. The development and implementation of a quantitative assay for vasoinhibin overcomes a long-standing barrier and suggests the thorough clinical verification of vasoinhibin as a relevant biomarker.
Collapse
Affiliation(s)
- Magdalena Zamora
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - David Harris
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Nils Davies
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Johannes Ebnet
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University of Ulm, Ulm, Germany
| | - Cosima Brucker
- Department of Gynecology and Obstetrics, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
3
|
Núñez-Amaro CD, López M, Adán-Castro E, Robles-Osorio ML, García-Franco R, García-Roa M, Villalpando-Gómez Y, Ramírez-Neria P, Pineiro N, Rubio-Mijangos JF, Sánchez J, Ramírez-Hernández G, Siqueiros-Márquez L, Díaz-Lezama N, López-Star E, Bertsch T, Marínez de la Escalera G, Triebel J, Clapp C. Levosulpiride for the treatment of diabetic macular oedema: a phase 2 randomized clinical trial. Eye (Lond) 2024; 38:520-528. [PMID: 37673971 PMCID: PMC10858020 DOI: 10.1038/s41433-023-02715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND/OBJECTIVE The prokinetic levosulpiride elevates vasoinhibin levels in the vitreous of patients with proliferative diabetic retinopathy (PDR) suggesting clinical benefits due to the anti-vasopermeability and anti-angiogenic properties of vasoinhibin. We investigated the biological activity of levosulpiride in centre-involving diabetic macular oedema (DME). PATIENTS/METHODS Prospective, randomized, double-blinded, dual-centre, phase 2 trial in patients with centre-involving DME orally treated with placebo (n = 17) or levosulpiride (n = 17) for 8 weeks or in patients with PDR undergoing elective pars plana vitrectomy and receiving placebo (n = 18) or levosulpiride (n = 18) orally for the 1 week before vitrectomy. RESULTS Levosulpiride improved changes from baseline in best-corrected visual acuity (p ≤ 0.037), central foveal thickness (CFT, p ≤ 0.013), and mean macular volume (MMV, p ≤ 0.002) at weeks 4, 6, and 8 compared to placebo. At 8 weeks, the proportion of eyes gaining ≥5 ETDRS letters at 4 m (41% vs. 28%), losing ≥21 μm in CFT (55% vs. 28%), and dropping ≥0.06 mm3 in MMV (65% vs. 29%) was higher after levosulpiride than placebo. The overall grading of visual and structural parameters improved with levosulpiride (p = 0.029). Levosulpiride reduced VEGF (p = 0.025) and PlGF (p = 0.008) levels in the vitreous of PDR patients. No significant adverse side-effects were detected. CONCLUSIONS Oral levosulpiride for 8 weeks improved visual and structural outcomes in patients with centre-involving DME by mechanisms that may include intraocular upregulation of vasoinhibin and downregulation of VEGF and PlGF. Larger clinical trials evaluating long-term efficacy and safety are warranted.
Collapse
Affiliation(s)
- Carlos D Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, México
| | - Mariana López
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | | | | | | - Nayeli Pineiro
- Instituto Mexicano de Oftalmología (IMO), Querétaro, México
| | | | - Jorge Sánchez
- Instituto de la Retina del Bajío (INDEREB), Querétaro, México
| | - Gabriela Ramírez-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Lourdes Siqueiros-Márquez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
4
|
Robles JP, Zamora M, Garcia-Rodrigo JF, Perez AL, Bertsch T, Martinez de la Escalera G, Triebel J, Clapp C. Vasoinhibin's Apoptotic, Inflammatory, and Fibrinolytic Actions Are in a Motif Different From Its Antiangiogenic HGR Motif. Endocrinology 2023; 165:bqad185. [PMID: 38057149 DOI: 10.1210/endocr/bqad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Vasoinhibin, a proteolytic fragment of the hormone prolactin, inhibits blood vessel growth (angiogenesis) and permeability, stimulates the apoptosis and inflammation of endothelial cells, and promotes fibrinolysis. The antiangiogenic and antivasopermeability properties of vasoinhibin were recently traced to the HGR motif located in residues 46 to 48 (H46-G47-R48), allowing the development of potent, orally active, HGR-containing vasoinhibin analogues for therapeutic use against angiogenesis-dependent diseases. However, whether the HGR motif is also responsible for the apoptotic, inflammatory, and fibrinolytic properties of vasoinhibin has not been addressed. Here, we report that HGR-containing analogues are devoid of these properties. Instead, the incubation of human umbilical vein endothelial cells with oligopeptides containing the sequence HNLSSEM, corresponding to residues 30 to 36 of vasoinhibin, induced apoptosis, nuclear translocation of NF-κB, expression of genes encoding leukocyte adhesion molecules (VCAM1 and ICAM1) and proinflammatory cytokines (IL1B, IL6, and TNF), and adhesion of peripheral blood leukocytes. Also, intravenous or intra-articular injection of HNLSSEM-containing oligopeptides induced the expression of Vcam1, Icam1, Il1b, Il6, and Tnf in the lung, liver, kidney, eye, and joints of mice and, like vasoinhibin, these oligopeptides promoted the lysis of plasma fibrin clots by binding to plasminogen activator inhibitor-1 (PAI-1). Moreover, the inhibition of PAI-1, urokinase plasminogen activator receptor, or NF-κB prevented the apoptotic and inflammatory actions. In conclusion, the functional properties of vasoinhibin are segregated into 2 different structural determinants. Because apoptotic, inflammatory, and fibrinolytic actions may be undesirable for antiangiogenic therapy, HGR-containing vasoinhibin analogues stand as selective and safe agents for targeting pathological angiogenesis.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
- VIAN Therapeutics, Inc., San Francisco, CA 94107, USA
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Jose F Garcia-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Alma Lorena Perez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Thomas Bertsch
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | | | - Jakob Triebel
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| |
Collapse
|
5
|
Huang L, Li R, Ye L, Zhang S, Tian H, Du M, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Zhong L, Yang H, Yu M, Shi Y, Wang C, Zhang H, Chen W, Yang Z. Deep Sc-RNA sequencing decoding the molecular dynamic architecture of the human retina. SCIENCE CHINA. LIFE SCIENCES 2023; 66:496-515. [PMID: 36115892 DOI: 10.1007/s11427-021-2163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
The human retina serves as a light detector and signals transmission tissue. Advanced insights into retinal disease mechanisms and therapeutic strategies require a deep understanding of healthy retina molecular events. Here, we sequenced the mRNA of over 0.6 million single cells from human retinas across six regions at nine different ages. Sixty cell sub-types have been identified from the human mature retinas with unique markers. We revealed regional and age differences of gene expression profiles within the human retina. Cell-cell interaction analysis indicated a rich synaptic connection within the retinal cells. Gene expression regulon analysis revealed the specific expression of transcription factors and their regulated genes in human retina cell types. Some of the gene's expression, such as DKK3, are elevated in aged retinas. A further functional investigation suggested that over expression of DKK3 could impact mitochondrial stability. Overall, decoding the molecular dynamic architecture of the human retina improves our understanding of the vision system.
Collapse
Affiliation(s)
- Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China
| | - Runze Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Lin Ye
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shanshan Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Huaping Tian
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Shujin Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Mu Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Biao Wu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Ran Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Guo Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Ling Zhong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Hongjie Yang
- Department of Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100730, China
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325035, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610075, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610075, China.
| |
Collapse
|
6
|
Zhao H, Gong S, Shi Y, Luo C, Qiu H, He J, Sun Y, Huang Y, Wang S, Miao Y, Wu W. The role of prolactin/vasoinhibins in cardiovascular diseases. Animal Model Exp Med 2022; 6:81-91. [PMID: 35923071 PMCID: PMC10158951 DOI: 10.1002/ame2.12264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Prolactin (PRL) is a polypeptide hormone that is mainly synthesized and secreted by the lactotroph cells of the pituitary. There are two main isoforms of PRL: 23-kDa PRL (named full-length PRL) and vasoinhibins (including 5.6-18 kDa fragments). Both act as circulating hormones and cytokines to stimulate or inhibit vascular formation at different stages and neovascularization, including endothelial cell proliferation and migration, protease production, and apoptosis. However, their effects on vascular function and cardiovascular diseases are different or even contrary. In addition to the structure, secretion regulation, and signal transduction of PRL/vasoinhibins, this review focuses on the pathological mechanism and clinical significance of PRL/vasoinhibins in cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China.,Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yongcong Shi
- Respiratory Medicine, Dongchuan District People's Hospital, Kunming, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuxia Huang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Adán-Castro E, Siqueiros-Márquez L, Ramírez-Hernández G, Díaz-Lezama N, Ruíz-Herrera X, Núñez FF, Núñez-Amaro CD, Robles-Osorio ML, Bertsch T, Triebel J, Martínez de la Escalera G, Clapp C. Sulpiride-induced hyperprolactinaemia increases retinal vasoinhibin and protects against diabetic retinopathy in rats. J Neuroendocrinol 2022; 34:e13091. [PMID: 35078262 DOI: 10.1111/jne.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Excessive vasopermeability and angiogenesis compromise vision in diabetic macular oedema (DME) and diabetic retinopathy (DR). Vasoinhibin is a fragment of the hormone prolactin (PRL) that inhibits diabetes-induced retinal hypervasopermeability and ischaemia-induced retinal angiogenesis in rodents. Hyperprolactinaemia generated by the dopamine D2 receptor antagonist, levosulpiride, is associated with higher levels of vasoinhibin in the vitreous of patients with DR, implying a beneficial outcome due to vasoinhibin-mediated inhibition of retinal vascular alterations. Here, we tested whether hyperprolactinaemia induced by racemic sulpiride increases intraocular vasoinhibin levels and inhibits retinal hypervasopermeability in diabetic rats. Diabetes was generated with streptozotocin and, 4 weeks later, rats were treated for 2 weeks with sulpiride or osmotic minipumps delivering PRL. ELISA, Western blot, and Evans blue assay were used to evaluate serum PRL, retinal vasoinhibin, and retinal vasopermeability, respectively. Hyperprolactinaemia in response to sulpiride or exogenous PRL was associated with increased levels of vasoinhibin in the retina and reduced retinal hypervasopermeability. Furthermore, sulpiride decreased retinal haemorrhages in response to the intravitreal administration of vascular endothelial growth factor (VEGF). Neither sulpiride nor exogenous PRL modified blood glucose levels or bodyweight. We conclude that sulpiride-induced hyperprolactinaemia inhibits the diabetes- and VEGF-mediated increase in retinal vasopermeability by promoting the intraocular conversion of endogenous PRL to vasoinhibin. These findings support the therapeutic potential of sulpiride and its levorotatory enantiomer, levosulpiride, against DME and DR.
Collapse
Affiliation(s)
- Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Xarubet Ruíz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Francisco Freinet Núñez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Carlos D Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
8
|
Robles JP, Zamora M, Siqueiros-Marquez L, Adan-Castro E, Ramirez-Hernandez G, Nuñez FF, Lopez-Casillas F, Millar RP, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. The HGR motif is the antiangiogenic determinant of vasoinhibin: implications for a therapeutic orally active oligopeptide. Angiogenesis 2022; 25:57-70. [PMID: 34097181 PMCID: PMC8813873 DOI: 10.1007/s10456-021-09800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
The hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | - Francisco Freinet Nuñez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Fernando Lopez-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Robert P Millar
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| |
Collapse
|
9
|
Clapp C, Ortiz G, García-Rodrigo JF, Ledesma-Colunga MG, Martínez-Díaz OF, Adán N, Martínez de la Escalera G. Dual Roles of Prolactin and Vasoinhibin in Inflammatory Arthritis. Front Endocrinol (Lausanne) 2022; 13:905756. [PMID: 35721729 PMCID: PMC9202596 DOI: 10.3389/fendo.2022.905756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
The term inflammatory arthritis defines a family of diseases, including rheumatoid arthritis (RA), caused by an overactive immune system, and influenced by host aspects including sex, reproductive state, and stress. Prolactin (PRL) is a sexually dimorphic, reproductive, stress-related hormone long-linked to RA under the general assumption that it aggravates the disease. However, this conclusion remains controversial since PRL has both negative and positive outcomes in RA that may depend on the hormone circulating levels, synthesis by joint tissues, and complex interactions at the inflammatory milieu. The inflamed joint is rich in matrix metalloproteases that cleave PRL to vasoinhibin, a PRL fragment with proinflammatory effects and the ability to inhibit the hyperpermeability and growth of blood vessels. This review addresses this field with the idea that explanatory mechanisms lie within the PRL/vasoinhibin axis, an integrative framework influencing not only the levels of systemic and local PRL, but also the proteolytic conversion of PRL to vasoinhibin, as vasoinhibin itself has dual actions on joint inflammation. In this review, we discuss recent findings from mouse models suggesting the upregulation of endogenous vasoinhibin by the pro-inflammatory environment and showing dichotomous actions and signaling mechanisms of PRL and vasoinhibin on joint inflammation that are cell-specific and context-dependent. We hypothesize that these opposing actions work together to balance the inflammatory response and provide new insights for understanding the pathophysiology of RA and the development of new treatments.
Collapse
|
10
|
Triebel J, Bertsch T, Clapp C. Prolactin and vasoinhibin are endogenous players in diabetic retinopathy revisited. Front Endocrinol (Lausanne) 2022; 13:994898. [PMID: 36157442 PMCID: PMC9500238 DOI: 10.3389/fendo.2022.994898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes for visual loss in adults. Nearly half of the world's population with diabetes has some degree of DR, and DME is a major cause of visual impairment in these patients. Severe vision loss occurs because of tractional retinal detachment due to retinal neovascularization, but the most common cause of moderate vision loss occurs in DME where excessive vascular permeability leads to the exudation and accumulation of extracellular fluid and proteins in the macula. Metabolic control stands as an effective mean for controlling retinal vascular alterations in some but not all patients with diabetes, and the search of other modifiable factors affecting the risk for diabetic microvascular complications is warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have emerged as endogenous regulators of retinal blood vessels. PRL acquires antiangiogenic and anti-vasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of ocular organs and, upon disruption, promotes retinal vascular alterations characteristic of DR and DME. Evidence is linking PRL (and other pituitary hormones) and vasoinhibin to DR and recent preclinical and clinical evidence supports their translation into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
11
|
Vázquez-Membrillo M, Siqueiros-Márquez L, Núñez FF, Díaz-Lezama N, Adán-Castro E, Ramírez-Hernández G, Adán N, Macotela Y, Martínez de la Escalera G, Clapp C. Prolactin stimulates the vascularisation of the retina in newborn mice under hyperoxia conditions. J Neuroendocrinol 2020; 32:e12858. [PMID: 32449569 DOI: 10.1111/jne.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.
Collapse
Affiliation(s)
| | | | | | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
12
|
Nuñez-Amaro CD, Moreno-Vega AI, Adan-Castro E, Zamora M, Garcia-Franco R, Ramirez-Neria P, Garcia-Roa M, Villalpando Y, Robles JP, Ramirez-Hernandez G, Lopez M, Sanchez J, Lopez-Star E, Bertsch T, Martinez de la Escalera G, Robles-Osorio ML, Triebel J, Clapp C. Levosulpiride Increases the Levels of Prolactin and Antiangiogenic Vasoinhibin in the Vitreous of Patients with Proliferative Diabetic Retinopathy. Transl Vis Sci Technol 2020; 9:27. [PMID: 32879783 PMCID: PMC7442881 DOI: 10.1167/tvst.9.9.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose High circulating levels of the hormone prolactin (PRL) protect against experimental diabetic retinopathy (DR) due to the retinal accumulation of vasoinhibin, a PRL fragment that inhibits blood vessel permeability and growth. A phase 2 clinical trial is investigating a new therapy for DR based on elevating serum PRL levels with levosulpiride, a prokinetic dopamine D2 receptor blocker. Here, we tested whether levosulpiride-induced hyperprolactinemia elevates PRL and vasoinhibin in the vitreous of volunteer patients with proliferative DR (PDR) undergoing elective pars plana vitrectomy. Methods Patients were randomized to receive placebo (lactose pill, orally TID; n = 19) or levosulpiride (25 mg orally TID; n = 18) for the 7 days before vitrectomy. Vitreous samples from untreated non-diabetic (n = 10) and PDR (n = 17) patients were also studied. Results Levosulpiride elevated the systemic (101 ± 13 [SEM] vs. 9.2 ± 1.3 ng/mL, P < 0.0001) and vitreous (3.2 ± 0.4 vs. 1.5 ± 0.2 ng/mL, P < 0.0001) levels of PRL, and both levels were directly correlated (r = 0.58, P < 0.0002). The vitreous from non-diabetic patients or from PDR patients treated with levosulpiride, but not from placebo-treated PDR patients, inhibited the basic fibroblast growth factor (bFGF)- and vascular endothelial growth factor (VEGF)-induced proliferation of endothelial cells in culture. Vasoinhibin-neutralizing antibodies reduced the vitreous antiangiogenic effect. Matrix metalloproteases (MMPs) in the vitreous cleaved PRL to vasoinhibin, and their activity was higher in non-diabetic than in PDR patients. Conclusions Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit angiogenesis in DR. Translational Relevance These findings support the potential therapeutic benefit of levosulpiride against vision loss in diabetes.
Collapse
Affiliation(s)
- Carlos D Nuñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Aura Ileana Moreno-Vega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Elva Adan-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | | | | | | | | | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Gabriela Ramirez-Hernandez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Mariana Lopez
- Instituto Mexicano de Oftalmología, Querétaro, México
| | | | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
13
|
Aroña RM, Arnold E, Macías F, López-Casillas F, Clapp C, Martínez de la Escalera G. Vasoinhibin generation and effect on neuronal apoptosis in the hippocampus of late mouse embryos. Am J Physiol Regul Integr Comp Physiol 2020; 318:R760-R771. [PMID: 32048872 DOI: 10.1152/ajpregu.00286.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morphological and behavioral evidence suggests that vasoinhibin is present in the central nervous system (CNS), triggering neuroendocrine and behavioral responses to stress. Moreover, vasoinhibin reduces neuronal survival and differentiation of primary sensory neurons of the peripheral nervous system. To address the functional role played by vasoinhibin at the CNS, and to better understand the underlying mechanisms involved in its actions, we treated primary cultured hippocampal neurons obtained from embryonic day 16 (E16) mice with a human recombinant vasoinhibin. We examined the resulting cellular changes, focusing on neuronal cell death, and explored the local generation of vasoinhibin within the hippocampus. Our results show that vasoinhibin significantly reduced neuronal cell density and increased immunoreactive activated caspase-3 and TUNEL-positive staining at 72, 16, and 24 h, respectively. Furthermore, vasoinhibin increased the expression of proapoptotic genes BAX, BAD, BIM, and PUMA and decreased that of the antiapoptotic gene BCL-2 at 24 h, as assessed by quantitative real-time reverse transcription-polymerase chain reaction. Vasoinhibin effects were blocked by coincubation with a vasoinhibin antibody or with prolactin. Immunoreactive bands consistent with vasoinhibin were observed in hippocampal extracts by Western blot analysis, and a prolactin standard was cleaved to vasoinhibin by a hippocampal lysate in a heat- and cathepsin D inhibitor pepstatin A-dependent fashion. Taken together, these data support the notion that vasoinhibin is locally produced by cathepsin D within the embryonic mouse hippocampus, a brain region that plays a critical role in emotional regulation, resulting in decreased neuronal cell viability via the activation of the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Rodrigo M Aroña
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico.,CONACYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
14
|
Triebel J, Robles JP, Zamora M, Martínez de la Escalera G, Bertsch T, Clapp C. Regulator of Angiogenesis and Vascular Function: A 2019 Update of the Vasoinhibin Nomenclature. Front Endocrinol (Lausanne) 2019; 10:214. [PMID: 31024452 PMCID: PMC6467929 DOI: 10.3389/fendo.2019.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University Nuremberg, Nuremberg, Germany
- *Correspondence: Jakob Triebel
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University Nuremberg, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
15
|
Robles JP, Zamora M, Velasco-Bolom JL, Tovar M, Garduño-Juárez R, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Vasoinhibin comprises a three-helix bundle and its antiangiogenic domain is located within the first 79 residues. Sci Rep 2018; 8:17111. [PMID: 30459448 PMCID: PMC6244167 DOI: 10.1038/s41598-018-35383-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Vasoinhibin belongs to a family of angiogenesis inhibitors generated when the fourth α-helix (H4) of the hormone prolactin (PRL) is removed by specific proteolytic cleavage. The antiangiogenic properties are absent in uncleaved PRL, indicating that conformational changes create a new bioactive domain. However, the solution structure of vasoinhibin and the location of its bioactive domain are unknown. Molecular dynamic simulation (MD) showed that the loss of H4 exposes the hydrophobic nucleus of PRL and leads to the compression of the molecule into a three-helix bundle that buries the hydrophobic nucleus again. Compression occurs by the movement of loop 1 (L1) and its interaction with α-helix 1 (H1) generating a new L1 conformation with electrostatic and hydrophobic surfaces distinct from those of PRL, that may correspond to a bioactive domain. Consistent with this model, a recombinant protein containing the first 79 amino acids comprising H1 and L1 of human PRL inhibited the proliferation and migration of endothelial cells and upregulated the vasoinhibin target genes, IL1A and ICAM1. This bioactivity was comparable to that of a conventional vasoinhibin having the 123 residues encompassing H1, L1, Η2, L2, and Η3 of human PRL. These findings extend the vasoinhibin family to smaller proteins and provide important structural information, which will aid in antiangiogenic drug development.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Miriam Tovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Ramón Garduño-Juárez
- Biofísica y Ciencia de Materiales, Instituto de Ciencias Físicas, UNAM, Cuernavaca, Mexico
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico.
| |
Collapse
|
16
|
Robles-Osorio ML, García-Franco R, Núñez-Amaro CD, Mira-Lorenzo X, Ramírez-Neria P, Hernández W, López-Star E, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Basis and Design of a Randomized Clinical Trial to Evaluate the Effect of Levosulpiride on Retinal Alterations in Patients With Diabetic Retinopathy and Diabetic Macular Edema. Front Endocrinol (Lausanne) 2018; 9:242. [PMID: 29896154 PMCID: PMC5986911 DOI: 10.3389/fendo.2018.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) and diabetic macular edema (DME) are potentially blinding, microvascular retinal diseases in people with diabetes mellitus. Preclinical studies support a protective role of the hormone prolactin (PRL) due to its ocular incorporation and conversion to vasoinhibins, a family of PRL fragments that inhibit ischemia-induced retinal angiogenesis and diabetes-derived retinal vasopermeability. Here, we describe the protocol of an ongoing clinical trial investigating a new therapy for DR and DME based on elevating the circulating levels of PRL with the prokinetic, dopamine D2 receptor blocker, levosulpiride. METHODS It is a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME, non-proliferative DR (NPDR), proliferative DR (PDR) requiring vitrectomy, and DME plus standard intravitreal therapy with the antiangiogenic agent, ranibizumab. Patients are randomized to receive placebo (lactose pill, orally TID) or levosulpiride (75 mg/day orally TID) for 8 weeks (DME and NPDR), 1 week (the period before vitrectomy in PDR), or 12 weeks (DME plus ranibizumab). In all cases the study medication is taken on top of standard therapy for diabetes, blood pressure control, or other medical conditions. Primary endpoints in groups 1 and 2 (DME: placebo and levosulpiride), groups 3 and 4 (NPDR: placebo and levosulpiride), and groups 7 and 8 (DME plus ranibizumab: placebo and levosulpiride) are changes from baseline in visual acuity, retinal thickness assessed by optical coherence tomography, and retinal microvascular abnormalities evaluated by fundus biomicroscopy and fluorescein angiography. Changes in serum PRL levels and of PRL and vasoinhibins levels in the vitreous between groups 5 and 6 (PDR undergoing vitrectomy: placebo and levosulpiride) serve as proof of principle that PRL enters the eye to counteract disease progression. Secondary endpoints are changes during the follow-up of health and metabolic parameters (blood pressure, glycated hemoglobin, and serum levels of glucose and creatinine). A total of 120 patients are being recruited. DISCUSSION This trial will provide important knowledge on the potential benefits and safety of elevating circulating and intraocular PRL levels with levosulpiride in patients with DR and DME. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Ethics Committees of the National University of Mexico (UNAM) and the Instituto Mexicano de Oftalmología, I.A.P. Dissemination will include submission to peer-reviewed scientific journals and presentation at congresses. CLINICAL TRIAL REGISTRATION Registered at www.ClinicalTrials.gov, ID: NCT03161652 on May 18, 2017.
Collapse
Affiliation(s)
| | | | - Carlos D. Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, Mexico
| | | | | | - Wendy Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| |
Collapse
|
17
|
Triebel J, Robles-Osorio ML, Garcia-Franco R, Martínez de la Escalera G, Clapp C, Bertsch T. From Bench to Bedside: Translating the Prolactin/Vasoinhibin Axis. Front Endocrinol (Lausanne) 2017; 8:342. [PMID: 29321761 PMCID: PMC5732132 DOI: 10.3389/fendo.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL) and vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, inflammatory and immune processes, coagulation, and behavior. The core element of the PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple different partners to mediate their effects in various tissues and anatomical compartments, indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic macular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent detrimental effects on the myocardial microvascularization. The trial demonstrated that bromocriptine treatment was associated with a high rate of left ventricular recovery and low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear the risk of side effects in the areas of blood coagulation, blood pressure, and alterations of the mental state.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
18
|
Triebel J, Friedrich CJ, Leuchs A, Martínez de la Escalera G, Clapp C, Bertsch T. Human Prolactin Point Mutations and Their Projected Effect on Vasoinhibin Generation and Vasoinhibin-Related Diseases. Front Endocrinol (Lausanne) 2017; 8:294. [PMID: 29163363 PMCID: PMC5681482 DOI: 10.3389/fendo.2017.00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A dysregulation of the generation of vasoinhibin hormones by proteolytic cleavage of prolactin (PRL) has been brought into context with diabetic retinopathy, retinopathy of prematurity, preeclampsia, pregnancy-induced hypertension, and peripartum cardiomyopathy. Factors governing vasoinhibin generation are incompletely characterized, and the composition of vasoinhibin isoforms in human tissues or compartments, such as the circulation, is unknown. The aim of this study was to determine the possible contribution of PRL point mutations to the generation of vasoinhibins as well as to project their role in vasoinhibin-related diseases. METHODS Prolactin sequences, point mutations, and substrate specificity information about the PRL cleaving enzymes cathepsin D, matrix metalloproteinases 8 and 13, and bone-morphogenetic protein 1 were retrieved from public databases. The consequences of point mutations in regard to their possible effect on vasoinhibin levels were projected on the basis of a score indicating the suitability of a particular sequence for enzymatic cleavage that result in vasoinhibin generation. The relative abundance and type of vasoinhibin isoforms were estimated by comparing the relative cleavage efficiency of vasoinhibin-generating enzymes. RESULTS Six point mutations leading to amino acid substitutions in vasoinhibin-generating cleavage sites were found and projected to either facilitate or inhibit vasoinhibin generation. Four mutations affecting vasoinhibin generation in cancer tissues were found. The most likely composition of the relative abundance of vasoinhibin isoforms is projected to be 15 > 17.2 > 16.8 > 17.7 > 18 kDa vasoinhibin. CONCLUSION Prolactin point mutations are likely to influence vasoinhibin levels by affecting the proteolysis efficiency of vasoinhibin-generating enzymes and should be monitored in patients with vasoinhibin-related diseases. Attempts to characterize vasoinhibin-related diseases should include the 15, 17.2, 16.8, 17.7, and 18 kDa vasoinhibin isoforms.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Christin J. Friedrich
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Andreas Leuchs
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|