1
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Kim TH, Ly C, Christodoulides A, Nowell CJ, Gunning PW, Sloan EK, Rowat AC. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function. FASEB J 2019; 33:3997-4006. [PMID: 30509116 PMCID: PMC6404566 DOI: 10.1096/fj.201801429rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Critical functions of immune cells require them to rapidly change their shape and generate forces in response to cues from their surrounding environment. However, little is known about how soluble factors that may be present in the microenvironment modulate key aspects of cellular mechanobiology-such as immune cell deformability and force generation-to impact functions such as phagocytosis and migration. Here we show that signaling by soluble stress hormones through β-adrenoceptors (β-AR) reduces the deformability of macrophages; this is dependent on changes in the organization of the actin cytoskeleton and is associated with functional changes in phagocytosis and migration. Pharmacologic interventions reveal that the impact of β-AR signaling on macrophage deformability is dependent on actin-related proteins 2/3, indicating that stress hormone signaling through β-AR shifts actin organization to favor branched structures rather than linear unbranched actin filaments. These findings show that through remodeling of the actin cytoskeleton, β-AR-mediated stress hormone signaling modulates macrophage mechanotype to impact functions that play a critical role in immune response.-Kim, T.-H., Ly, C., Christodoulides, A., Nowell, C. J., Gunning, P. W., Sloan, E. K., Rowat, A. C. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Alexei Christodoulides
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Cameron J. Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Erica K. Sloan
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
- UCLA AIDS Institute, University of California, Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Gill NK, Ly C, Nyberg KD, Lee L, Qi D, Tofig B, Reis-Sobreiro M, Dorigo O, Rao J, Wiedemeyer R, Karlan B, Lawrenson K, Freeman MR, Damoiseaux R, Rowat AC. A scalable filtration method for high throughput screening based on cell deformability. LAB ON A CHIP 2019; 19:343-357. [PMID: 30566156 DOI: 10.1039/c8lc00922h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell deformability is a label-free biomarker of cell state in physiological and disease contexts ranging from stem cell differentiation to cancer progression. Harnessing deformability as a phenotype for screening applications requires a method that can simultaneously measure the deformability of hundreds of cell samples and can interface with existing high throughput facilities. Here we present a scalable cell filtration device, which relies on the pressure-driven deformation of cells through a series of pillars that are separated by micron-scale gaps on the timescale of seconds: less deformable cells occlude the gaps more readily than more deformable cells, resulting in decreased filtrate volume which is measured using a plate reader. The key innovation in this method is that we design customized arrays of individual filtration devices in a standard 96-well format using soft lithography, which enables multiwell input samples and filtrate outputs to be processed with higher throughput using automated pipette arrays and plate readers. To validate high throughput filtration to detect changes in cell deformability, we show the differential filtration of human ovarian cancer cells that have acquired cisplatin-resistance, which is corroborated with cell stiffness measurements using quantitative deformability cytometry. We also demonstrate differences in the filtration of human cancer cell lines, including ovarian cancer cells that overexpress transcription factors (Snail, Slug), which are implicated in epithelial-to-mesenchymal transition; breast cancer cells (malignant versus benign); and prostate cancer cells (highly versus weekly metastatic). We additionally show how the filtration of ovarian cancer cells is affected by treatment with drugs known to perturb the cytoskeleton and the nucleus. Our results across multiple cancer cell types with both genetic and pharmacologic manipulations demonstrate the potential of this scalable filtration device to screen cells based on their deformability.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|