1
|
Misgar RA, Chhabra A, Qadir A, Arora S, Wani AI, Bashir MI, Masoodi SR. Pituitary stalk interruption syndrome due to novel ROBO1 mutation presenting as combined pituitary hormone deficiency and central diabetes insipidus. J Pediatr Endocrinol Metab 2024; 37:477-481. [PMID: 38444307 DOI: 10.1515/jpem-2023-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The genetic causes of pituitary stalk interruption syndrome (PSIS) remain elusive in 95 % of cases. The roundabout receptor-1 gene (ROBO1) plays critical roles in axonal guidance and cell migration. Recently, mutations in the ROBO1 gene have been reported patients with PSIS. CASE PRESENTATION We report a 2.9-year-old boy with PSIS who presented with combined pituitary hormone deficiency, central diabetes insipidus, and the classical triad of MRI findings. Through clinical exome sequencing using next-generation sequencing techniques, a previously unidentified novel heterozygous frame shift mutation in the ROBO1 gene was identified. This is the first report of ROBO1 mutation associated with posterior pituitary dysfunction. CONCLUSIONS We conclude and emphasize that ROBO1 should be investigated in patients with PSIS. Our case is unique in the published literature in that we are first time reporting posterior pituitary dysfunction as manifestation of ROBO1 mutation. The full clinical spectrum of the mutations may not be fully known.
Collapse
Affiliation(s)
- Raiz Ahmad Misgar
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Ankit Chhabra
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Ajaz Qadir
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Sidharth Arora
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Arshad Iqbal Wani
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Mir Iftikhar Bashir
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Shariq Rashid Masoodi
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| |
Collapse
|
2
|
Wang S, Qin Q, Jiang D, Xiao Y, Ye L, Jiang X, Guo Q. Re-analysis of gene mutations found in pituitary stalk interruption syndrome and a new hypothesis on the etiology. Front Endocrinol (Lausanne) 2024; 15:1338781. [PMID: 38464967 PMCID: PMC10920343 DOI: 10.3389/fendo.2024.1338781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pituitary stalk interruption syndrome (PSIS) is a complex clinical syndrome characterized by varied pituitary hormone deficiencies, leading to severe manifestations across multiple systems. These include lifelong infertility, short stature, mental retardation, and potentially life-threatening pituitary crises if not promptly diagnosed and treated. Despite extensive research, the precise pathogenesis of PSIS remains unclear. Currently, there are two proposed theories regarding the pathogenic mechanisms: the genetic defect theory and the perinatal injury theory. Methods We systematically searched English databases (PubMed, Web of Science, Embase) and Chinese databases (CNKI, WanFang Med Online, Sinomed) up to February 24, 2023, to summarize studies on gene sequencing in PSIS patients. Enrichment analyses of reported mutated genes were subsequently performed using the Metascape platform. Results Our study included 37 articles. KEGG enrichment analysis revealed mutated genes were enriched in the Notch signaling pathway, Wnt signaling pathway, and Hedgehog signaling pathway. GO enrichment analysis demonstrated mutated genes were enriched in biological processes such as embryonic development, brain development, axon development and guidance, and development of other organs. Conclusion Based on our summary and analyses, we propose a new hypothesis: disruptions in normal embryonic development, partially stemming from the genetic background and/or specific gene mutations in individuals, may increase the likelihood of abnormal fetal deliveries, where different degrees of traction during delivery may lead to different levels of pituitary stalk interruption and posterior lobe ectopia. The clinical diversity observed in PSIS patients may result from a combination of genetic background, specific mutations, and variable degrees of traction during delivery.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Deyue Jiang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lingtong Ye
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qinghua Guo
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Welby JP, Madhavan AA, Campeau NG, Eckel LJ, Silvera VM, Guerin JB. Dorsoventral splitting of the infundibulum in a child with pituitary hypoplasia. Radiol Case Rep 2023; 18:2754-2757. [PMID: 37334326 PMCID: PMC10275733 DOI: 10.1016/j.radcr.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/20/2023] Open
Abstract
Pituitary development arises from ectodermal tissue creating Rathke's pouch and ultimately the adenohypophysis anteriorly whereas neuroectodermal tissue arising from the diencephalon creates the neurohypophysis posteriorly. Alterations in pituitary development can lead to hormonal dysregulation and dysfunction. Following clinical suspicion of pituitary endocrinopathy, MRI plays a vital role in identifying and characterizing underlying structural abnormalities of the pituitary gland, as well as any associated extrapituitary findings. Here we report a case of an 18-month-old female presenting with short stature and growth hormone deficiency. MRI was notable for a shallow sella turcica, a hypoplastic adenohypophysis, thin pituitary stalk, and ectopic neurohypophysis. Interestingly, the pituitary stalk was noted to split dorsoventrally with a split pituitary bright spot and T1 hypointense lobe hypothesized to represent separation of the posterior pituitary lobes.
Collapse
|
4
|
Huang Y, Ma M, Mao X, Pehlivan D, Kanca O, Un-Candan F, Shu L, Akay G, Mitani T, Lu S, Candan S, Wang H, Xiao B, Lupski JR, Bellen HJ. Novel dominant and recessive variants in human ROBO1 cause distinct neurodevelopmental defects through different mechanisms. Hum Mol Genet 2022; 31:2751-2765. [PMID: 35348658 PMCID: PMC9402236 DOI: 10.1093/hmg/ddac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 07/27/2023] Open
Abstract
The Roundabout (Robo) receptors, located on growth cones of neurons, induce axon repulsion in response to the extracellular ligand Slit. The Robo family of proteins controls midline crossing of commissural neurons during development in flies. Mono- and bi-allelic variants in human ROBO1 (HGNC: 10249) have been associated with incomplete penetrance and variable expressivity for a breath of phenotypes, including neurodevelopmental defects such as strabismus, pituitary defects, intellectual impairment, as well as defects in heart and kidney. Here, we report two novel ROBO1 variants associated with very distinct phenotypes. A homozygous missense p.S1522L variant in three affected siblings with nystagmus; and a monoallelic de novo p.D422G variant in a proband who presented with early-onset epileptic encephalopathy. We modeled these variants in Drosophila and first generated a null allele by inserting a CRIMIC T2A-GAL4 in an intron. Flies that lack robo1 exhibit reduced viability but have very severe midline crossing defects in the central nervous system. The fly wild-type cDNA driven by T2A-Gal4 partially rescues both defects. Overexpression of the human reference ROBO1 with T2A-GAL4 is toxic and reduces viability, whereas the recessive p.S1522L variant is less toxic, suggesting that it is a partial loss-of-function allele. In contrast, the dominant variant in fly robo1 (p.D413G) affects protein localization, impairs axonal guidance activity and induces mild phototransduction defects, suggesting that it is a neomorphic allele. In summary, our studies expand the phenotypic spectrum associated with ROBO1 variant alleles.
Collapse
Affiliation(s)
- Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feride Un-Candan
- Department of Neuroloy, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Li Shu
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sukru Candan
- Department of Medical Genetics, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Hua Wang
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Silva TS, Faucz FR, Hernández-Ramírez LC, Pankratz N, Lane J, Kay DM, Lyra A, Kochi C, Stratakis CA, Longui CA, Mills JL. Whole exome sequencing in patients with ectopic posterior pituitary. J Endocr Soc 2022; 6:bvac116. [DOI: 10.1210/jendso/bvac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Context
Ectopic posterior pituitary (EPP), a condition in which the posterior pituitary gland is displaced due to defective neuronal migration, is frequently associated with hypopituitarism. Genetic variants play a role, but many cases remain unexplained.
Objective
A large EPP cohort was studied to explore the importance of genetic variants and how they correlate with clinical findings.
Methods
Whole exome sequencing was performed on a discovery sample of 27 cases to identify rare variants. The variants that met the criteria for rarity and biological relevance, or that were previously associated with EPP (ROBO1 and HESX1), were then resequenced in the 27 cases plus a replication sample of 51 cases.
Results
We identified 16 different variants in 12 genes in 15 of the 78 cases (19.2%). Complete anterior pituitary deficiency was twice as common in cases with variants of interest compared to cases without variants (9/15; 60% vs. 19/63; 30.1%, respectively; Z test; p=0.06). Breech presentation was more frequent in the variant positive group (5/15 vs. 1/63; Z test; p= 0.003). Four cases had variants in ROBO1 and one in HESX1, genes previously associated with EPP. The ROBO1 p.S18* variant has not been reported previously; ROBO1 p.Q1227H has not been associated with EPP previously.
Conclusions
EPP cases with variants of interest identified in this study were more likely to present with severe clinical disease. Several variants were identified in genes not previously associated with EPP. Our findings confirm that EPP is a multigenic disorder. Future studies are needed to identify additional genes.
Collapse
Affiliation(s)
- Tatiane S Silva
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Fabio R Faucz
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán . 15 Vasco de Quiroga, Radiation Oncology building, 2 nd floor, Belisario Domínguez sección 16. Tlalpan, CDMX 14080, Mexico
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology University of Minnesota Medical School, Minneapolis , Minnesota, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology University of Minnesota Medical School, Minneapolis , Minnesota, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health , Albany, New York, USA
| | - Arthur Lyra
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Cristiane Kochi
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
- Research Institute, ELPEN , Athens, Greece
- Human Genetics & Precision Medicine, IMBB, FORTH , Heraklion, Greece
| | - Carlos A Longui
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - James L Mills
- Epidemiology Branch , Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) , Bethesda, Maryland, USA
| |
Collapse
|
6
|
Münch J, Engesser M, Schönauer R, Hamm JA, Hartig C, Hantmann E, Akay G, Pehlivan D, Mitani T, Coban Akdemir Z, Tüysüz B, Shirakawa T, Dateki S, Claus LR, van Eerde AM, Smol T, Devisme L, Franquet H, Attié-Bitach T, Wagner T, Bergmann C, Höhn AK, Shril S, Pollack A, Wenger T, Scott AA, Paolucci S, Buchan J, Gabriel GC, Posey JE, Lupski JR, Petit F, McCarthy AA, Pazour GJ, Lo CW, Popp B, Halbritter J. Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney Int 2022; 101:1039-1053. [PMID: 35227688 PMCID: PMC10010616 DOI: 10.1016/j.kint.2022.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.
Collapse
Affiliation(s)
- Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Engesser
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - J Austin Hamm
- East Tennessee Children's Hospital, Genetic Center, Knoxville, Tennessee, USA
| | - Christin Hartig
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Elena Hantmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Thomas Smol
- Centre Hospitalier Universitaire de Lille, Institut de Génétique Médicale, Lille, France
| | - Louise Devisme
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Hélène Franquet
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Tania Attié-Bitach
- Laboratoire de biologie médicale multisites SeqOIA, Paris, France; Service de Médecine Génomique des Maladies Rares, APHP.Centre, Université de Paris, Paris, France
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Freiburg, Germany
| | - Anne Kathrin Höhn
- Division of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Boston, USA
| | - Ari Pollack
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sarah Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jillian Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Petit
- Centre Hospitalier Universitaire de Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | | | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Bernt Popp
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
7
|
Bando H, Urai S, Kanie K, Sasaki Y, Yamamoto M, Fukuoka H, Iguchi G, Camper SA. Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing. Front Endocrinol (Lausanne) 2022; 13:1008306. [PMID: 36237189 PMCID: PMC9551393 DOI: 10.3389/fendo.2022.1008306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
Combined pituitary hormone deficiency (CPHD) is not a rare disorder, with a frequency of approximately 1 case per 4,000 live births. However, in most cases, a genetic diagnosis is not available. Furthermore, the diagnosis is challenging because no clear correlation exists between the pituitary hormones affected and the gene(s) responsible for the disorder. Next-generation sequencing (NGS) has recently been widely used to identify novel genes that cause (or putatively cause) CPHD. This review outlines causative genes for CPHD that have been newly reported in recent years. Moreover, novel variants of known CPHD-related genes (POU1F1 and GH1 genes) that contribute to CPHD through unique mechanisms are also discussed in this review. From a clinical perspective, variants in some of the recently identified causative genes result in extra-pituitary phenotypes. Clinical research on the related symptoms and basic research on pituitary formation may help in inferring the causative gene(s) of CPHD. Future NGS analysis of a large number of CPHD cases may reveal new genes related to pituitary development. Clarifying the causative genes of CPHD may help to understand the process of pituitary development. We hope that future innovations will lead to the identification of genes responsible for CPHD and pituitary development.
Collapse
Affiliation(s)
- Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hironori Bando,
| | - Shin Urai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuriko Sasaki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Jee YH, Gangat M, Yeliosof O, Temnycky AG, Vanapruks S, Whalen P, Gourgari E, Bleach C, Yu CH, Marshall I, Yanovski JA, Link K, Ten S, Baron J, Radovick S. Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic. Front Genet 2021; 12:697549. [PMID: 34456972 PMCID: PMC8386283 DOI: 10.3389/fgene.2021.697549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 01/31/2023] Open
Abstract
Purpose Congenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown. Methods We studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups. Results First, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband's condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01). Conclusion Our findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.
Collapse
Affiliation(s)
- Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mariam Gangat
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Olga Yeliosof
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Adrian G Temnycky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Selena Vanapruks
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Philip Whalen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Evgenia Gourgari
- Division of Pediatric Endocrinology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Cortney Bleach
- Division of Pediatric Endocrinology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christine H Yu
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, IL, United States
| | - Ian Marshall
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Jack A Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kathleen Link
- Division of Pediatric Endocrinology, Pediatric Subspecialists of Virginia, Fairfax, VA, United States
| | - Svetlana Ten
- Pediatric Endocrinology, Richmond University Medical Center, Staten Island, NY, United States
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sally Radovick
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Woodring TS, Mirza MH, Benavides V, Ellsworth KA, Wright MS, Javed MJ, Ramiro S. Uncertain, Not Unimportant: Callosal Dysgenesis and Variants of Uncertain Significance in ROBO1. Pediatrics 2021; 148:e2020019000. [PMID: 34193621 DOI: 10.1542/peds.2020-019000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Congenital anomalies affect 3% to 5% of births and remain the leading cause of infant death in the United States. As whole exome and genome sequencing are increasingly used to diagnose underlying genetic disease, the patient's clinical presentation remains the most important context for interpreting sequencing results, including frequently reported variants of uncertain significance (VUS). Classification of a variant as VUS acknowledges limits on evidence to establish whether a variant can be classified as pathogenic or benign according to the American College of Medical Genetics guidelines. Importantly, the VUS designation reflects limits on the breadth of evidence linking the genetic variant to a disease. However, available evidence, although limited, may be surprisingly relevant in an individual patient's case. Accordingly, a VUS result should be approached neither as nondiagnostic genetic result nor as automatically "uncertain" in its potential to guide clinical decision-making. In this article, we discuss a case of an infant born at 29 weeks 4 days without a corpus callosum, whose whole genome sequencing yielded compound heterozygous variants both classified as VUS in ROBO1, a gene encoding for a receptor involved in a canonical signaling mechanism that guides axons across midline. Approaching the VUS result as potentially pathogenic, we found the infant ultimately had pituitary dysfunction and renal anomalies consistent with other reported ROBO1 variants and basic science literature. Accordingly, we highlight resources for variant interpretation available to clinicians to evaluate VUS results, particularly as they inform the diagnosis of individually rare but collectively common rare diseases.
Collapse
Affiliation(s)
- Therese S Woodring
- University of Wisconsin Hospital and Clinics, Madison, Wisconsin
- College of Medicine Peoria, University of Illinois, Peoria, Illinois
| | - Mohammed H Mirza
- College of Medicine Peoria, University of Illinois, Peoria, Illinois
| | | | | | | | - M Jawad Javed
- College of Medicine Peoria, University of Illinois, Peoria, Illinois
- NICU, Children's Hospital of Illinois, Peoria, Illinois
| | - Susan Ramiro
- College of Medicine Peoria, University of Illinois, Peoria, Illinois
- NICU, Children's Hospital of Illinois, Peoria, Illinois
| |
Collapse
|
10
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
11
|
Wu ZY, Li YL, Chang B. Pituitary stalk interruption syndrome and liver changes: From clinical features to mechanisms. World J Gastroenterol 2020; 26:6909-6922. [PMID: 33311939 PMCID: PMC7701950 DOI: 10.3748/wjg.v26.i44.6909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital abnormality characterized by thinning or disappearance of the pituitary stalk, hypoplasia of the anterior pituitary and an ectopic posterior pituitary. Although the etiology of PSIS is still unclear, gene changes and perinatal adverse events such as breech delivery may play important roles in the pathogenesis of PSIS. PSIS can cause multiple hormone deficiencies, such as growth hormone, which then cause a series of changes in the human body. On the one hand, hormone changes affect growth and development, and on the other hand, they could affect human metabolism and subsequently the liver resulting in nonalcoholic fatty liver disease (NAFLD). Under the synergistic effect of multiple mechanisms, the progression of NAFLD caused by PSIS is faster than that due to other causes. Therefore, in addition to early identification of PSIS, timely hormone replacement therapy and monitoring of relevant hormone levels, clinicians should routinely assess the liver function while managing PSIS.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yi-Ling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
12
|
Liu Z, Chen X. A Novel Missense Mutation in Human Receptor Roundabout-1 (ROBO1) Gene Associated with Pituitary Stalk Interruption Syndrome. J Clin Res Pediatr Endocrinol 2020; 12:212-217. [PMID: 31448886 PMCID: PMC7291404 DOI: 10.4274/jcrpe.galenos.2019.2018.0309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is characterized by the association of an absent or thin pituitary stalk, an absent or hypoplastic anterior pituitary lobe and an ectopic posterior pituitary (EPP) lobe. The causes of this anatomical defect include both genetic and environmental factors. Molecular genetic defects have been indentified in a small number of patients with PSIS. A 4-year-old boy presented with hypoglycemia and hyponatremia associated with growth hormone, thyroid stimulating hormone, and adrenocorticotropic hormone deficiencies. The patient had right sided strabismus. magnetic resonance imaging images showed pituitary hypoplasia, EPP and absent pituitary stalk. A novel Receptor Roundabout-1 (ROBO1) missense mutation (c.1690C>T, p.Pro564Ser) that may contribute to the disorder was found in this patient and his mother, who also exhibited pituitary abnormalities.
Collapse
Affiliation(s)
- Ziqin Liu
- Capital Institute of Pediatrics, Clinic of Endocrinology, Beijing, China
| | - Xiaobo Chen
- Capital Institute of Pediatrics, Clinic of Endocrinology, Beijing, China
| |
Collapse
|
13
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|