1
|
Zhang J, Yao Y, Tan Y, Hu HY, Zeng LX, Zhang GQ. Genetic analysis of seven patients with inherited ichthyosis and Nagashima‑type palmoplantar keratoderma. Mol Med Rep 2024; 30:111. [PMID: 38695247 PMCID: PMC11094583 DOI: 10.3892/mmr.2024.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Inherited ichthyosis comprises a series of heterogeneous dermal conditions; it mainly manifests as widespread hyperkeratosis, xerosis and scaling of the skin. At times, overlapping symptoms require differential diagnosis between ichthyosis and several other similar disorders. The present study reports seven patients with confirmed or suspected to be associated with ichthyosis by conducting a thorough clinical and genetic investigation. Genetic testing was conducted using whole‑exome sequencing, with Sanger sequencing as the validation method. The MEGA7 program was used to analyze the conservation of amino acid residues affected by the detected missense variants. The enrolled patients exhibited ichthyosis‑like but distinct clinical manifestations. Genetic analysis identified diagnostic variations in the FLG, STS, KRT10 and SERPINB7 genes and clarified the carrying status of each variant in the respective family members. The two residues affected by the detected missense variants remained conserved across multiple species. Of note, the two variants, namely STS: c.452C>T(p.P151L) and c.647_650del(p.L216fs) are novel. In conclusion, a clear genetic differential diagnosis was made for the enrolled ichthyosis‑associated patients; the study findings also extended the mutation spectrum of ichthyosis and provided solid evidence for the counseling of the affected families.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 102208, P.R. China
| | - Yue Yao
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Hua-Ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, P.R. China
| | - Lin-Xi Zeng
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| | - Guo-Qiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| |
Collapse
|
2
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
3
|
Whitehead MT, Lai LM, Blüml S. Clinical 1H MRS in childhood neurometabolic diseases — part 2: MRS signatures. Neuroradiology 2022; 64:1111-1126. [DOI: 10.1007/s00234-022-02918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
|
4
|
Yolcu G, Huseynli L, Kenis-Coskun O, Karadag-Saygi E. Small touches to big walks -the impact of rehabilitation on Sjögren-Larsson syndrome: A case report. J Pediatr Rehabil Med 2022; 15:533-537. [PMID: 35871376 DOI: 10.3233/prm-201521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare neurocutaneous disorder characterized by the presence of congenital ichthyosis, spasticity, and mental retardation. As with other rare genetic diseases, treatment is mainly symptomatic. Due to the absence of definitive treatment, lifelong follow-up and support of patients are important to improve the quality of life. A 7-year-old female child who was diagnosed as having SLS was referred to the rehabilitation clinic. After 20 sessions of a rehabilitation program, she started walking independently with the additional contribution of ankle-foot orthoses (AFOs). The contribution of the short-term rehabilitation approach and especially the administration of AFOs to the independence level of the patient is emphasized herein.
Collapse
Affiliation(s)
- Gunay Yolcu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Huseynli
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ozge Kenis-Coskun
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Evrim Karadag-Saygi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Lambert LH, Shaikh N, Marx JL, Ramsey DJ. End-stage crystalline maculopathy with retinal atrophy in Sjögren-Larsson syndrome: a case report and review of the literature. THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221122496. [PMID: 37180414 PMCID: PMC10032463 DOI: 10.1177/26330040221122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 05/16/2023]
Abstract
Sjögren-Larsson syndrome (SLS) is a rare, autosomal recessive neurocutaneous disorder. It is caused by the inheritance of sequence variants in the ALDH3A2 gene, which codes for fatty aldehyde dehydrogenase (FALDH). Universal signs of the condition are congenital ichthyosis, spastic paresis of the lower and upper limbs, and reduced intellectual ability. In addition to this clinical triad, patients with SLS experience dry eyes and decreased visual acuity caused by a progressive retinal degeneration. Examination of the retina in patients with SLS often reveals glistening yellow crystal-like deposits surrounding the fovea. This crystalline retinopathy often develops in childhood and is considered pathognomonic for the disease. The metabolic disorder typically shortens lifespan to half that of the unaffected population. However, now that patients with SLS live longer, it becomes increasingly important to understand the natural course of the disease. Our case describes a 58-year-old woman with advanced SLS whose ophthalmic examination illustrates the end-stage of the retinal degeneration. Optical coherence tomography (OCT) and fluorescein angiography confirm the disease is restricted to the neural retina with dramatic thinning of the macula. This case is unique since it is among the most advanced both in terms of chronological age and severity of retinal disease. While the accumulation of fatty aldehydes, alcohols, and other precursor molecules is the probable cause of retinal toxicity, a more complete understanding of the course of retinal degeneration may aid in the development of future treatments. The aim of our presentation of this case is to increase awareness of the disease and to foster interest in therapeutic research which may benefit patients with this rare condition.
Collapse
Affiliation(s)
- Lester H. Lambert
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, Burlington, MA,
USA
| | - Noreen Shaikh
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeffrey L. Marx
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, Burlington, MA,
USA
| | - David J. Ramsey
- Department of Ophthalmology, Tufts University
School of Medicine, Boston, MA, USA
- Department of Surgery, Division of
Ophthalmology, Lahey Hospital & Medical Center, 41 Mall Road,
Burlington, MA, 01803, USA
| |
Collapse
|
6
|
Liu Z, Wang J, Gao Y, Guo Y, Zhu Y, Sun Y, Yang H. USP22 regulates the formation and function of placental vasculature during the development of fetal growth restriction. Placenta 2021; 111:19-25. [PMID: 34130183 DOI: 10.1016/j.placenta.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a common obstetric complication that can lead to a variety of adverse perinatal outcomes and is associated with chronic diseases in adulthood. Since ubiquitin-specific protease 22 (USP22) is closely related to cell growth, differentiation and proliferation, we aimed to investigate the role of USP22 in FGR development. METHODS USP22 expression was detected in the placentas of eight normal and eight pregnant women with FGR. To observe changes in the formation and function of placental vasculature, USP22 expression was downregulated in human umbilical vein endothelial cells (HUVECs) using CRISPR/Cas9 and siRNAs. In addition, HUVECs with low and normal USP22 expression were analysed using RNA-seq. RESULTS We found that USP22 expression was significantly lower in the placentas of pregnant women with FGR than in normal pregnant women and that HUVECs were unable to survive after USP22 had been knocked out. Moreover, USP22 down-regulation in HUVECs led to decreased proliferation, angiogenesis, vasodilation, apoptosis, and systolic function. RNA-seq identified 3730 differentially expressed genes that were enriched in multiple signalling pathways, including cell cycle regulation, apoptotic signalling, and PI3K/Akt. DISCUSSION Together, the findings of this study demonstrate for the first time that abnormal USP22 expression may affect HUVEC proliferation and apoptosis, as well as essential angiogenesis and vasomotor functions during the development of FGR.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jingxue Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yongbing Guo
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yuchun Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
7
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Staps P, van Gaalen J, van Domburg P, Steijlen PM, Ferdinandusse S, den Heijer T, Seyger MMB, Theelen T, Willemsen MAAP. Sjögren-Larsson syndrome: The mild end of the phenotypic spectrum. JIMD Rep 2020; 53:61-70. [PMID: 32395410 PMCID: PMC7203653 DOI: 10.1002/jmd2.12099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inborn error of lipid metabolism. The syndrome is caused by mutations in the ALDH3A2 gene, resulting in a deficiency of fatty aldehyde dehydrogenase. Most patients have a clearly recognizable severe phenotype, with congenital ichthyosis, intellectual disability, and spastic diplegia. In this study, we describe two patients with a remarkably mild phenotype. In both patients, males with actual ages of 45 and 61 years, the diagnosis was only established at an adult age. Their skin had been moderately affected from childhood onward, and both men remained ambulant with mild spasticity of their legs. Cognitive development, as reflected by school performance and professional career, had been unremarkable. Magnetic resonance spectroscopy of the first patient was lacking the characteristic lipid peak. We performed a literature search to identify additional SLS patients with a mild phenotype. We compared the clinical, radiologic, and molecular features of the mildly affected patients with the classical phenotype. We found 10 cases in the literature with a molecular proven diagnosis and a mild phenotype. Neither a genotype-phenotype correlation nor an alternative explanation for the strikingly mild phenotypes was found. New biochemical techniques to study the underlying metabolic defect in SLS, like lipidomics, may in the future help to unravel the reasons for the exceptionally mild phenotypes. In the meantime, it is important to recognize these mildly affected patients to provide them with appropriate care and genetic counseling, and to increase our insights in the true disease spectrum of SLS.
Collapse
Affiliation(s)
- Pippa Staps
- Department of Pediatric NeurologyRadboud University Medical Center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenThe Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Peter M. Steijlen
- Department of Dermatology, The GROW School for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Tom den Heijer
- Department of NeurologyFranciscus Gasthuis and VlietlandRotterdamThe Netherlands
| | - Marieke M. B. Seyger
- Department of DermatologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Thomas Theelen
- Department of Ophthalmology, Donders Institute for Brain Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Michèl A. A. P. Willemsen
- Department of Pediatric NeurologyRadboud University Medical Center, Amalia Children's Hospital, Donders Institute for Brain Cognition and BehaviourNijmegenThe Netherlands
| |
Collapse
|