1
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
2
|
Meunier C, Cassart M, Kostyla K, Simonis N, Monestier O, Tessier A. An unusual presentation of de novo RAC3 variation in prenatal diagnosis. Childs Nerv Syst 2024; 40:1597-1602. [PMID: 38214746 PMCID: PMC11026260 DOI: 10.1007/s00381-024-06285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Pathogenic variants in RAC3 cause a neurodevelopmental disorder with brain malformations and craniofacial dysmorphism, called NEDBAF. This gene encodes a small GTPase, which plays a critical role in neurogenesis and neuronal migration. We report a 31 weeks of gestation fetus with triventricular dilatation, and temporal and perisylvian polymicrogyria, without cerebellar, brainstem, or callosal anomalies. Trio whole exome sequencing identified a RAC3 (NM_005052.3, GRCh38) probably pathogenic de novo variant c.276 T>A p.(Asn92Lys). Eighteen patients harboring 13 different and essentially de novo missense RAC3 variants were previously reported. All the patients presented with corpus callosum malformations. Gyration disorders, ventriculomegaly (VM), and brainstem and cerebellar malformations have frequently been described. The only previous prenatal case associated with RAC3 variant presented with complex brain malformations, mainly consisting of midline and posterior fossa anomalies. We report the second prenatal case of NEDBAF presenting an undescribed pattern of cerebral anomalies, including VM and polymicrogyria, without callosal, cerebellar, or brainstem malformations. All neuroimaging data were reviewed to clarify the spectrum of cerebral malformations.
Collapse
Affiliation(s)
- Colombine Meunier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium.
| | - Marie Cassart
- Hôpitaux Iris Sud and CHU Saint-Pierre, Brussels, Belgium
| | | | - Nicolas Simonis
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| | - Olivier Monestier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| | - Aude Tessier
- Institut de Pathologie et de Génétique, IPG, 25, Avenue Georges Lemaitre, 6041, Gosselies, Belgium
| |
Collapse
|
3
|
Priolo M, Zara E, Radio FC, Ciolfi A, Spadaro F, Bellacchio E, Mancini C, Pantaleoni F, Cordeddu V, Chiriatti L, Niceta M, Africa E, Mammì C, Melis D, Coppola S, Tartaglia M. Clinical profiling of MRD48 and functional characterization of two novel pathogenic RAC1 variants. Eur J Hum Genet 2023; 31:805-814. [PMID: 37059841 PMCID: PMC10326044 DOI: 10.1038/s41431-023-01351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
RAC1 is a member of the Rac/Rho GTPase subfamily within the RAS superfamily of small GTP-binding proteins, comprising 3 paralogs playing a critical role in actin cytoskeleton remodeling, cell migration, proliferation and differentiation. De novo missense variants in RAC1 are associated with a rare neurodevelopmental disorder (MRD48) characterized by DD/ID and brain abnormalities coupled with a wide range of additional features. Structural and functional studies have documented either a dominant negative or constitutively active behavior for a subset of mutations. Here, we describe two individuals with previously unreported de novo missense RAC1 variants. We functionally demonstrate their pathogenicity proving a gain-of-function (GoF) effect for both. By reviewing the clinical features of these two individuals and the previously published MRD48 subjects, we further delineate the clinical profile of the disorder, confirming its phenotypic variability. Moreover, we compare the main features of MRD48 with the neurodevelopmental disease caused by GoF variants in the paralog RAC3, highlighting similarities and differences. Finally, we review all previously reported variants in RAC proteins and in the closely related CDC42, providing an updated overview of the spectrum and hotspots of pathogenic variants affecting these functionally related GTPases.
Collapse
Affiliation(s)
- Manuela Priolo
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy.
| | - Erika Zara
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biology and Biotechnology, Sapienza University, 00185, Rome, Italy
| | | | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Francesca Pantaleoni
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Luigi Chiriatti
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Emilio Africa
- USD Neuroradiologia, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Corrado Mammì
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, 89124, Reggio Calabria, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Università di Salerno, 84084, Salerno, Italy
| | - Simona Coppola
- National Center for Rare Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
4
|
Nakamura T, Sakaguchi H, Mohri H, Ninoyu Y, Goto A, Yamaguchi T, Hishikawa Y, Matsuda M, Saito N, Ueyama T. Dispensable role of Rac1 and Rac3 after cochlear hair cell specification. J Mol Med (Berl) 2023; 101:843-854. [PMID: 37204479 PMCID: PMC10300165 DOI: 10.1007/s00109-023-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
Rac small GTPases play important roles during embryonic development of the inner ear; however, little is known regarding their function in cochlear hair cells (HCs) after specification. Here, we revealed the localization and activation of Racs in cochlear HCs using GFP-tagged Rac plasmids and transgenic mice expressing a Rac1-fluorescence resonance energy transfer (FRET) biosensor. Furthermore, we employed Rac1-knockout (Rac1-KO, Atoh1-Cre;Rac1flox/flox) and Rac1 and Rac3 double KO (Rac1/Rac3-DKO, Atoh1-Cre;Rac1flox/flox;Rac3-/-) mice, under the control of the Atoh1 promoter. However, both Rac1-KO and Rac1/Rac3-DKO mice exhibited normal cochlear HC morphology at 13 weeks of age and normal hearing function at 24 weeks of age. No hearing vulnerability was observed in young adult (6-week-old) Rac1/Rac3-DKO mice even after intense noise exposure. Consistent with prior reports, the results from Atoh1-Cre;tdTomato mice confirmed that the Atoh1 promoter became functional only after embryonic day 14 when the sensory HC precursors exit the cell cycle. Taken together, these findings indicate that although Rac1 and Rac3 contribute to the early development of sensory epithelia in cochleae, as previously shown, they are dispensable for the maturation of cochlear HCs in the postmitotic state or for hearing maintenance following HC maturation. KEY MESSAGES: Mice with Rac1 and Rac3 deletion were generated after HC specification. Knockout mice exhibit normal cochlear hair cell morphology and hearing. Racs are dispensable for hair cells in the postmitotic state after specification. Racs are dispensable for hearing maintenance after HC maturation.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Akihiro Goto
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8315, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, 573-0101, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8315, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
5
|
Nishikawa M, Scala M, Umair M, Ito H, Waqas A, Striano P, Zara F, Costain G, Capra V, Nagata KI. Gain-of-function p.F28S variant in RAC3 disrupts neuronal differentiation, migration and axonogenesis during cortical development, leading to neurodevelopmental disorder. J Med Genet 2023; 60:223-232. [PMID: 35595279 DOI: 10.1136/jmedgenet-2022-108483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND RAC3 encodes a Rho family small GTPase that regulates the behaviour and organisation of actin cytoskeleton and intracellular signal transduction. Variants in RAC3 can cause a phenotypically heterogeneous neurodevelopmental disorder with structural brain anomalies and dysmorphic facies. The pathomechanism of this recently discovered genetic disorder remains unclear. METHODS We investigated an early adolescent female with intellectual disability, drug-responsive epilepsy and white matter abnormalities. Through exome sequencing, we identified the novel de novo variant (NM_005052.3): c.83T>C (p.Phe28Ser) in RAC3. We then examined the pathophysiological significance of the p.F28S variant in comparison with the recently reported disease-causing p.Q61L variant, which results in a constitutively activated version of RAC3. RESULTS In vitro analyses revealed that the p.F28S variant was spontaneously activated by substantially increased intrinsic GTP/GDP-exchange activity and bound to downstream effectors tested, such as PAK1 and MLK2. The variant suppressed the differentiation of primary cultured hippocampal neurons and caused cell rounding with lamellipodia. In vivo analyses using in utero electroporation showed that acute expression of the p.F28S variant caused migration defects of excitatory neurons and axon growth delay during corticogenesis. Notably, defective migration was rescued by a dominant negative version of PAK1 but not MLK2. CONCLUSION Our results indicate that RAC3 is critical for brain development and the p.F28S variant causes morphological and functional defects in cortical neurons, likely due to the hyperactivation of PAK1.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy .,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ahmed Waqas
- Department Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Gregory Costain
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2022; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France,Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France,Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France,Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France,Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- To whom correspondence should be addressed at: Department of Human Genetics, University of Michigan Medical School, 5704 Medical Science Building II, 1241 Catherine St., Ann Arbor, MI 48109, USA. Tel: +1-734-763-0682; Fax: +1-734-763-3784;
| |
Collapse
|
7
|
Scala M, Nishikawa M, Ito H, Tabata H, Khan T, Accogli A, Davids L, Ruiz A, Chiurazzi P, Cericola G, Schulte B, Monaghan KG, Begtrup A, Torella A, Pinelli M, Denommé-Pichon AS, Vitobello A, Racine C, Mancardi MM, Kiss C, Guerin A, Wu W, Gabau Vila E, Mak BC, Martinez-Agosto JA, Gorin MB, Duz B, Bayram Y, Carvalho CMB, Vengoechea JE, Chitayat D, Tan TY, Callewaert B, Kruse B, Bird LM, Faivre L, Zollino M, Biskup S, Striano P, Nigro V, Severino M, Capra V, Costain G, Nagata KI. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes. Brain 2022; 145:3308-3327. [PMID: 35851598 PMCID: PMC9473360 DOI: 10.1093/brain/awac106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 01/17/2023] Open
Abstract
Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.
Collapse
Affiliation(s)
| | | | | | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Tayyaba Khan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Laura Davids
- Department of Human Genetics, Emory Healthcare, Atlanta, GA 30322, USA
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Cericola
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | | | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anne Sophie Denommé-Pichon
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Courtney Kiss
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Wendy Wu
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Queen’s University, Kingston, ON, Canada
| | - Elisabeth Gabau Vila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Bryan C Mak
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Michael B Gorin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles 90095, CA, USA,Brain Research Institute, UCLA, Los Angeles 90095, CA, USA
| | - Bugrahan Duz
- Haseki Training and Research Hospital, Istanbul, Turkey
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, Seattle, WA 98122, USA,Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, and Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Bernd Kruse
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA,Genetics/Dysmorphology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Laurence Faivre
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Saskia Biskup
- Praxis für Humangenetik, Tübingen, Germany,CeGaT GmbH, Tübingen, Germany
| | | | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Valeria Capra
- Correspondence may also be addressed to: Valeria Capra Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy E-mail:
| | - Gregory Costain
- Correspondence may also be addressed to: Gregory Costain Division of Clinical and Metabolic Genetics Department of Pediatrics The Hospital for Sick Children Toronto, Ontario, Canada E-mail:
| | - Koh ichi Nagata
- Correspondence to: Koh-ichi Nagata Department of Molecular Neurobiology Institute for Developmental Research Aichi Human Service Center, 713-8 Kamiya Kasugai, Aichi 480-0392, Japan E-mail:
| |
Collapse
|
8
|
Nishikawa M, Ito H, Tabata H, Ueda H, Nagata KI. Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes. Cells 2022; 11:cells11040696. [PMID: 35203342 PMCID: PMC8870177 DOI: 10.3390/cells11040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Homozygosity of the p.Arg204Trp variation in the Pleckstrin homology and RhoGEF domain containing G2 (PLEKHG2) gene, which encodes a Rho family-specific guanine nucleotide-exchange factor, is responsible for microcephaly with intellectual disability. However, the role of PLEKHG2 during neurodevelopment remains unknown. In this study, we analyzed mouse Plekhg2 function during cortical development, both in vitro and in vivo. The p.Arg200Trp variant in mouse (Plekhg2-RW), which corresponds to the p.Arg204Trp variant in humans, showed decreased guanine nucleotide-exchange activity for Rac1, Rac3, and Cdc42. Acute knockdown of Plekhg2 using in utero electroporation-mediated gene transfer did not affect the migration of excitatory neurons during corticogenesis. On the other hand, silencing Plekhg2 expression delayed dendritic arbor formation at postnatal day 7 (P7), perhaps because of impaired Rac/Cdc42 and p21-activated kinase 1 signaling pathways. This phenotype was rescued by expressing an RNAi-resistant version of wildtype Plekhg2, but not of Plekhg2-RW. Axon pathfinding was also impaired in vitro and in vivo in Plekhg2-deficient cortical neurons. At P14, knockdown of Plekhg2 was observed to cause defects in dendritic spine morphology formation. Collectively, these results strongly suggest that PLEKHG2 has essential roles in the maturation of axon, dendrites, and spines. Moreover, impairment of PLEKHG2 function is most likely to cause defects in neuronal functions that lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-568-88-0811
| |
Collapse
|
9
|
Cabet S, Vasiljevic A, Putoux A, Labalme A, Sanlaville D, Chatron N, Lesca G, Guibaud L. PRENATAL IMAGING FEATURES RELATED TO RAC3 PATHOGENIC VARIANT AND DIFFERENTIAL DIAGNOSES. Prenat Diagn 2022; 42:478-481. [PMID: 35106783 DOI: 10.1002/pd.6106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 11/05/2022]
Abstract
This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved. What's already known about this topic? Six individuals between 5- and 19-year-old were reported with pathogenic variants in RAC3 responsible for brain malformations involving midline What does this study add? RAC3-fetopathy is associated with fetal akinesia deformation sequence, and complex brain malformations including corpus callosum agenesis, diencephalosynapsis, kinked brainstem, and vermian hypoplasia The differential diagnoses with prenatal kinked brainstem include fetopathies related to KIAA1109, L1CAM, Walker-Warburg syndrome and tubulinopathies. The present report adds the RAC3 related condition to this list.
Collapse
Affiliation(s)
- Sara Cabet
- Imagerie pédiatrique et fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Vasiljevic
- Centre de pathologie et de neuropathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Université Claude Bernard Lyon1, Lyon, France
| | - Audrey Putoux
- Service de génétique - Centre de Référence Anomalies du Développement, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Audrey Labalme
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Damien Sanlaville
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Chatron
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaetan Lesca
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Guibaud
- Imagerie pédiatrique et fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Université Claude Bernard Lyon1, Lyon, France
| |
Collapse
|
10
|
Zhang C, Jolly A, Shayota BJ, Mazzeu JF, Du H, Dawood M, Soper PC, Ramalho de Lima A, Ferreira BM, Coban-Akdemir Z, White J, Shears D, Thomson FR, Douglas SL, Wainwright A, Bailey K, Wordsworth P, Oldridge M, Lester T, Calder AD, Dumic K, Banka S, Donnai D, Jhangiani SN, Potocki L, Chung WK, Mora S, Northrup H, Ashfaq M, Rosenfeld JA, Mason K, Pollack LC, McConkie-Rosell A, Kelly W, McDonald M, Hauser NS, Leahy P, Powell CM, Boy R, Honjo RS, Kok F, Martelli LR, Filho VO, Genomics England Research Consortium, Muzny DM, Gibbs RA, Posey JE, Liu P, Lupski JR, Sutton VR, Carvalho CM. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG ADVANCES 2022; 3:100074. [PMID: 35047859 PMCID: PMC8756549 DOI: 10.1016/j.xhgg.2021.100074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Robinow syndrome (RS) is a genetically heterogeneous disorder with six genes that converge on the WNT/planar cell polarity (PCP) signaling pathway implicated (DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A). RS is characterized by skeletal dysplasia and distinctive facial and physical characteristics. To further explore the genetic heterogeneity, paralog contribution, and phenotypic variability of RS, we investigated a cohort of 22 individuals clinically diagnosed with RS from 18 unrelated families. Pathogenic or likely pathogenic variants in genes associated with RS or RS phenocopies were identified in all 22 individuals, including the first variant to be reported in DVL2. We retrospectively collected medical records of 16 individuals from this cohort and extracted clinical descriptions from 52 previously published cases. We performed Human Phenotype Ontology (HPO) based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Individuals with FZD2 variants clustered into two groups with demonstrable phenotypic differences between those with missense and truncating alleles. Probands with biallelic NXN variants clustered together with the majority of probands carrying DVL1, DVL2, and DVL3 variants, demonstrating no phenotypic distinction between the NXN-autosomal recessive and dominant forms of RS. While phenotypically similar diseases on the RS differential matched through HPO analysis, clustering using phenotype similarity score placed RS-associated phenotypes in a unique cluster containing WNT5A, FZD2, and ROR2 apart from non-RS-associated paralogs. Through human phenotype analyses of this RS cohort and OMIM clinical synopses of Mendelian disease, this study begins to tease apart specific biologic roles for non-canonical WNT-pathway proteins.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Medical Scientist Training Program, BCM, Houston, TX 77030, USA
| | - Brian J. Shayota
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Juliana F. Mazzeu
- University of Brasilia, Brasilia 70050, Brazil
- Robinow Syndrome Foundation, Anoka, MN 55303, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Medical Scientist Training Program, BCM, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | | | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Janson White
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Fraser Robert Thomson
- Cardiothoracic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | | | - Andrew Wainwright
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Kathryn Bailey
- Pediatric Rheumatology, Nuffield Orthopedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford OX3 7LD, UK
| | - Mike Oldridge
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Tracy Lester
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Alistair D. Calder
- Radiology Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Clinical Center Zagreb, Zagreb 10000, Croatia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9WL, UK
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Dian Donnai
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | - Lorraine Potocki
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Wendy K. Chung
- Department of Pediatrics and Medicine, Columbia University, NY 10032, USA
| | - Sara Mora
- GeneDx Inc., Gaithersburg, MD 20878, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Kati Mason
- GeneDx Inc., Gaithersburg, MD 20878, USA
- Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | | | | | - Wei Kelly
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27708, USA
| | - Marie McDonald
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27708, USA
| | - Natalie S. Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Peter Leahy
- Cook Children's Hospital, Fort Worth, TX 76104, USA
| | - Cynthia M. Powell
- Division of Pediatric Genetics and Metabolism, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Raquel Boy
- State University of Rio de Janeiro, Rio de Janeiro 21941, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética, Instituto da Criança - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, University of Sao Paulo, São Paulo 05508, Brasil
| | - Fernando Kok
- Mendelics Análise Genômica, São Paulo 04013, Brasil
| | - Lucia R. Martelli
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo 05508, Brazil
| | - Vicente Odone Filho
- Instituto de Tratamento do Câncer Infantil, São Paulo University Medical School, Hospital Israelita Albert Einstein, São Paulo 05508, Brasil
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
- Department of Pediatrics, BCM, Houston, TX 77030, USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Pacific Northwest Research Institute (PNRI), Seattle, WA 98122, USA
| |
Collapse
|
11
|
Scala M, Nishikawa M, Nagata KI, Striano P. Pathophysiological Mechanisms in Neurodevelopmental Disorders Caused by Rac GTPases Dysregulation: What's behind Neuro-RACopathies. Cells 2021; 10:3395. [PMID: 34943902 PMCID: PMC8699292 DOI: 10.3390/cells10123395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Rho family guanosine triphosphatases (GTPases) regulate cellular signaling and cytoskeletal dynamics, playing a pivotal role in cell adhesion, migration, and cell cycle progression. The Rac subfamily of Rho GTPases consists of three highly homologous proteins, Rac 1-3. The proper function of Rac1 and Rac3, and their correct interaction with guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs) are crucial for neural development. Pathogenic variants affecting these delicate biological processes are implicated in different medical conditions in humans, primarily neurodevelopmental disorders (NDDs). In addition to a direct deleterious effect produced by genetic variants in the RAC genes, a dysregulated GTPase activity resulting from an abnormal function of GEFs and GAPs has been involved in the pathogenesis of distinctive emerging conditions. In this study, we reviewed the current pertinent literature on Rac-related disorders with a primary neurological involvement, providing an overview of the current knowledge on the pathophysiological mechanisms involved in the neuro-RACopathies.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (K.-i.N.)
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (K.-i.N.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
12
|
Nishikawa M, Ito H, Noda M, Hamada N, Tabata H, Nagata KI. Expression analyses of Rac3, a Rho family small GTPase, during mouse brain development. Dev Neurosci 2021; 44:49-58. [PMID: 34839287 DOI: 10.1159/000521168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Rac3 is a member of Rho family small GTPases which regulates cellular signaling and cytoskeletal dynamics. The RAC3 gene abnormalities have been shown to cause neurodevelopmental disorders with structural brain anomalies, including polymicrogyria/dysgyria, callosal abnormalities, brainstem anomalies, and cerebellar dysplasia. Although this evidence indicates that Rac3 is essential in brain development, not only its molecular mechanism but also the expression profile is yet to be elucidated. In this study, we carried out expression analyses of Rac3 with mouse brain tissues. In immunoblotting, Rac3 exhibited a tissue-dependent expression profile in the young adult mouse and was expressed in a developmental stage-dependent manner in brain. In primary cultured hippocampal neurons, while Rac3 was distributed mainly in the cytoplasm, it was visualized in axon and dendrites with partial localization at synapses, in consistent with the observation in biochemical fractionation analyses. In immunofluorescence analyses with brain slices, Rac3 was distributed strongly and moderately in the axon and cytoplasm, respectively, of cerebral cortex at postnatal day (P) 2 and P18. Similar distribution profile was also observed in hippocampus. Taken together, the results obtained strongly suggest that Rac3 plays an important physiological role in neuronal tissues during corticogenesis, and defects in the Rac3 function induce structural brain anomalies leading to pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidenori Ito
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Mariko Noda
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Nanako Hamada
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidenori Tabata
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Institute for Developmental Research, Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Ito H, Morishita R, Noda M, Ishiguro T, Nishikawa M, Nagata KI. The synaptic scaffolding protein CNKSR2 interacts with CYTH2 to mediate hippocampal granule cell development. J Biol Chem 2021; 297:101427. [PMID: 34800437 DOI: 10.1016/j.jbc.2021.101427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tomoki Ishiguro
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
14
|
Zhang C, Mazzeu JF, Eisfeldt J, Grochowski CM, White J, Akdemir ZC, Jhangiani SN, Muzny DM, Gibbs RA, Lindstrand A, Lupski JR, Sutton VR, Carvalho CMB. Novel pathogenic genomic variants leading to autosomal dominant and recessive Robinow syndrome. Am J Med Genet A 2020; 185:3593-3600. [PMID: 33048444 DOI: 10.1002/ajmg.a.61908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
Abstract
Robinow syndrome (RS) is a genetically heterogeneous disorder characterized by skeletal dysplasia and a distinctive facial appearance. Previous studies have revealed locus heterogeneity with rare variants in DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A underlying the etiology of RS. The aforementioned "Robinow-associated genes" and their gene products all play a role in the WNT/planar cell polarity signaling pathway. We performed gene-targeted Sanger sequencing, exome sequencing, genome sequencing, and array comparative genomic hybridization on four subjects with a clinical diagnosis of RS who had not had prior DNA testing. Individuals in our cohort were found to carry pathogenic or likely pathogenic variants in three RS related genes: DVL1, ROR2, and NXN. One subject was found to have a nonsense variant (c.817C > T [p.Gln273*]) in NXN in trans with an ~1 Mb telomeric deletion on chromosome 17p containing NXN, which supports our contention that biallelic NXN variant alleles are responsible for a novel autosomal recessive RS locus. These findings provide increased understanding of the role of WNT signaling in skeletal development and maintenance. These data further support the hypothesis that dysregulation of the noncanonical WNT pathway in humans gives rise to RS.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Juliana F Mazzeu
- University of Brasilia, Brasilia, Brazil.,Robinow Syndrome Foundation, Anoka, Minnesota, USA
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Janson White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Pacific Northwest Research Institute (PNRI), Seattle, Washington, USA
| |
Collapse
|
15
|
A case of CLCN2-related leukoencephalopathy with bright tree appearance during aseptic meningitis. Brain Dev 2020; 42:462-467. [PMID: 32173090 DOI: 10.1016/j.braindev.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
CLCN2-related leukoencephalopathy (CC2L) is a rare autosomal recessive disorder caused by variants in CLCN2. We report a boy whose brain MRI during an episode of aseptic meningitis at the age of 6 years revealed wide areas of restriction on diffusion-weighted images (DWI) in the cerebral subcortical white matter called bright tree appearance (BTA). In addition to the BTA, high intensity signals were also observed bilaterally in the posterior limbs of the internal capsules, cerebral peduncles, middle cerebellar peduncles, cerebellar white matter, and brain stem (longitudinal pontine bundle) along with low apparent diffusion coefficient values in the same areas. The BTA was transient, seen only during the acute phase of the aseptic meningitis. With the resolution of the infection, his meningitis symptoms completely resolved, but abnormal brain MRI findings remained, other than BTA, which disappeared. At age 13 years, whole exome sequencing revealed a homozygous variant (c.61dupC, p.(Leu21Profs*27)) of CLCN2. He had no intellectual disability or neurological abnormalities. The transient DWI high-intensity signals in the subcortical white matter and the T2 high-intensity signals in the white matter could reflect varying degrees of water imbalance in the extracellular space in myelin sheaths in CC2L.
Collapse
|
16
|
The Rac3 GTPase in Neuronal Development, Neurodevelopmental Disorders, and Cancer. Cells 2019; 8:cells8091063. [PMID: 31514269 PMCID: PMC6770886 DOI: 10.3390/cells8091063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022] Open
Abstract
Rho family small guanosine triphosphatases (GTPases) are important regulators of the cytoskeleton, and are critical in many aspects of cellular and developmental biology, as well as in pathological processes such as intellectual disability and cancer. Of the three members of the family, Rac3 has a more restricted expression in normal tissues compared to the ubiquitous member of the family, Rac1. The Rac3 polypeptide is highly similar to Rac1, and orthologues of the gene for Rac3 have been found only in vertebrates, indicating the late appearance of this gene during evolution. Increasing evidence over the past few years indicates that Rac3 plays an important role in neuronal development and in tumor progression, with specificities that distinguish the functions of Rac3 from the established functions of Rac1 in these processes. Here, results highlighting the importance of Rac3 in distinct aspects of neuronal development and tumor cell biology are presented, in support of the non-redundant role of different members of the two Rac GTPases in physiological and pathological processes.
Collapse
|