1
|
Ancient Components and Recent Expansion in the Eurasian Heartland: Insights into the Revised Phylogeny of Y-Chromosomes from Central Asia. Genes (Basel) 2022; 13:genes13101776. [PMID: 36292661 PMCID: PMC9601478 DOI: 10.3390/genes13101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022] Open
Abstract
In the past two decades, studies of Y chromosomal single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) have shed light on the demographic history of Central Asia, the heartland of Eurasia. However, complex patterns of migration and admixture have complicated population genetic studies in Central Asia. Here, we sequenced and analyzed the Y-chromosomes of 187 male individuals from Kazakh, Kyrgyz, Uzbek, Karakalpak, Hazara, Karluk, Tajik, Uyghur, Dungan, and Turkmen populations. High diversity and admixture from peripheral areas of Eurasia were observed among the paternal gene pool of these populations. This general pattern can be largely attributed to the activities of ancient people in four periods, including the Neolithic farmers, Indo-Europeans, Turks, and Mongols. Most importantly, we detected the consistent expansion of many minor lineages over the past thousand years, which may correspond directly to the formation of modern populations in these regions. The newly discovered sub-lineages and variants provide a basis for further studies of the contributions of minor lineages to the formation of modern populations in Central Asia.
Collapse
|
2
|
Adnan A, Anwar A, Simayijiang H, Farrukh N, Hadi S, Wang CC, Xuan JF. The Heart of Silk Road "Xinjiang," Its Genetic Portray, and Forensic Parameters Inferred From Autosomal STRs. Front Genet 2021; 12:760760. [PMID: 34976009 PMCID: PMC8719170 DOI: 10.3389/fgene.2021.760760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The Xinjiang Uyghur Autonomous Region of China (XUARC) harbors almost 50 ethnic groups including the Uyghur (UGR: 45.84%), Han (HAN: 40.48%), Kazakh (KZK: 6.50%), Hui (HUI: 4.51%), Kyrgyz (KGZ: 0.86%), Mongol (MGL: 0.81%), Manchu (MCH: 0.11%), and Uzbek (UZK: 0.066%), which make it one of the most colorful regions with abundant cultural and genetic diversities. In our previous study, we established allelic frequency databases for 14 autosomal short tandem repeats (STRs) for four minority populations from XUARC (MCH, KGZ, MGL, and UZK) using the AmpFlSTR® Identifiler PCR Amplification Kit. In this study, we genotyped 2,121 samples using the GoldenEye™ 20A Kit (Beijing PeopleSpot Inc., Beijing, China) amplifying 19 autosomal STR loci for four major ethnic groups (UGR, HAN, KZK, and HUI). These groups make up 97.33% of the total XUARC population. The total number of alleles for all the 19 STRs in these populations ranged from 232 (HAN) to 224 (KZK). We did not observe any departures from the Hardy-Weinberg equilibrium (HWE) in these populations after sequential Bonferroni correction. We did find minimal departure from linkage equilibrium (LE) for a small number of pairwise combinations of loci. The match probabilities for the different populations ranged from 1 in 1.66 × 1023 (HAN) to 6.05 × 1024 (HUI), the combined power of exclusion ranged from 0.999 999 988 (HUI) to 0.999 999 993 (UGR), and the combined power of discrimination ranged from 0.999 999 999 999 999 999 999 983 (HAN) to 0.999 999 999 999 999 999 999 997 (UGR). Genetic distances, principal component analysis (PCA), STRUCTURE analysis, and the phylogenetic tree showed that genetic affinity among studied populations is consistent with linguistic, ethnic, and geographical classifications.
Collapse
Affiliation(s)
- Atif Adnan
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Adeel Anwar
- Department of Orthopedic Surgery, The 3rd Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Halimureti Simayijiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Noor Farrukh
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University of Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jin-Feng Xuan
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|