1
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Murayama A, Nagaoka U, Sugaya K, Shimazaki R, Miyamoto K, Matsubara S, Ogasawara M, Iida A, Nishino I, Takahashi K. Sequential development of parkinsonism in two patients with oculopharyngodistal type myopathy in GIPC1-related repeat expansion disorder. Neuromuscul Disord 2024; 44:104465. [PMID: 39418922 DOI: 10.1016/j.nmd.2024.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
A heterozygous CGG repeat expansion in 5' untranslated region (5' UTR) of GIPC1 is one of the causative factors of oculopharyngodistal myopathy (OPDM), an adult-onset hereditary muscle disease characterized by progressive ptosis, ophthalmoplegia, and facial, bulbar, and distal limb muscle weakness. CGG repeat expansion in GIPC1 has also been reported to be associated with Parkinson's disease, but these patients did not exhibit myopathic symptoms. We experienced two unrelated cases of oculopharyngeal type myopathy with CGG repeat expansion in GIPC1 presenting parkinsonism after exhibiting myopathic symptoms. Both cases showed p62-positive intranuclear inclusions in the skin, similar to those in NOTCH2NLC-related disorders. Our cases suggest that GIPC1-related repeat expansions may be associated with a broad spectrum and tissue-differential neuromuscular manifestations, indicating a common mechanism between OPDM2 and other CGG-repeat expansion diseases. It is important to note OPDM2 patients' central neurological symptoms, as myopathic symptoms may obscure central nervous system manifestations.
Collapse
Affiliation(s)
- Aki Murayama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Utako Nagaoka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan.
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Rui Shimazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Kazuhito Miyamoto
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Shiro Matsubara
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, NCNP, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan; Department of Clinical Genome Analysis, Medical Genome Center, NCNP, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042, Japan
| |
Collapse
|
3
|
Ishizawa K, Komori T, Homma T, Sone J, Nakata Y, Nakazato Y, Takahashi K, Yamamoto T, Sasaki A. The predominance of "astrocytic" intranuclear inclusions in neuronal intranuclear inclusion disease manifesting encephalopathy-like symptoms: A case series with brain biopsy. Neuropathology 2024; 44:351-365. [PMID: 38477063 DOI: 10.1111/neup.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder represented by eosinophilic intranuclear inclusions (EIIs) and GGC/CGG repeat expansion in the NOTCH2NLC gene. We report here two adult cases of NIID, genetically confirmed, with manifestation of encephalopathy-like symptoms and address the histopathologic findings obtained by brain biopsies, with a focus on "astrocytic" intranuclear inclusions (AIIs). Case 1 presented with paroxysmal restlessness, vertigo, or fever and was later involved in severe dementia and tetraparesis. Case 2 presented with forgetfulness and then with paroxysmal fever and headache. In both cases, delimited areas with gadolinium enhancement on magnetic resonance imaging and corresponding hyperperfusion were detected, leading to brain biopsies of the cortex. On histology, Case 1 showed an abnormal lamination, where the thickness of layers was different from usual. Both neurons and astrocytes showed some dysmorphologic features. Notably, astrocytes rather than neurons harbored EIIs. Case 2 showed a cortex, where neurons tended to be arrayed in a columnar fashion. Astrocytes showed some dysmorphologic features. Notably, much more astrocytes than neurons harbored EIIs. By a double-labeling immunofluorescence study for p62/NeuN and p62/glial fibrillary acidic protein, the predominance of AIIs was confirmed in both cases. Considering the physiological functions of astrocytes for the development and maintenance of the cortex, the encephalopathy-like symptoms, dynamic change of cerebral blood flow, and cortical dysmorphology can reasonably be explained by the dysfunction of EII-bearing astrocytes rather than EII-bearing neurons. This study suggests the presence of a subtype of NIID where AIIs rather than "neuronal" intranuclear inclusions are likely a key player in the pathogenesis of NIID, particularly in cases with encephalopathy-like symptoms. The importance of AIIs ("gliopathy") should be more appreciated in future studies of NIID.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Saitama, Japan
- Department of Neurology, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Taku Homma
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Vegezzi E, Ishiura H, Bragg DC, Pellerin D, Magrinelli F, Currò R, Facchini S, Tucci A, Hardy J, Sharma N, Danzi MC, Zuchner S, Brais B, Reilly MM, Tsuji S, Houlden H, Cortese A. Neurological disorders caused by novel non-coding repeat expansions: clinical features and differential diagnosis. Lancet Neurol 2024; 23:725-739. [PMID: 38876750 DOI: 10.1016/s1474-4422(24)00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024]
Abstract
Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.
Collapse
Affiliation(s)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Riccardo Currò
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Facchini
- IRCCS Mondino Foundation, Pavia, Italy; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Arianna Tucci
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - John Hardy
- Department of Neurogedengerative Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt C Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Figueroa KP, Gross C, Buena-Atienza E, Paul S, Gandelman M, Kakar N, Sturm M, Casadei N, Admard J, Park J, Zühlke C, Hellenbroich Y, Pozojevic J, Balachandran S, Händler K, Zittel S, Timmann D, Erdlenbruch F, Herrmann L, Feindt T, Zenker M, Klopstock T, Dufke C, Scoles DR, Koeppen A, Spielmann M, Riess O, Ossowski S, Haack TB, Pulst SM. A GGC-repeat expansion in ZFHX3 encoding polyglycine causes spinocerebellar ataxia type 4 and impairs autophagy. Nat Genet 2024; 56:1080-1089. [PMID: 38684900 DOI: 10.1038/s41588-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Naseebullah Kakar
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
- Department of Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christine Zühlke
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Yorck Hellenbroich
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Jelena Pozojevic
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Kristian Händler
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Laura Herrmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg and Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Malte Spielmann
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- NGS Competence Center Tübingen, Tübingen, Germany.
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
- Clinical Neurosciences Center, University of Utah Hospitals and Clinics, Salt Lake City, UT, USA.
| |
Collapse
|