1
|
Wu L, Jiang L, Zhou Y, Zheng W, Feng A, Guo H. TGFBI regulates the TGF-β pathway to affect the malignant progression and cisplatin sensitivity in diffuse large B-cell lymphoma. Ann Hematol 2025:10.1007/s00277-025-06208-1. [PMID: 39856252 DOI: 10.1007/s00277-025-06208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Despite the association between aberrant TGFBI expression and tumors development found in various cancer types, the role of TGFBI in diffuse large B-cell lymphoma (DLBCL) progression is not clear. This study attempted to reveal how TGFBI impacts malignant progression and cisplatin sensitivity in DLBCL. Bioinformatics and qRT-PCR were used to analyze expression of TGFBI. To investigate the effect of TGFBI on malignant progression and cisplatin sensitivity in DLBCL cells, cell viability and IC50 values were assessed by CCK-8. Cell proliferation ability was detected by colony formation assay. Cell apoptosis rate was detected by flow cytometry. The degree of DNA damage in cells from different treatment groups was detected by comet assay. Protein expression of TGF-β pathway-related proteins like TGF-β1, Smad2, and p-Smad2 was detected by western blot. Bioinformatics and molecular experiments results revealed substantial upregulation of TGFBI in DCBCL. Cell experiment results indicated that high TGFBI expression expedited DCBCL progression and reduced cisplatin sensitivity. Further rescue experiments revealed that SB525334, a TGF-β pathway inhibitor, could weaken the acceleration of DCBCL progression and restore reduced cisplatin sensitivity both induced by high TGFBI expression. TGFBI could promote malignant progression and inhibit the cisplatin sensitivity of DLBCL cells by regulating the TGF-β pathway. In brief, TGFBI has the potential to be a target in DLBCL treatment.
Collapse
Affiliation(s)
- Lili Wu
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lei Jiang
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, NO. 108 Wansong Road, Wenzhou, 325200, China
| | - Yulei Zhou
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, NO. 108 Wansong Road, Wenzhou, 325200, China
| | - Weie Zheng
- Department of Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Aimei Feng
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, NO. 108 Wansong Road, Wenzhou, 325200, China
| | - Haifei Guo
- Department of Hematology, The Third Affiliated Hospital of Wenzhou Medical University, NO. 108 Wansong Road, Wenzhou, 325200, China.
| |
Collapse
|
2
|
Limonta P, Marchesi S, Giannitti G, Casati L, Fontana F. The biological function of extracellular vesicles in prostate cancer and their clinical application as diagnostic and prognostic biomarkers. Cancer Metastasis Rev 2024; 43:1611-1627. [PMID: 39316264 PMCID: PMC11554767 DOI: 10.1007/s10555-024-10210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and main causes of cancer-related deaths worldwide. It is characterized by high heterogeneity, ranging from slow-growing tumor to metastatic disease. Since both therapy selection and outcome strongly rely on appropriate patient stratification, it is crucial to differentiate benign from more aggressive conditions using new and improved diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-coated particles carrying a specific biological cargo composed of nucleic acids, proteins, and metabolites. Here, we provide an overview of the role of EVs in PCa, focusing on both their biological function and clinical value. Specifically, we summarize the oncogenic role of EVs in mediating the interactions with PCa microenvironment as well as the horizontal transfer of metastatic traits and drug resistance between PCa cells. Furthermore, we discuss the potential usage of EVs as innovative tools for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Sara Marchesi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Gaia Giannitti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
3
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
4
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
5
|
Jung J, Kim NH, Park J, Lim D, Kwon M, Gil W, Jung S, Go M, Kim C, Cheong YH, Lee MH, Park HS, Eom YB, Park SA. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res 2024; 26:174. [PMID: 39614338 DOI: 10.1186/s13058-024-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified. METHODS Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis. RESULTS The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1. CONCLUSIONS Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Suyeon Jung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minjeong Go
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Chaeeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd, Yongin, 17073, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
6
|
di Miceli N, Baioni C, Barbieri L, Danielli D, Sala E, Salvioni L, Garbujo S, Colombo M, Prosperi D, Innocenti M, Fiandra L. TGF-β Signaling Loop in Pancreatic Ductal Adenocarcinoma Activates Fibroblasts and Increases Tumor Cell Aggressiveness. Cancers (Basel) 2024; 16:3705. [PMID: 39518142 PMCID: PMC11545076 DOI: 10.3390/cancers16213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting transforming growth factor beta (TGF-β), amongst other cytokines. In turn, CAFs produce soluble factors that promote tumor-cell invasiveness and chemoresistance, including TGF-β itself, which has a major role in myofibroblastic CAFs. Such a high level of complexity has hampered progress toward a clear view of the TGFβ signaling loop between stromal fibroblasts and PDAC cells. METHODS Here, we tackled this issue by using co-culture settings that allow paracrine signaling alone (transwell systems) or paracrine and contact-mediated signaling (3D spheroids). RESULTS We found that TGF-β is critically involved in the activation of normal human fibroblasts into alpha-smooth muscle actin (α-SMA)-positive CAFs. The TGF-β released by CAFs accounted for the enhanced proliferation and resistance to gemcitabine of PDAC cells. This was accompanied by a partial epithelial-to-mesenchymal transition in PDAC cells, with no increase in their migratory abilities. Nevertheless, 3D heterospheroids comprising PDAC cells and fibroblasts allowed monitoring the pro-invasive effects of CAFs on cancer cells, possibly due to combined paracrine and physical contact-mediated signals. CONCLUSIONS We conclude that TGF-β is only one of the players that mediates the communication between PDAC cells and fibroblasts and controls the acquisition of aggressive phenotypes. Hence, these advanced in vitro models may be exploited to further investigate these events and to design innovative anti-PDAC therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy; (N.d.M.); (C.B.); (L.B.); (D.D.); (E.S.); (L.S.); (S.G.); (M.C.); (D.P.)
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy; (N.d.M.); (C.B.); (L.B.); (D.D.); (E.S.); (L.S.); (S.G.); (M.C.); (D.P.)
| |
Collapse
|
7
|
Najafzadeh M, Sajjadi SM, Kharazi S, Karimifard F, Safarpour H, Kharazinejad E. Interactions between cancer and stroma mediated by extracellular vesicles. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:114. [DOI: 10.1186/s43042-024-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/13/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractExtracellular vehicles (EVs) are small membrane-bound particles that are released by both cancer and stromal cells. These vesicles have emerged as key mediators of intercellular communication within the tumor microenvironment. In particular, EVs have been shown to play a critical role in facilitating the interactions between cancer cells and the surrounding stroma. Through the transfer of various bioactive molecules, including proteins, lipids, and nucleic acids, EVs are able to modulate the behavior of recipient cells and promote tumorigenesis. Additionally, EVs can also contribute to the development of drug resistance and immune evasion, further highlighting their importance in cancer progression. This review will summarize the current knowledge regarding EV-mediated interactions between cancer and stromal cells, and discuss their implications for cancer diagnosis and therapy.
Collapse
|
8
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
10
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
11
|
Xu W, Liu S, Ma L, Cheng L, Li Q, Qing L, Yang Y, Dong Z. Identification of miRNA signature in cancer-associated fibroblast to predict recurrent prostate cancer. Comput Biol Med 2024; 180:108989. [PMID: 39142223 DOI: 10.1016/j.compbiomed.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are one of the major components of prostate stromal cells, which play a crucial part in tumor development and treatment resistance. This study aimed to establish a model of CAFs-related microRNAs (miRNAs) to assess prognostic differences, tumor microenvironments, and screening of anticancer drugs by integrating data from single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (buRNA-seq). METHODS scRNA-seq and buRNA-seq data of primary prostate cancer (PCa) were downloaded from Gene Expression Omnibus and The Cancer Genome Atlas databases. Statistical methods including Least absolute shrinkage and selection operator (Lasso), Lasso penalized, Random Forest, Random Forest Combination, and Support Vector Machine (SVM) were performed to select hub miRNAs. Pathway analyses and assessment of infiltrating immune cells were conducted using Gene Set Enrichment Analysis and the CIBERSORT algorithm. The expression of CAFs-related miRNAs in fibroblast cell lines were validated through quantitative real-time PCR. Cell Counting Kit 8 (CCK8), wound-healing, clone formation, and cell migration assays were used to explore cell proliferation, growth, and migration in vitro. A mouse xenograft model was established to investigate the effect of CAFs on tumor growth in vivo. RESULTS Through single-cell transcriptomics analysis in 34 PCa patients, 89 CAFs-related mRNAs were identified. A prognostic model based on 9 CAFs-related miRNAs (hsa-miR-1258, hsa-miR-133b, hsa-miR-222-3p, hsa-miR-145-3p, hsa-miR-493-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-106b-5p, and hsa-miR-191-5p) was established to predict biochemical recurrence (BCR). We have determined through two prediction methods that NVP-TAE684 may be the optimal targeted therapy drug for treating CAFs. Downregulation of hsa-miR-106b-5p in CAFs significantly suppressed cell proliferation, migration, and colony formation in vitro. In vivo studies using a xenograft model further confirmed that hsa-miR-106b-5p downregulation significantly reduced tumor growth. CONCLUSION Our findings conducted an integrated bioinformatic analysis to develop a CAFs-related miRNAs model that provides prognostic insights into individualized and precise treatment for prostate adenocarcinoma patients. Downregulation of miR-106b-5p in CAFs significantly suppressed tumor growth, suggesting a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Shuai Liu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Longtu Ma
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Long Cheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Qingchao Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Liangliang Qing
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Yongjin Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| | - Zhilong Dong
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China; Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
12
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
13
|
Lai C, Wu Z, Li Z, Huang X, Hu Z, Yu H, Yuan Z, Shi J, Hu J, Mulati Y, Liu C, Xu K. Single-cell analysis extracted CAFs-related genes to established online app to predict clinical outcome and radiotherapy prognosis of prostate cancer. Clin Transl Oncol 2024; 26:1240-1255. [PMID: 38070051 DOI: 10.1007/s12094-023-03348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/03/2023] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play a significant role in regulating the clinical outcome and radiotherapy prognosis of prostate cancer (PCa). The aim of this study is to identify CAFs-related genes (CAFsRGs) using single-cell analysis and evaluate their potential for predicting the prognosis and radiotherapy prognosis in PCa. METHODS We acquire transcriptome and single-cell RNA sequencing (scRNA-seq) results of PCa and normal adjacent tissues from The GEO and TCGA databases. The "MCPcounter" and "EPIC" R packages were used to assess the infiltration level of CAFs and examine their correlation with PCa prognosis. ScRNA-seq and differential gene expression analyses were used to extract CAFsRGs. We also applied COX and LASSO analysis to further construct a risk score (CAFsRS) to assess biochemical recurrence-free survival (BRFS) and radiotherapy prognosis of PCa. The predictive efficacy of CAFsRS was evaluated by ROC curves and subgroup analysis. Finally, we integrated the CAFsRS gene signature with relevant clinical features to develop a nomogram, enhancing the predictive accuracy. RESULTS The abundance of CAFs is associated with a poor prognosis of PCa patients. ScRNA-seq and differential gene expression analysis revealed 323 CAFsRGs. After COX and LASSO analysis, we obtained seven CAFsRGs with prognostic significance (PTGS2, FKBP10, ENG, CDH11, COL5A1, COL5A2, and SRD5A2). Additionally, we established a risk score model based on the training set (n = 257). The ROC curve was used to confirm the performance of CAFsRS (The AUC values for 1, 3 and 5-year survival were determined to be 0.732, 0.773, and 0.775, respectively.). The testing set (n = 129), GSE70770 set (n = 199) and GSE116918 set (n = 248) revealed that the model exhibited exceptional predictive performance. This was also confirmed by clinical subgroup analysis. The violin plot demonstrated a statistically significant disparity in the CAFs infiltrations between the high-risk and low-risk groups of CAFsRS. Further analysis confirmed that both CAFsRS and T stage were independent prognostic factors for PCa. The nomogram was then established and its excellent predictive performance was demonstrated through calibration and ROC curves. Finally, we developed an online prognostic prediction app ( https://sysu-symh-cafsnomogram.streamlit.app/ ) to facilitate the practical application of the nomogram. CONCLUSIONS The prognostic prediction risk score model we constructed could accurately predict BRFS and radiotherapy prognosis PCa, which can provide new ideas for clinicians to develop personalized PCa treatment and follow-up programs.
Collapse
Affiliation(s)
- Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Zhikai Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China
| | - Xin Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Zhensheng Hu
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China
| | - Zhihan Yuan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Juanyi Shi
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China
| | - Jintao Hu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Yelisudan Mulati
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China
| | - Cheng Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
| | - Kewei Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510000, Guangdong, China.
- Sun Yat-Sen College of Medical Science, Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
14
|
Liu Z, Lin Z, Jiang M, Zhu G, Xiong T, Cao F, Cui Y, Niu YN. Cancer-associated fibroblast exosomes promote prostate cancer metastasis through miR-500a-3p/FBXW7/HSF1 axis under hypoxic microenvironment. Cancer Gene Ther 2024; 31:698-709. [PMID: 38351137 DOI: 10.1038/s41417-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Metastasis is the main cause of deaths in prostate cancer (PCa). However, the exact mechanisms underlying PCa metastasis are not fully understood. In this study, we discovered pronounced hypoxia in primary lesions of metastatic PCa(mPCa). The exosomes secreted by cancer-associated fibroblasts (CAFs) under hypoxic conditions significantly enhance PCa metastasis both in vitro and in vivo. Through miRNA sequencing and reverse transcription quantitative PCR (RT-qPCR), we found that hypoxia elevated miR-500a-3p levels in CAFs exosomes. Subsequent RT-qPCR, western blotting, and dual luciferase reporter assays identified F-box and WD repeat domain-containing 7(FBXW7) as a target of miR-500a-3p. In addition, immunohistochemistry revealed that FBXW7 expression decreased with the progression of PCa, while heat shock transcription factor 1(HSF1) expression increased. Introducing an FBXW7 plasmid into PCa cells reduced their metastatic potential and significantly lowered HSF1 expression. These findings suggest that CAFs exosomes drive PCa metastasis via the miR-500a-3p/FBXW7/HSF1 axis in a hypoxic microenvironment. Targeting either hypoxia or exosomal miR-500a-3p could be a promising strategy for PCa management.
Collapse
Affiliation(s)
- Zhanliang Liu
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhemin Lin
- Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Mingxin Jiang
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Guangyi Zhu
- Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Tianyu Xiong
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Fang Cao
- Cancer Hospital, Chinese Academy of Medical Science, 100021, Beijing, China
| | - Yun Cui
- Beijing Chaoyang Hospital, Capital Medical University, 100016, Beijing, China.
| | - Y N Niu
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| |
Collapse
|
15
|
Bakhsh T, Alhazmi S, Farsi A, Yusuf AS, Alharthi A, Qahl SH, Alghamdi MA, Alzahrani FA, Elgaddar OH, Ibrahim MA, Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci Rep 2024; 14:8902. [PMID: 38632250 PMCID: PMC11024162 DOI: 10.1038/s41598-024-58536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jedaah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Central lab of biological Sciences, Faculty of Sciences, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Ali Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulaziz S Yusuf
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ola H Elgaddar
- Department of Chemical Pathology, Alexandria University, Alexandria, Egypt
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, 11481, Riyadh, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
17
|
Urabe F, Yamada Y, Yamamoto S, Tsuzuki S, Kimura S, Ochiya T, Kimura T. Extracellular vesicles and prostate cancer management: a narrative review. Transl Androl Urol 2024; 13:442-453. [PMID: 38590964 PMCID: PMC10999020 DOI: 10.21037/tau-23-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/01/2024] [Indexed: 04/10/2024] Open
Abstract
Background and Objective Prostate cancer (PCa) is the second most common male cancer in the United States. Although new drugs have recently been approved, clinical challenges remain, notably the precise detection and prognostic implications of drug-resistant PCa. Extracellular vesicles (EVs), nanoscale lipid membrane vesicles, are actively secreted into the extracellular milieu by a variety of cell types. Over the past decade, interest in EVs has grown, and emerging evidence suggests that EVs play pivotal roles in cancer biology. In this review, we would like to summarize recent reports on EVs in PCa and discuss the potential clinical applications. Methods We performed a non-systematic literature review using the PubMed database to identify articles specifically related to EVs and PCa management. Key Content and Findings EVs contain pathogenic components, such as proteins, DNA fragments, mRNA, non-coding RNA, and lipids, all of which can trigger intercellular signaling within tumor microenvironments. Thereby, EVs exert significant effects on several stages of cancer progression, influencing the immune system, angiogenesis, and the establishment of pre-metastatic niches. Furthermore, as EVs are encapsulated, their contents are stable in bodily fluids, and thus EVs have recently attracted attention as a novel kind of liquid biopsy. Conclusions We have summarized recent research on how EVs may aid PCa management. To date, we have discovered only the tip of the iceberg. We anticipate that further research will yield innovative therapeutic modalities, thereby aiding all PCa patients.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, University of Tokyo, Tokyo, Japan
| | - Shutaro Yamamoto
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shoji Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Fang X, Chen D, Yang X, Cao X, Cheng Q, Liu K, Xu P, Wang Y, Xu J, Zhao S, Yan Z. Cancer associated fibroblasts-derived SULF1 promotes gastric cancer metastasis and CDDP resistance through the TGFBR3-mediated TGF-β signaling pathway. Cell Death Discov 2024; 10:111. [PMID: 38438372 PMCID: PMC10912303 DOI: 10.1038/s41420-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
SULF1 has been implicated in a number of malignancies. The function of SULF1 in gastric cancer is disputed. The objective of this study was to examine the role and underlying molecular mechanisms of SULF1 in the context of gastric cancer. We found that the expression of SULF1 was increased in gastric cancer, especially in cancer-associated fibroblasts. The overexpression of SULF1 was found to be significantly correlated with unfavorable prognosis among individuals diagnosed with gastric cancer. Functionally, cancer-associated fibroblasts-derived SULF1 served as a oncogenic molecule which facilitated gastric cancer cells metastasis and CDDP resistance. Mechanistically, SULF1 regulated the communication between gastric cancer cells and cancer-associated fibroblasts in tumor microenvironment as a signaling molecule. Cancer-associated fibroblasts-secreted SULF1 interfered with the interaction between TGF-β1 and TGFBR3 by combining with TGFBR3 on gastric cancer cell membrane, subsequently activated TGF-β signaling pathway. In conclusion, our findings have presented novel approaches for potential treatment and prognosis prediction in individuals diagnosed with gastric cancer through the targeting of the CAFs-SULF1-TGFBR3-TGF-β1 signaling axis.
Collapse
Affiliation(s)
- Xingchao Fang
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Damin Chen
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Xinyu Yang
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Xiaogang Cao
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zhengyuan Yan
- Department of General Surgery, Nanjing Lishui People's Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Padathpeedika Khalid J, Mary Martin T, Prathap L, Abhimanyu Nisargandha M, Boopathy N, Kishore Kumar MS. Exploring Tumor-Promoting Qualities of Cancer-Associated Fibroblasts and Innovative Drug Discovery Strategies With Emphasis on Thymoquinone. Cureus 2024; 16:e53949. [PMID: 38468988 PMCID: PMC10925941 DOI: 10.7759/cureus.53949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Tumor epithelial development and chemoresistance are highly promoted by the tumor microenvironment (TME), which is mostly made up of the cancer stroma. This is due to several causes. Cancer-associated fibroblasts (CAFs) stand out among them as being essential for the promotion of tumors. Understanding the fibroblastic population within a single tumor is made more challenging by the undeniable heterogeneity within it, even though particular stromal alterations are still up for debate. Numerous chemical signals released by tumors improve the connections between heterotypic fibroblasts and CAFs, promoting the spread of cancer. It becomes essential to have a thorough understanding of this complex microenvironment to effectively prevent solid tumor growth. Important new insights into the role of CAFs in the TME have been revealed by recent studies. The objective of this review is to carefully investigate the relationship between CAFs in tumors and plant secondary metabolites, with a focus on thymoquinone (TQ). The literature published between 2010 and 2023 was searched in PubMed and Google Scholar with keywords such as TQ, TME, cancer-associated fibroblasts, mechanism of action, and flavonoids. The results showed a wealth of data substantiating the activity of plant secondary metabolites, particularly TQ's involvement in blocking CAF operations. Scrutinized research also clarified the wider effect of flavonoids on pathways related to cancer. The present study highlights the complex dynamics of the TME and emphasizes the critical role of CAFs. It also examines the possible interventions provided by secondary metabolites found in plants, with TQ playing a vital role in regulating CAF function based on recent literature.
Collapse
Affiliation(s)
- Jabir Padathpeedika Khalid
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Milind Abhimanyu Nisargandha
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nisha Boopathy
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
21
|
Tao S, Wang J, Li F, Shi B, Ren Q, Zhuang Y, Qian X. Extracellular vesicles released by hypoxia-induced tumor-associated fibroblasts impart chemoresistance to breast cancer cells via long noncoding RNA H19 delivery. FASEB J 2024; 38:e23165. [PMID: 38197195 DOI: 10.1096/fj.202300203r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 01/11/2024]
Abstract
Recently, extracellular vesicles (EVs) have been emphasized in regulating the hypoxic tumor microenvironment of breast cancer (BC), where tumor-associated fibroblasts (TAFs) play a significant role. In this study, we describe possible molecular mechanisms behind the pro-tumoral effects of EVs, secreted by hypoxia (HP)-induced TAFs, on BC cell growth, metastasis, and chemoresistance. These mechanisms are based on long noncoding RNA H19 (H19) identified by microarray analysis. We employed an in silico approach to identify differentially expressed lncRNAs that were associated with BC. Subsequently, we explored possible downstream regulatory mechanisms. We isolated EVs from TAFs that were exposed to HP, and these EVs were denoted as HP-TAF-EVs henceforth. MTT, transwell, flow cytometry, and TUNEL assays were performed to assess the malignant phenotypes of BC cells. A paclitaxel (TAX)-resistant BC cell line was constructed, and xenograft tumor and lung metastasis models were established in nude mice for in vivo verification. Our observation revealed that lncRNA H19 was significantly overexpressed, whereas miR-497 was notably downregulated in BC. HP induced activation of TAFs and stimulated the secretion of EVs. Coculture of HP-TAF-EVs and BC cells led to an increase in TAX resistance of the latter. HP-TAF-EVs upregulated methylation of miR-497 by delivering lncRNA H19, which recruited DNMT1, thus lowering the expression of miR-497. In addition, lncRNA H19-containing HP-TAF-EVs hindered miR-497 expression, enhancing tumorigenesis and TAX resistance of BC cells in vivo. Our study presents evidence for the contribution of lncRNA H19-containing HP-TAF-EVs in the reduction of miR-497 expression through the recruitment of DNMT1, which in turn promotes the growth, metastasis, and chemoresistance of BC cells.
Collapse
Affiliation(s)
- Shuang Tao
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- Department of Oncological Surgery, Cancer Hospital of Yixing City, Yixing, P.R. China
| | - Fang Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bixia Shi
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Quanhai Ren
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yuhong Zhuang
- Department of Breast Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, P.R. China
- Department of Breast Surgery, The Wujin Clinical College, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
24
|
Jung J, Kim NH, Kwon M, Park J, Lim D, Kim Y, Gil W, Cheong YH, Park SA. The inhibitory effect of Gremlin-2 on adipogenesis suppresses breast cancer cell growth and metastasis. Breast Cancer Res 2023; 25:128. [PMID: 37880751 PMCID: PMC10599028 DOI: 10.1186/s13058-023-01732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Gremlin-1 (GREM1) and Gremlin-2 (GREM2) are bone morphogenetic protein antagonists that play important roles in organogenesis, tissue differentiation, and tissue homeostasis. Although GREM1 has been reported to be involved in promoting various cancers, little has been reported about effects of GREM2 on cancer. Recently, it has been reported that GREM2 can inhibit adipogenesis in adipose-derived stromal/stem cells. However, as an inhibitor of adipogenesis, the role of GREM2 in cancer progression is not well understood yet. METHODS Pre-adipocyte 3T3-L1 cells overexpressing mock or Grem2 were established using a lentiviral transduction system and differentiated into adipocytes-mock and adipocytes-Grem2, respectively. To investigate the effect of adipocyte-Grem2 on breast cancer cells, we analyzed the proliferative and invasion abilities of spheroids using a 3D co-culture system of breast cancer cells and adipocytes or conditioned medium (CM) of adipocytes. An orthotopic breast cancer mouse model was used to examine the role of adipocytes-Grem2 in breast cancer progression. RESULTS Grem2 overexpression suppressed adipogenesis of 3T3-L1 cells. Proliferative and invasion abilities of spheroids formed by co-culturing MTV/TM-011 breast cancer cells and adipocytes-Grem2 were significantly reduced compared to those of spheroids formed by co-culturing MTV/TM-011 cells and adipocytes-mock. Compared to adipocytes-mock, adipocytes-Grem2 showed decreased mRNA expression of several adipokines, notably IL-6. The concentration of IL-6 in the CM of these cells was also decreased. Proliferative and invasive abilities of breast cancer cells reduced by adipocytes-Grem2 were restored by IL-6 treatment. Expression levels of vimentin, slug, and twist1 in breast cancer cells were decreased by treatment with CM of adipocytes-Grem2 but increased by IL-6 treatment. In orthotopic breast cancer mouse model, mice injected with both MTV/TM-011 cells and adipocytes-Grem2 showed smaller primary tumors and lower lung metastasis than controls. However, IL-6 administration increased both the size of primary tumor and the number of metastatic lung lesions, which were reduced by adipocytes-Grem2. CONCLUSIONS Our study suggests that GREM2 overexpression in adipocytes can inhibit adipogenesis, reduce the expression and secretion of several adipokines, including IL-6, and ultimately inhibit breast cancer progression.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Youjin Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin, 17073, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
25
|
Hosseini R, Hosseinzadeh N, Asef-Kabiri L, Akbari A, Ghezelbash B, Sarvnaz H, Akbari ME. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther 2023; 30:1309-1322. [PMID: 37344681 DOI: 10.1038/s41417-023-00638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Transforming growth factor-β (TGF-β) is a well-known cytokine that controls various processes in normal physiology and disease context. Strong preclinical and clinical literature supports the crucial roles of the TGF-β in several aspects of cancer biology. Recently emerging evidence reveals that the release of TGF-β from tumor/immune/stromal cells in small extracellular vesicles (sEVs) plays an important part in tumor development and immune evasion. Hence, this review aims to address the packaging, release, and signaling pathways of TGF-β carried in sEVs (sEV-TGF-β) in cancer, and to explore its underpinning roles in tumor development, growth, progression, metastasis, etc. We also highlight key progresses in deciphering the roles of sEV-TGF-β in subverting anti-tumor immune responses. The paper ends with a focus on the clinical significance of TGF-β carried in sEVs and draws attention to its diagnostic, therapeutic, and prognostic importance.
Collapse
Affiliation(s)
- Reza Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nashmin Hosseinzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
26
|
Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother 2023; 166:115425. [PMID: 37660643 DOI: 10.1016/j.biopha.2023.115425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
27
|
Steffan B, Grossmann T, Grill M, Kirsch A, Groselj-Strele A, Gugatschka M. Comparing Effects of Short- and Long-Term Exposure of Cigarette Smoke Extract on Human Vocal Fold Fibroblasts. J Voice 2023:S0892-1997(23)00243-6. [PMID: 37696688 DOI: 10.1016/j.jvoice.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES To explore the effects of short- and long-term cigarette smoke extract (CSE) stimulation on the expression of extracellular matrix (ECM) components and inflammatory cytokines in an in vitro model for studying Reinke's edema using human vocal fold fibroblasts (hVFF). STUDY DESIGN Experimental pilot study using intervention with CSE in vitro. METHODS Immortalized hVFF were pretreated with 5% CSE or control medium over a period of 2 or 8 weeks, followed by a final 3-day incubation time. We evaluated cell proliferation and examined gene and protein expression of control- and CSE-treated cells using quantitative polymerase chain reaction, Western Blot and enzyme linked immunosorbent assay. RESULTS Cell numbers of CSE-treated hVFF strongly decreased after 8 weeks and limited the overall duration of the experiment. We observed significant upregulations in gene expression and protein levels of inflammatory markers (cyclooxygenase COX1, COX2) and ECM components (decorin, matrix metalloproteinase 1, transglutaminase 2, gremlin 2) induced by CSE after 2 and 8 weeks. Interleukin 1 receptor 1, prostaglandin I2 synthase, collagen- and hyaluronan-related gene expression showed minor upregulations. The majority of the observed genes were similarly regulated at both time points. However, the CSE-induced mRNA level of COX1 was ablated after 8 weeks. CONCLUSION Long-term treatment did not yield results significantly different from the short-term protocol. Therefore, we propose that prolonged CSE exposure is not superior to short-term settings, which save both time and materials.
Collapse
Affiliation(s)
- Barbara Steffan
- Department of Otorhinolaryngology, Division of Phoniatrics, Medical University of Graz, 8036 Graz, Austria
| | - Tanja Grossmann
- Department of Otorhinolaryngology, Division of Phoniatrics, Medical University of Graz, 8036 Graz, Austria.
| | - Magdalena Grill
- Department of Otorhinolaryngology, Division of Phoniatrics, Medical University of Graz, 8036 Graz, Austria
| | - Andrijana Kirsch
- Department of Otorhinolaryngology, Division of Phoniatrics, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, 8010 Graz, Austria
| | - Markus Gugatschka
- Department of Otorhinolaryngology, Division of Phoniatrics, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
28
|
Tai Q, Yu H, Gao M, Zhang X. In Situ Capturing and Counting Device for the Specific Depletion and Purification of Cancer-Derived Exosomes. Anal Chem 2023; 95:13113-13122. [PMID: 37609888 DOI: 10.1021/acs.analchem.3c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 μL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.
Collapse
Affiliation(s)
- Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hailong Yu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
29
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
30
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
31
|
Peng Z, Tong Z, Ren Z, Ye M, Hu K. Cancer-associated fibroblasts and its derived exosomes: a new perspective for reshaping the tumor microenvironment. Mol Med 2023; 29:66. [PMID: 37217855 DOI: 10.1186/s10020-023-00665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the tumor microenvironment (TME). They extensively communicate with the other cells. Exosome-packed bioactive molecules derived from CAFs can reshape the TME by interacting with other cells and the extracellular matrix, which adds a new perspective for their clinical application in tumor targeted therapy. An in-depth understanding of the biological characteristics of CAF-derived exosomes (CDEs) is critical for depicting the detailed landscape of the TME and developing tailored therapeutic strategies for cancer treatment. In this review, we have summarized the functional roles of CAFs in the TME, particularly focusing on the extensive communication mediated by CDEs that contain biological molecules such as miRNAs, proteins, metabolites, and other components. In addition, we have also highlighted the prospects for diagnostic and therapeutic applications based on CDEs, which could guide the future development of exosome-targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Manping Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China.
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Anhui, Fuyang, 236000, China.
| |
Collapse
|
32
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
33
|
Masoudi-Khoram N, Soheilifar MH, Ghorbanifar S, Nobari S, Hakimi M, Hassani M. Exosomes derived from cancer-associated fibroblasts mediate response to cancer therapy. Crit Rev Oncol Hematol 2023; 185:103967. [PMID: 36965647 DOI: 10.1016/j.critrevonc.2023.103967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the prominent stromal cell population in the tumor microenvironment (TME), which play an indispensable role in cancer progression and response to therapy. CAFs provide communication between tumor cells and surrounding cells by secreting soluble biomolecules and extracellular vesicles (EVs). Exosomes are small membrane-bound EVs that contain various cargos, including growth factors, non-coding RNAs (ncRNAs), cytokines, and chemokines. These biomolecules can be transferred between cells within the TME and alter the behavior of recipient cells. Some studies have shown that exosomes secreted by CAFs contribute to resistance to chemotherapy and radiotherapy. This review focuses on CAF-derived exosomes in different types of tumors, with emphasis on resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shima Ghorbanifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Hassani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Yao F, Shi W, Fang F, Lv MY, Xu M, Wu SY, Huang CL. Exosomal miR-196a-5p enhances radioresistance in lung cancer cells by downregulating NFKBIA. Kaohsiung J Med Sci 2023. [PMID: 36912495 DOI: 10.1002/kjm2.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Radiation therapy is recognized as an effective modality in the treatment of lung cancer, but radioresistance resulting from prolonged treatment reduces the chances of recovery. MicroRNAs (miRNAs) play a pivotal role in radiotherapy immunity. In this study, we aimed to investigate the mechanism by which miR-196a-5p affects radioresistance in lung cancer. The radioresistant lung cancer cell line A549R26-1 was established by radiation treatment. Cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were observed by microscopy, and the expression levels of CAF-specific marker proteins were detected by immunofluorescence. The shape of the exosomes was observed by electron microscopy. A CCK-8 assay was used to detect cell viability, while clone formation assays were used to detect cell proliferative capacity. Flow cytometry was performed to investigate apoptosis. The binding of miR-196a-5p and NFKBIA was predicted and further verified by the dual luciferase reporter experiment. qRT-PCR and western blotting were used to detect gene mRNA and protein levels. We found that exosomes secreted by CAFs could enhance lung cancer cell radioresistance. Moreover, miR-196a-5p potentially bound to NFKBIA, promoting malignant phenotypes in radioresistant cells. Furthermore, exosomal miR-196a-5p derived from CAFs increased radiotherapy immunity in lung cancer. Exosomal miR-196a-5p derived from CAFs enhanced radioresistance in lung cancer cells by downregulating NFKBIA, providing a new potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Fei Yao
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Shi
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Fang Fang
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Meng-Yu Lv
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mei Xu
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yan Wu
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chun-Li Huang
- The First Clinical Faculty, Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
35
|
Wang J, Zheng L, Hu C, Kong D, Zhou Z, Wu B, Wu S, Fei F, Shen Y. CircZFR promotes pancreatic cancer progression through a novel circRNA-miRNA-mRNA pathway and stabilizing epithelial-mesenchymal transition protein. Cell Signal 2023; 107:110661. [PMID: 36990335 DOI: 10.1016/j.cellsig.2023.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Pancreatic cancer (PC) ranks third in incidence and seventh in mortality among cancers worldwide. CircZFR has been implicated in various human cancers. Yet, how they affect PC progression is understudied. Herein, we demonstrated that circZFR was upregulated in PC tissues and cells, a feature that was correlated with the poor performance of patients with PC. Functional analyses elucidated that circZFR facilitated cell proliferation and enhanced tumorigenicity of PC. Moreover, we found that circZFR facilitated cell metastasis by differentially regulating the levels of proteins related to epithelial-mesenchymal transition (EMT). Mechanistic investigations revealed that circZFR sponged miR-375, thereby upregulating the downstream target gene, GREMLIN2 (GREM2). Additionally, circZFR knockdown resulted in attenuation of the JNK pathway, an effect that was reversed by GREM2 overexpression. Collectively, our findings implicate circZFR as a positive regulator of PC progression through the miR-375/GREM2/JNK axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Liping Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Chundong Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, No. 83 EastZhongshan Road, Nanming District, Guiyang, Guizhou 550001, China
| | - Zhongcheng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Bin Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Shaohan Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China
| | - Famin Fei
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China.
| | - Yiyu Shen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing 314000, Zhejiang, China.
| |
Collapse
|
36
|
Yi YW. Therapeutic Implications of the Drug Resistance Conferred by Extracellular Vesicles Derived from Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043704. [PMID: 36835116 PMCID: PMC9960576 DOI: 10.3390/ijms24043704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Anticancer drug resistance is a significant impediment in current cancer treatment. Extracellular vesicles (EVs) derived from cancer cells were recently acknowledged as a critical mechanism of drug resistance, tumor progression, and metastasis. EVs are enveloped vesicles comprising a lipid bilayer that transfers various cargo, including proteins, nucleic acids, lipids, and metabolites, from an originating cell to a recipient cell. Investigating the mechanisms whereby EVs confer drug resistance is still in the early stages. In this review, I analyze the roles of EVs derived from triple-negative breast cancer cells (TNBC-EVs) in anticancer drug resistance and discuss strategies to overcome TNBC-EV-mediated drug resistance.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
37
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
38
|
Lu Z, Chen Y, Luo W, Ding L, Wang H, Li Y, Yang BW, Ren L, Zheng Q, Xie H, Wang R, Yu C, Lin Y, Zhou Z, Xia L, Li G. Exosomes in Genitourinary Cancers: Emerging Mediators of Drug Resistance and Promising Biomarkers. Int J Biol Sci 2023; 19:167-182. [PMID: 36594094 PMCID: PMC9760437 DOI: 10.7150/ijbs.78321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Drug resistance presents a major obstacle in the treatment of genitourinary cancers. Exosomes as the medium of intercellular communication serve important biological functions and play essential roles in pathological processes, including drug response. Through the transfer of bioactive cargoes, exosomes can modulate drug resistance via multiple mechanisms. This review attempts to elucidate the mechanisms of exosomal cargoes with reference to tumor drug resistance, their role in genitourinary cancers, and their potential clinical applications as candidate biomarkers in liquid biopsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
40
|
Zhang M, Lu Y, Wang L, Mao Y, Hu X, Chen Z. Current Status of Research on Small Extracellular Vesicles for the Diagnosis and Treatment of Urological Tumors. Cancers (Basel) 2022; 15:cancers15010100. [PMID: 36612097 PMCID: PMC9817817 DOI: 10.3390/cancers15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.
Collapse
Affiliation(s)
- Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-150-8373-7280
| |
Collapse
|
41
|
Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: Intercellular and extracellular communications. Int J Urol 2022; 29:1429-1438. [PMID: 36122303 DOI: 10.1111/iju.15043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most prevalent male cancer in Western Europe and North America. Although new drugs were recently approved, clinical challenges such as accurately predicting and screening drug-resistant prostate cancer remain. microRNAs are short noncoding RNA molecules that participate in gene regulation at the post-transcriptional level by targeting messenger RNAs. There is accumulating evidence that intracellular microRNAs play important roles as promoters or inhibitors of prostate cancer progression. Additionally, recent studies showed that microRNAs are encapsulated in extracellular vesicles and shuttled into the extracellular space. Transfer of extracellular microRNAs contributes to intercellular communication between prostate cancer cells and components of the tumor microenvironment, which can promote prostate cancer progression. Furthermore, due to their encapsulation in extracellular vesicles, extracellular microRNAs can be stably present in body fluids which contain high levels of RNase. Thus, circulating microRNAs have great potential as noninvasive diagnostic and prognostic biomarkers for prostate cancer. Here, we summarize the roles of intracellular and extracellular microRNAs in prostate cancer progression and discuss the potential of microRNA-based therapeutics as a novel treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Li H, Xue S, Zhang X, Li F, Bei S, Feng L. CircRNA PVT1 modulated cell migration and invasion through Epithelial-Mesenchymal Transition (EMT) mediation in gastric cancer through miR-423-5p/Smad3 pathway. Regen Ther 2022; 21:25-33. [PMID: 35663842 PMCID: PMC9133701 DOI: 10.1016/j.reth.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) progression is related with gene regulations. Objectives This study explored underlying regulatory axis of circRNA PVT1 (circPVT1) in GC. Methods GC cell lines were detected for circPVT1 expression with the normal mucous epithelial cell GES-1 as control. After regulation of circPVT1, miR-423-5p and SMAD3 expression through transfection, CCK8 evaluated the cell viability, Transwell measured the migratory and invasive capability of cells. Luciferase verified the paired bindings between miR-423-5p and CircPVT1 or SMAD3. The functions of CircPVT1/miR-423-5p/SMAD3 were evaluated using RT-PCR, CCK8, Transwell assays. Western blot analyzed EMT-related proteins and phosphorylation of Smad3 in GC cells. Immunofluorescence method was used to evaluate the EMT-related proteins as well. Results CircPVT1 displayed higher expression in GC cells and knockdown led to decrease in cell growth, invasion and migration. CircPVT1 was targeted by miR-423-5p as a ceRNA of SMAD3. miR-423-5p upregulation suppressed both cicRNA PVT1 and SMAD3 in GC cells. Decrease in SMAD3 expression suppressed CircPVT1 by releasing miR-423-5p in cells, inhibiting cell growth, invasion and migration and suppressing the EMT process. Conclusion CircPVT1 modulated cell growth, invasion and migration through EMT mediation in gastric cancer through miR-423-5p/Smad3 pathway.
Collapse
|
43
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China,Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China,Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
44
|
Wang Y, Liang H, Zheng J. Exosomal microRNAs mediating crosstalk between cancer cells and cancer-associated fibroblasts in the tumor microenvironment. Pathol Res Pract 2022; 239:154159. [DOI: 10.1016/j.prp.2022.154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
|
45
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
46
|
K S, T D, M P. Small extracellular vesicles as a multicomponent biomarker platform in urinary tract carcinomas. Front Mol Biosci 2022; 9:916666. [PMID: 36237572 PMCID: PMC9551577 DOI: 10.3389/fmolb.2022.916666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles are a large group of nano-sized vesicles released by all cells. The variety of possible cargo (mRNAs, miRNAs, lncRNAs, proteins, and lipids) and the presence of surface proteins, signaling molecules, and receptor ligands make them a rich source of biomarkers for malignancy diagnosis. One of the groups gathering the most interest in cancer diagnostic applications is small extracellular vesicles (sEVs), with ≤200 nm diameter, mainly composed of exosomes. Many studies were conducted recently, evaluating the diagnostic potential of sEVs in urinary tract carcinomas (UTCs), discovering and clinically evaluating various classes of biomarkers. The amount of research concerning different types of UTCs understandably reflects their incidence. sEV cargos getting the most interest are non-coding RNAs (miRNA and lncRNA). However, implementation of other approaches such as metabolomic and proteomic analysis is also evaluated. The results of many studies indicate that sEVs have an essential role in the cancer process and possess many possible diagnostic and prognostic applications for UTC. The relative ease of obtaining biofluids rich in sEVs (urine and blood) confirms that sEVs are essential for UTC detection in the liquid biopsy approach. A noticeable rise in research quality is observed as more researchers are aware of the research standardization necessity, which is essential for considering the clinical application of their findings.
Collapse
|
47
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
48
|
Ye H, Hu X, Wen Y, Tu C, Hornicek F, Duan Z, Min L. Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications. J Nanobiotechnology 2022; 20:403. [PMID: 36064358 PMCID: PMC9446729 DOI: 10.1186/s12951-022-01609-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
50
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|