1
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Shen H, Gong M, Hu J, Yan Q, Zhang M, Zheng R, Wu J, Cao Y. Lycium barbarum polysaccharide's protective effects against PM 2.5-induced cellular senescence in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116232. [PMID: 38493701 DOI: 10.1016/j.ecoenv.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.
Collapse
Affiliation(s)
- Haochong Shen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Meidi Gong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Hu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Minghao Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Rao Zheng
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Nguyen TM, Jang WB, Lee Y, Kim YH, Lim HJ, Lee EJ, Nguyen TMT, Choi EJ, Kwon SM, Oh JW. Non-intrusive quality appraisal of differentiation-induced cardiovascular stem cells using E-Nose sensor technology. Biosens Bioelectron 2024; 246:115838. [PMID: 38042052 DOI: 10.1016/j.bios.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Thu M T Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
4
|
Zhang J, Li C, Shuai W, Chen T, Gong Y, Hu H, Wei Y, Kong B, Huang H. maresin2 fine-tunes ULK1 O-GlcNAcylation to improve post myocardial infarction remodeling. Eur J Pharmacol 2024; 962:176223. [PMID: 38056619 DOI: 10.1016/j.ejphar.2023.176223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the common causes of hospitalization and death all over the world. Maresin2 (MaR2), a specialized pro-solving mediator of inflammation, has been consolidated to be a novel cytokine fine-tuning inflammatory cascade. However, the precise mechanism is still unknown. Here, we demonstrated that maresin2 relieved myocardial damage via ULK1 O-GlcNAc modification during MI. METHODS The myocardial infarction model was established by ligating the left anterior descending artery (LAD). Echocardiography, histopathology, transmission electron microscope, and Western blot were used to evaluate cardiac function and remodeling. Furthermore, primary neonatal rat cardiomyocytes (NRCMs) were cultivated, and immunoprecipitation (IP) assays were performed to explore the specific mechanism. RESULTS As suggested, maresin2 treatment protected cardiac function and ameliorated adverse cardiac remodeling. Furthermore, we found that maresin2 facilitated autophagy and inhibited apoptosis under the modulation of O-GlcNAcylation-dependent ULK1 activation. Meanwhile, we discovered that maresin2 treatment ameliorated the inflammation of myocardial cells by inhibiting the interaction of TAK1 and TAB1. CONCLUSIONS Maresin2 is likely to promote autophagy while relieving apoptosis and inflammation of myocardial cells, thereby exerting a protective effect on the heart after MI.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Chenyu Li
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - He Hu
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Yanzhao Wei
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
5
|
Sareen N, Srivastava A, Alagarsamy KN, Lionetti V, Dhingra S. Stem cells derived exosomes and biomaterials to modulate autophagy and mend broken hearts. Biochim Biophys Acta Mol Basis Dis 2023:166806. [PMID: 37437748 DOI: 10.1016/j.bbadis.2023.166806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada; Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada.
| |
Collapse
|
6
|
Danics L, Abbas AA, Kis B, Pircs K. Fountain of youth—Targeting autophagy in aging. Front Aging Neurosci 2023; 15:1125739. [PMID: 37065462 PMCID: PMC10090449 DOI: 10.3389/fnagi.2023.1125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As our society ages inexorably, geroscience and research focusing on healthy aging is becoming increasingly urgent. Macroautophagy (referred to as autophagy), a highly conserved process of cellular clearance and rejuvenation has attracted much attention due to its universal role in organismal life and death. Growing evidence points to autophagy process as being one of the key players in the determination of lifespan and health. Autophagy inducing interventions show significant improvement in organismal lifespan demonstrated in several experimental models. In line with this, preclinical models of age-related neurodegenerative diseases demonstrate pathology modulating effect of autophagy induction, implicating its potential to treat such disorders. In humans this specific process seems to be more complex. Recent clinical trials of drugs targeting autophagy point out some beneficial effects for clinical use, although with limited effectiveness, while others fail to show any significant improvement. We propose that using more human-relevant preclinical models for testing drug efficacy would significantly improve clinical trial outcomes. Lastly, the review discusses the available cellular reprogramming techniques used to model neuronal autophagy and neurodegeneration while exploring the existing evidence of autophagy’s role in aging and pathogenesis in human-derived in vitro models such as embryonic stem cells (ESCs), induced pluripotent stem cell derived neurons (iPSC-neurons) or induced neurons (iNs).
Collapse
Affiliation(s)
- Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SU), Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Anna Anoir Abbas
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Balázs Kis
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
| | - Karolina Pircs
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU), Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Karolina Pircs,
| |
Collapse
|
7
|
Qin X, Fei J, Duan Y, Ceylan AF, Zhang F, Ren J. Beclin1 haploinsufficiency compromises mesenchymal stem cell-offered cardioprotection against myocardial infarction. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:21. [PMID: 35650374 PMCID: PMC9160171 DOI: 10.1186/s13619-022-00121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs)-based therapy has displayed some promises in ischemia heart diseases although its efficacy may be affected by changes in surrounding environments. This study evaluated the role of autophagy insufficiency using Beclin1 haploinsufficiency (BECN+/-) on intra-myocardial MSC transplantation-evoked effect against myocardial infarction. Donor MSCs from C57BL/6 mice were labelled with cell-tracker CM Dil and were delivered into LV free wall adjacent to infarct region in wild-type (WT) and BECN+/- recipient mice following ligation of left main coronary artery (MI-MSCs). Ten days following MI, myocardial function was assessed using echocardiography. Cardiomyocyte contractility and intracellular Ca2+ were monitored using cardiomyocytes from the area-at-risk adjacent to infarct. CM-Dil labeled cells were tracked in MSCs recipient mice using fluorescence microscopy. Lectin, Masson trichrome staining and Western blot analysis were employed to determine cardiomyocyte area, scar fibrosis, apoptosis and inflammation. MI insult triggered scar fibrosis, LV chamber dilation, decreased fractional shortening, ejection fraction, cardiomyocyte shortening, maximal velocity of shortening and relengthening as well as prolonged relengthening, which were abrogated or attenuated by MSCs therapy in WT but not BECN+/- mice. MI decreased intracellular Ca2+ rise and decay in response to electrical stimuli without affecting resting intracellular Ca2+, which were reconciled by MSCs in WT but not BECN+/- mice. MSCs further attenuated MI-induced mitochondrial ultrastructural injury, apoptosis, inflammation and autophagy defects in peri-infarct area in WT but not BECN+/- mice. Collectively, our results suggested that autophagy insufficiency dampened in MSCs-elicited cardioprotection associated with dampened apoptosis and inflammation.
Collapse
Affiliation(s)
- Xing Qin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Juanjuan Fei
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Asli F Ceylan
- Department of Medical Pharmacology, Ankara Yildirim Beyazit University, Faculty of Medicine, Bilkent, Ankara, Turkey
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|