1
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
2
|
Wu X, Zhao W, Miao Q, Shi S, Wei B, Luo L, Cai B. CCR2+TREM-1+ monocytes promote natural killer T cell dysfunction contributing towards HBV disease progression. Immunol Res 2024; 72:938-947. [PMID: 38814567 DOI: 10.1007/s12026-024-09495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Natural killer T (NKT) cells are amongst the most important innate immune cells against hepatitis B virus (HBV) infection. Moreover, previous studies have shown that HBV infection induced TREM-1+ expression in monocyte and secretion of inflammatory cytokines. Thus, this prompted us to elucidate the role of TREM-1+ monocytes in regulating the function of iNKT cells. Ninety patients and 20 healthy participants were enrolled in the study. The percentage and phenotype of iNKT cells and TREM-1+ monocytes were measured in the peripheral blood of healthy controls (HC), patients with chronic HBV infection (CHB), HBV-related liver cirrhosis (LC), and HBV-related acute-on-chronic liver failure (ACLF) via flow cytometry. Moreover, co-culture experiments with iNKT cells and TREM-1 overexpressing THP-1 cells were performed to determine the role of TREM-1 in the regulation of NKT cell function. We observed that the percentage of iNKT cells and CD4-iNKT cells gradually decreased, whereas the percentage of CCR2+TREM-1+ monocytes increased with the progression of the disease. In addition, activation of the TREM-1 signaling pathway induced the secretion of inflammatory cytokines leading to pyroptosis of iNKT cells and secretion of IL-17 contributing towards disease progression. Therefore, this study suggests that blocking the activation of TREM-1 in monocytes could promote the elimination of HBV by inhibiting pyroptosis of iNKT cells and restoring their function. However, further studies are required to validate these results that would help in developing new treatment strategies for patients with HBV infections.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wenling Zhao
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Miao
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Shiya Shi
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Wei
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Limei Luo
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Bei Cai
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Safaie T, Trinh KR, Vasuthasawat A, Morrison SL, Stover DR. An Anti-CD138-Targeted Interferon-Alpha Has Broad Efficacy in Solid Tumors Through Direct Tumor Cell Killing and Intratumoral Immune Modulation. J Interferon Cytokine Res 2024; 44:414-423. [PMID: 38949948 DOI: 10.1089/jir.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
| | - Kham R Trinh
- Nammi Therapeutics, Los Angeles, California, USA
| | | | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
4
|
Celli S, Watanabe M, Hodes RJ. Tumor suppressor p53 controls thymic NKT17 development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608967. [PMID: 39372758 PMCID: PMC11451625 DOI: 10.1101/2024.08.21.608967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor suppressor p53 antagonizes tumorigenesis, notably including the suppression of T cell lymphomas while its role on physiological T cell biology including thymic T cell development has not been fully understood. Invariant natural killer T (iNKT) cells develop in the thymus as innate-like αβ-T cells which consist of NKT1, NKT2 and NKT17 subsets. We found that the tumor suppressor p53 regulates specifically thymic NKT17 development. p53 is highly expressed in NKT17 relative to other T cell populations. Loss of p53 in the T cell lineage resulted in increased thymic NKT17 cell number with retention of lineage specific cytokine production, while development of NKT1, NKT2 and conventional T cells was not affected. Of interest, γH2AX expression was higher in NKT17 than NKT1 and NKT2 at steady state, and it was further increased in p53-deficient NKT17, suggesting that NKT17 development involves selectively greater DNA damage or genomic instability and that p53 expression might be in response to these damage signals. Taken together, our results indicated that the tumor suppressor p53 is active in selectively controlling thymic NKT17 development, with absence of p53 leading to an increase in thymic NKT17 cells expressing high levels of DNA damage response.
Collapse
|
5
|
Tan S, Lu X, Chen W, Pan B, Kong G, Wei L. Analysis and experimental validation of IL-17 pathway and key genes as central roles associated with inflammation in hepatic ischemia-reperfusion injury. Sci Rep 2024; 14:6423. [PMID: 38494504 PMCID: PMC10944831 DOI: 10.1038/s41598-024-57139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) elicits an immune-inflammatory response that may result in hepatocyte necrosis and apoptosis, ultimately culminating in postoperative hepatic dysfunction and hepatic failure. The precise mechanisms governing the pathophysiology of HIRI remain incompletely understood, necessitating further investigation into key molecules and pathways implicated in disease progression to guide drug discovery and potential therapeutic interventions. Gene microarray data was downloaded from the GEO expression profile database. Integrated bioinformatic analyses were performed to identify HIRI signature genes, which were subsequently validated for expression levels and diagnostic efficacy. Finally, the gene expression was verified in an experimental HIRI model and the effect of anti-IL17A antibody intervention in three time points (including pre-ischemic, post-ischemic, and at 1 h of reperfusion) on HIRI and the expression of these genes was investigated. Bioinformatic analyses of the screened characterized genes revealed that inflammation, immune response, and cell death modulation were significantly associated with HIRI pathophysiology. CCL2, BTG2, GADD45A, FOS, CXCL10, TNFRSF12A, and IL-17 pathway were identified as key components involved in the HIRI. Serum and liver IL-17A expression were significantly upregulated during the initial phase of HIRI. Pretreatment with anti-IL-17A antibody effectively alleviated the damage of liver tissue, suppressed inflammatory factors, and serum transaminase levels, and downregulated the mRNA expression of CCL2, GADD45A, FOS, CXCL10, and TNFRSF12A. Injection of anti-IL17A antibody after ischemia and at 1 h of reperfusion failed to demonstrate anti-inflammatory and attenuating HIRI benefits relative to earlier intervention. Our study reveals that the IL-17 pathway and related genes may be involved in the proinflammatory mechanism of HIRI, which may provide a new perspective and theoretical basis for the prevention and treatment of HIRI.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Xiang Lu
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Bingbing Pan
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China
- Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Jiefang West Road NO. 61, Changsha, 410005, China.
- Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Changsha, China.
| |
Collapse
|
6
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
7
|
Carbone ML, Capone A, Guercio M, Reddel S, Silvestris DA, Lulli D, Ramondino C, Peluso D, Quintarelli C, Volpe E, Failla CM. Insight into immune profile associated with vitiligo onset and anti-tumoral response in melanoma patients receiving anti-PD-1 immunotherapy. Front Immunol 2023; 14:1197630. [PMID: 37680638 PMCID: PMC10482109 DOI: 10.3389/fimmu.2023.1197630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Immunotherapy with checkpoint inhibitors is an efficient treatment for metastatic melanoma. Development of vitiligo upon immunotherapy represents a specific immune-related adverse event (irAE) diagnosed in 15% of patients and associated with a positive clinical response. Therefore, a detailed characterization of immune cells during vitiligo onset in melanoma patients would give insight into the immune mechanisms mediating both the irAE and the anti-tumor response. Methods To better understand these aspects, we analyzed T cell subsets from peripheral blood of metastatic melanoma patients undergoing treatment with anti-programmed cell death protein (PD)-1 antibodies. To deeply characterize the antitumoral T cell response concomitant to vitiligo onset, we analyzed T cell content in skin biopsies collected from melanoma patients who developed vitiligo. Moreover, to further characterize T cells in vitiligo skin lesion of melanoma patients, we sequenced T cell receptor (TCR) of cells derived from biopsies of vitiligo and primary melanoma of the same patient. Results and discussion Stratification of patients for developing or not developing vitiligo during anti-PD-1 therapy revealed an association between blood reduction of CD8-mucosal associated invariant T (MAIT), T helper (h) 17, natural killer (NK) CD56bright, and T regulatory (T-reg) cells and vitiligo onset. Consistently with the observed blood reduction of Th17 cells in melanoma patients developing vitiligo during immunotherapy, we found high amount of IL-17A expressing cells in the vitiligo skin biopsy, suggesting a possible migration of Th17 cells from the blood into the autoimmune lesion. Interestingly, except for a few cases, we found different TCR sequences between vitiligo and primary melanoma lesions. In contrast, shared TCR sequences were identified between vitiligo and metastatic tissues of the same patient. These data indicate that T cell response against normal melanocytes, which is involved in vitiligo onset, is not typically mediated by reactivation of specific T cell clones infiltrating primary melanoma but may be elicited by T cell clones targeting metastatic tissues. Altogether, our data indicate that anti-PD-1 therapy induces a de novo immune response, stimulated by the presence of metastatic cells, and composed of different T cell subtypes, which may trigger the development of vitiligo and the response against metastatic tumor.
Collapse
Affiliation(s)
- Maria Luigia Carbone
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Alessia Capone
- Laboratory of Molecular Neuroimmunology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Daniela Lulli
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Carmela Ramondino
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Daniele Peluso
- Department of Biology, University “Tor Vergata”, Rome, Italy
| | - Concetta Quintarelli
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Elisabetta Volpe
- Laboratory of Molecular Neuroimmunology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Cristina Maria Failla
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|