1
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
2
|
Kahraman T, Akpinar GG, Yildirim M, Larssen P, Bayyurt-Kocabas B, Yagci FC, Gursel A, Horuluoglu BH, Yazar V, Ayanoglu IC, Yildirim TC, Evcili I, Yilmaz IC, Eldh M, Gabrielsson S, Guler U, Salih B, Gursel M, Gursel I. Enhancing preventive and therapeutic cancer vaccine efficacy through biotherapeutic ligand-associated extracellular vesicles. J Control Release 2024; 376:618-631. [PMID: 39419449 DOI: 10.1016/j.jconrel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs), secreted by almost all living cells, have gained significant attention for their role in intercellular communication and their potential as versatile carriers for biotherapeutics. However, the clinical translation of EV-based therapies faces significant challenges, primarily due to the lack of efficient methods for loading biotherapeutic agents into EVs. This study introduces a simple, reproducible strategy for the simultaneous incorporation of various biotherapeutics within EVs. The process is gentle and preserves the essential physicochemical and biological characteristics of EVs, thereby protecting labile ligands from premature degradation and elimination. The binding and uptake efficiency of EVs by target cells reached approximately 97 % within 24 h of incubation. Administration of EVs loaded with oligodeoxynucleotides (ODN) resulted in a 4-fold increase in IFNγ+ CD4+ T cells and a 5-fold increase in IFNγ+ CD8+ T cells in the spleens and lymph nodes. Additionally, the co-administration of EVs with ODN and ovalbumin (OVA) induced elevated Th1-biased antibody responses and antigen-specific cytotoxic T-cell responses, providing long-lasting complete protection in 60 % of mice against T-cell thymoma challenge. Furthermore, EVs associated with three different ligands (OVA, CpG-ODN, and α-GalCer) effectively regressed established murine melanoma and significantly improved survival rates in mice. This study presents a powerful and promising approach to overcoming the limitations of EV-based cancer vaccines, advancing the development of effective cancer immunotherapies. SUMMARY: Immunization with EVs that are co-associated with antigen and biotherapeutic cargo through a lyophilization-based technique elicits potent anti-cancer immunity.
Collapse
Affiliation(s)
- Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorvacs Vaccine, Drug, Biologic Products and Biotechnology Research and Development Company, 06800 Ankara, Turkey
| | - Gozde Gucluler Akpinar
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Muzaffer Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Pia Larssen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Banu Bayyurt-Kocabas
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Fuat C Yagci
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorvacs Vaccine, Drug, Biologic Products and Biotechnology Research and Development Company, 06800 Ankara, Turkey
| | - Arda Gursel
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | - Begum Han Horuluoglu
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | - Volkan Yazar
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | | | - Tugce Canavar Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Irem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ismail C Yilmaz
- Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Mayda Gursel
- Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
3
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Al-Ani SA, Lee QY, Maheswaran D, Sin YM, Loh JS, Foo JB, Hamzah S, Ng JF, Tan LKS. Potential of Exosomes as Multifunctional Nanocarriers for Targeted Drug Delivery. Mol Biotechnol 2024:10.1007/s12033-024-01268-6. [PMID: 39269575 DOI: 10.1007/s12033-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Exosomes are small vesicles that form when multivesicular bodies fuse with the plasma membrane and are released into body fluids. They play a vital role in facilitating communication between cells by transferring different biomolecules, including DNA, RNA, proteins, and lipids, over both short and long distances. They also function as vital mediators in both states of health and disease, exerting an impact on several physiological processes. Exosomes have been modified to overcome the limitations of natural exosomes to enhance their potential as carriers for drug delivery systems, and these modifications aim to improve the drug delivery efficiency, enhance tissue and organ targeting, and prolong the circulating half-life of exosomes. This review discussed recent advancements in exosome nanotechnology, as well as the progression and use of exosomes for drug delivery. The potential commercialisation and challenges associated with the use of exosome-based drug delivery systems were also discussed, aiming to motivate the development of exosome-based theranostic nanoplatforms and nanotechnology for improved healthcare treatments.
Collapse
Affiliation(s)
- Safa Ali Al-Ani
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Qiao Ying Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Danesha Maheswaran
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Yuh Miin Sin
- Faculty of Medicine, AIMST University, Jalan Bedong, 08100, Semeling, Kedah Darulaman, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Albakova Z. HSP90 multi-functionality in cancer. Front Immunol 2024; 15:1436973. [PMID: 39148727 PMCID: PMC11324539 DOI: 10.3389/fimmu.2024.1436973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The 90-kDa heat shock proteins (HSP90s) are molecular chaperones essential for folding, unfolding, degradation and activity of a wide range of client proteins. HSP90s and their cognate co-chaperones are subject to various post-translational modifications, functional consequences of which are not fully understood in cancer. Intracellular and extracellular HSP90 family members (HSP90α, HSP90β, GRP94 and TRAP1) promote cancer by sustaining various hallmarks of cancer, including cell death resistance, replicative immortality, tumor immunity, angiogenesis, invasion and metastasis. Given the importance of HSP90 in tumor progression, various inhibitors and HSP90-based vaccines were developed for the treatment of cancer. Further understanding of HSP90 functions in cancer may provide new opportunities and novel therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Chokan Limited Liability Partnership, Almaty, Kazakhstan
| |
Collapse
|
7
|
Gambardella AR, Antonucci C, Zanetti C, Noto F, Andreone S, Vacca D, Pellerito V, Sicignano C, Parrottino G, Tirelli V, Tinari A, Falchi M, De Ninno A, Businaro L, Loffredo S, Varricchi G, Tripodo C, Afferni C, Parolini I, Mattei F, Schiavoni G. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J Exp Clin Cancer Res 2024; 43:209. [PMID: 39061080 PMCID: PMC11282757 DOI: 10.1186/s13046-024-03129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.
Collapse
Affiliation(s)
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Valentina Pellerito
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Chiara Sicignano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppe Parrottino
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Antonella Tinari
- National Center for Gender Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Adele De Ninno
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Luca Businaro
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore Di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
- Laboratory of Molecular Medicine and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
8
|
Toniolo A, Maccari G, Camussi G. mRNA Technology and Mucosal Immunization. Vaccines (Basel) 2024; 12:670. [PMID: 38932399 PMCID: PMC11209623 DOI: 10.3390/vaccines12060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current mRNA vaccines are mainly administered via intramuscular injection, which induces good systemic immunity but limited mucosal immunity. Achieving mucosal immunity through mRNA vaccination could diminish pathogen replication at the entry site and reduce interhuman transmission. However, delivering mRNA vaccines to mucosae faces challenges like mRNA degradation, poor entry into cells, and reactogenicity. Encapsulating mRNA in extracellular vesicles may protect the mRNA and reduce reactogenicity, making mucosal mRNA vaccines possible. Plant-derived extracellular vesicles from edible fruits have been investigated as mRNA carriers. Studies in animals show that mRNA vehiculated in orange-derived extracellular vesicles can elicit both systemic and mucosal immune responses when administered by the oral, nasal, or intramuscular routes. Once lyophilized, these products show remarkable stability. The optimization of mRNA to improve translation efficiency, immunogenicity, reactogenicity, and stability can be obtained through adjustments of the 5'cap region, poly-A tail, codons selection, and the use of nucleoside analogues. Recent studies have also proposed self-amplifying RNA vaccines containing an RNA polymerase as well as circular mRNA constructs. Data from parenterally primed animals demonstrate the efficacy of nasal immunization with non-adjuvanted protein, and studies in humans indicate that the combination of a parenteral vaccine with the natural exposure of mucosae to the same antigen provides protection and reduces transmission. Hence, mucosal mRNA vaccination would be beneficial at least in organisms pre-treated with parenteral vaccines. This practice could have wide applications for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Antonio Toniolo
- Global Virus Network, University of Insubria Medical School, 21100 Varese, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Camussi
- Department of Medical Science, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| |
Collapse
|
9
|
Sheikhhossein HH, Iommelli F, Di Pietro N, Curia MC, Piattelli A, Palumbo R, Roviello GN, De Rosa V. Exosome-like Systems: From Therapies to Vaccination for Cancer Treatment and Prevention-Exploring the State of the Art. Vaccines (Basel) 2024; 12:519. [PMID: 38793770 PMCID: PMC11125800 DOI: 10.3390/vaccines12050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains one of the main causes of death in the world due to its increasing incidence and treatment difficulties. Although significant progress has been made in this field, innovative approaches are needed to reduce tumor incidence, progression, and spread. In particular, the development of cancer vaccines is currently ongoing as both a preventive and therapeutic strategy. This concept is not new, but few vaccines have been approved in oncology. Antigen-based vaccination emerges as a promising strategy, leveraging specific tumor antigens to activate the immune system response. However, challenges persist in finding suitable delivery systems and antigen preparation methods. Exosomes (EXs) are highly heterogeneous bilayer vesicles that carry several molecule types in the extracellular space. The peculiarity is that they may be released from different cells and may be able to induce direct or indirect stimulation of the immune system. In particular, EX-based vaccines may cause an anti-tumor immune attack or produce memory cells recognizing cancer antigens and inhibiting disease development. This review delves into EX composition, biogenesis, and immune-modulating properties, exploring their role as a tool for prevention and therapy in solid tumors. Finally, we describe future research directions to optimize vaccine efficacy and realize the full potential of EX-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hamid Heydari Sheikhhossein
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
10
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
11
|
Safaei S, Fadaee M, Farzam OR, Yari A, Poursaei E, Aslan C, Samemaleki S, Shanehbandi D, Baradaran B, Kazemi T. Exploring the dynamic interplay between exosomes and the immune tumor microenvironment: implications for breast cancer progression and therapeutic strategies. Breast Cancer Res 2024; 26:57. [PMID: 38553754 PMCID: PMC10981336 DOI: 10.1186/s13058-024-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Breast cancer continues to pose a substantial worldwide health concern, demanding a thorough comprehension of the complex interaction between cancerous cells and the immune system. Recent studies have shown the significant function of exosomes in facilitating intercellular communication and their participation in the advancement of cancer. Tumor-derived exosomes have been identified as significant regulators in the context of breast cancer, playing a crucial role in modulating immune cell activity and contributing to the advancement of the illness. This study aims to investigate the many effects of tumor-derived exosomes on immune cells in the setting of breast cancer. Specifically, we will examine their role in influencing immune cell polarization, facilitating immunological evasion, and modifying the tumor microenvironment. Furthermore, we explore the nascent domain of exosomes produced from immune cells and their prospective involvement in the prevention of breast cancer. This paper focuses on new research that emphasizes the immunomodulatory characteristics of exosomes produced from immune cells. It also explores the possibility of these exosomes as therapeutic agents or biomarkers for the early identification and prevention of breast cancer. The exploration of the reciprocal connections between exosomes formed from tumors and immune cells, together with the rising significance of exosomes derived from immune cells, presents a potential avenue for the advancement of novel approaches in the field of breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
| | - Manouchehr Fadaee
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Elham Poursaei
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Gholghasht Ave, Tabriz, Iran.
| |
Collapse
|
12
|
Li K, Deng Z, Lei C, Ding X, Li J, Wang C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024; 13:441. [PMID: 38474405 DOI: 10.3390/cells13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated. Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on. This review combs the effects of oxidative stress on tumorigenesis on each phase and cell fate determination, and three features are discussed. Oxidative stress takes part in the processes ranging from tumorigenesis to tumor death via series pathways and processes like mitochondrial stress, endoplasmic reticulum stress, and ferroptosis. It can affect cell fate by engaging in the complex relationships between senescence, death, and cancer. The influence of oxidative stress on tumorigenesis and progression is a multi-stage interlaced process that includes two aspects of promotion and inhibition, with mitochondria as the core of regulation. A deeper and more comprehensive understanding of the effects of oxidative stress on tumorigenesis is conducive to exploring more tumor therapies.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Zhangyuzi Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Chunran Lei
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Xiaoqing Ding
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Jing Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
13
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|