1
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2024:1-27. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Park JH, Lee YB, Lee SH, Ko E, Imm JY. Combination of Milk Polar Lipids and Casein Hydrolysate as a Healthy Emulsifier for Ice Cream. Food Sci Anim Resour 2024; 44:1389-1402. [PMID: 39554821 PMCID: PMC11564146 DOI: 10.5851/kosfa.2024.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
The demand for healthy ingredients in food products including ice cream, is continuously increasing. The potential of a combination of milk polar lipids (MPL) and casein hydrolysate (CH) to replace synthetic emulsifiers such as diacetyl tartaric acid esters of monoglycerides (DATEM), in ice cream production was investigated. Changes in particle size, emulsion stability, and interfacial tension of model emulsions (milk protein, casein:whey=8:2, w/v) were analyzed after the addition of MPL, CH, and their combination (MPL+CH). The use of MPL+CH reduced interfacial tension and increased αs- and β-casein displacement from the surface of cream layers compared to the addition of MPL alone. The addition of MPL+CH improved ice cream overrun to levels comparable to those of control ice cream containing DATEM (0.3%, w/v), without adversely affecting melt rate or microstructure. Confocal laser scanning microscopy revealed that ice cream prepared with MPL+CH formed a thick protein and coalesced fat layer on the surface of air cells that might help enhance overrun. These findings suggest that the combination of MPL (0.3%, w/v) and CH (0.03%, w/v) can be used as a potential emulsifier alternative to replace chemically synthesized emulsifiers such as DATEM.
Collapse
Affiliation(s)
- Ji-Hwa Park
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Yu Bin Lee
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Sung Ho Lee
- Research Institute of Food and
Biotechnology, SPC Group, Seoul 08826, Korea
| | - Eunkyung Ko
- Research and Development Team,
Baskinrobbins Korea, SPC Group, Seoul 06737, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
3
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Argov-Argaman N, Altman H, Janssen JN, Daeem S, Raz C, Mesilati-Stahy R, Penn S, Monsonego-Ornan E. Effect of milk fat globules on growth and metabolism in rats fed an unbalanced diet. Front Nutr 2024; 10:1270171. [PMID: 38274212 PMCID: PMC10808575 DOI: 10.3389/fnut.2023.1270171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
We assessed the effects of supplementing milk fat globules (MFG) on the growth and development of the skeleton in rats fed a Western unbalanced diet (UBD). The UBD is high in sugar and fat, low in protein, fiber, and micronutrients, and negatively impacts health. The MFG-a complex lipid-protein assembly secreted into milk-has a unique structure and composition, which differs significantly from isolated and processed dietary ingredients. Rats consuming the UBD exhibited growth retardation and disrupted bone structural and mechanical parameters; these were improved by supplementation with small MFG. The addition of small MFG increased the efficiency of protein utilization for growth, and improved trabecular and cortical bone parameters. Furthermore, consumption of UBD led to a decreased concentration of saturated fatty acids and increased levels of polyunsaturated fatty acids (PUFA), particularly omega-6 PUFA, in the serum, liver, and adipose tissue. The addition of small MFG restored PUFA concentration and the ratio of omega-6 to omega-3 PUFA in bone marrow and adipose tissue. Finally, large but not small MFG supplementation affected the cecal microbiome in rats. Overall, our results suggest that natural structure MFG supplementation can improve metabolism and bone development in rats fed an UBD, with the effects depending on MFG size. Moreover, the benefits of small MFG to bone development and metabolism were not mediated by the microbiome, as the detrimental effects of an UBD on the microbiome were not mitigated by MFG supplementation.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hodaya Altman
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Seman Daeem
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Raz
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Mesilati-Stahy
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svetlana Penn
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Monsonego-Ornan
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Gong H, Yuan Q, Du M, Mao X. Polar lipid-enriched milk fat globule membrane supplementation in maternal high-fat diet promotes intestinal barrier function and modulates gut microbiota in male offspring. Food Funct 2023; 14:10204-10220. [PMID: 37909908 DOI: 10.1039/d2fo04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring. Obese female rats induced by HFD were supplemented with MFGM-PL during pregnancy and lactation. The offspring were fed HFD for 11 weeks after weaning. MFGM-PL supplementation to dams fed HFD decreased the body weight gain and ameliorated abnormalities of serum insulin, lipids, and inflammatory cytokines in offspring at weaning. Maternal MFGM-PL supplementation promoted the intestinal barrier by increasing the expression of Ki-67, lysozyme, mucin 2, zonula occludens-1, claudin-3, and occludin. Additionally, MFGM-PL supplementation to HFD dams improved gut dysbiosis in offspring. MFGM-PL increased the relative abundance of Akkermansiaceae, Ruminococcaceae, and Blautia. Concomitantly, maternal MFGM-PL treatment increased short-chain fatty acids of colonic contents and G-protein-coupled receptor (GPR) 41 and GPR 43 expressions in the colon of offspring. Importantly, the beneficial effects of maternal MFGM-PL intervention persisted to offspring's adulthood, as evidenced by increased relative abundance of norank_f_Muribaculaceae, Peptostreptococcaceae and Romboutsia and modulated the taxonomic diversity of gut microbiota in adult offspring. In summary, maternal MFGM-PL supplementation improved intestinal development in the offspring of dams fed with HFD, which exerted long-term beneficial effects on offspring intestinal health.
Collapse
Affiliation(s)
- Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qichen Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Garcia C, Anto L, Blesso CN. Effects of Milk Polar Lipids on DSS-Induced Colitis Severity Are Dependent on Dietary Fat Content. Nutrients 2022; 14:nu14235145. [PMID: 36501176 PMCID: PMC9738862 DOI: 10.3390/nu14235145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
In the United States, over three million adults suffer from inflammatory bowel disease (IBD). The gut microbiome, host immune response, and nutrient-microbial interactions are known to play a role in IBD. The relationship between dairy and IBD is controversial; thus, the objectives of this study were to identify how milk polar lipids (MPLs) and anhydrous milk fat affect colitis disease activity, the colonic transcriptome, and the gut microbiome in a mouse model of chemical-induced colitis. Male and female C57BL/6J mice (n = 120) were randomized into either a low (5% w/w) milk fat or a high (21% w/w) milk fat diet supplemented with either 0%, 1%, or 2% w/w of MPLs for three weeks (n = 10/group/sex). Afterwards, colitis was induced using 1% dextran sodium sulfate in drinking water for five days (colitis induction) and then switched to regular water for five days (colitis recovery). Mice fed added MPLs were protected against colitis when fed a high-fat diet, while added MPLs during low-fat diet attenuated disease activity during the colitis induction period yet promoted colitis and inflammation in male mice during the recovery period. Dietary fat content can alter colitis and influence the anti-inflammatory effect of milk polar lipids.
Collapse
|
8
|
Magnuson AD, Bukowski MR, Rosenberger TA, Picklo MJ. Quantifying Sphingomyelin in Dairy through Infusion-Based Shotgun Mass Spectrometry with Lithium-Ion-Induced Fragmentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13808-13817. [PMID: 36239443 DOI: 10.1021/acs.jafc.2c04587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantifying sphingomyelin (SM) species by infusion-based mass spectrometry (MS) is complicated by the presence of isobaric phosphatidylcholine (PC) species, which generate a common m/z 184 product ion in the presence of ammonium ions as a result of the phosphocholine headgroup. Lithium ion adducts of SM undergo a selective dehydration [Li + H2O + (CH3)3NC2H4PO4] with a corresponding neutral loss of -207 Da. This neutral loss was employed to create a SM-selective method for identifying target species, which were quantitated using multiple reaction monitoring (MRM). SM-selective fragments in MS3 were used to characterize the sphingosine base and acyl chain. These methods were used to identify 50 individual SM species in bovine milk ranging from SM 28:1 to SM 44:2, with d16:1, d17:1, d18:1, d19:1, and d20:1 bases, and acyl fatty acids ranging from 10 to 25 carbons and 0-1 desaturations. Spiked SM standards into milk had a recovery of 99.7%, and endogenous milk SM had <10% coefficient of variation for both intra- and interday variability, with limits of detection of 1.4-5.55 nM and limits of quantitation of 11.8-178.1 nM. This MS-MRM method was employed to accurately and precisely quantify SM species in dairy products, including bovine-derived whole milk, half and half, whipping cream, and goat milk.
Collapse
Affiliation(s)
- Andrew D Magnuson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| | - Michael R Bukowski
- Beltsville Agricultural Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201, United States
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| |
Collapse
|
9
|
Yuan Q, Gong H, Du M, Li T, Mao X. Milk fat globule membrane supplementation to obese rats during pregnancy and lactation promotes neurodevelopment in offspring via modulating gut microbiota. Front Nutr 2022; 9:945052. [PMID: 36046136 PMCID: PMC9421050 DOI: 10.3389/fnut.2022.945052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pre-pregnancy obesity and high-fat diet (HFD) during pregnancy and lactation are associated with neurodevelopmental delay in offspring. This study aimed to investigate whether milk fat globule membrane (MFGM) supplementation in obese dams could promote neurodevelopment in offspring. Obese female rats induced by HFD were supplemented with MFGM during pregnancy and lactation. Maternal HFD exposure significantly delayed the maturation of neurological reflexes and inhibited neurogenesis in offspring, which were significantly recovered by maternal MFGM supplementation. Gut microbiota analysis revealed that MFGM supplementation modulated the diversity and composition of gut microbiota in offspring. The abundance of pro-inflammatory bacteria such as Escherichia shigella and Enterococcus were down-regulated, and the abundance of bacteria with anti-inflammatory and anti-obesity functions, such as Akkermansia and Lactobacillus were up-regulated. Furthermore, MFGM alleviated neuroinflammation by decreasing the levels of lipopolysaccharides (LPS) and pro-inflammatory cytokines in the circulation and brain, as well as inhibiting the activation of microglia. Spearman’s correlation analysis suggested that there existed a correlation between gut microbiota and inflammation-related indexes. In conclusion, maternal MFGM supplementation promotes neurodevelopment partly via modulating gut microbiota in offspring.
Collapse
Affiliation(s)
- Qichen Yuan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|