1
|
Wang SS, Lin P, Wang CC, Lin YC, Tung CW. Machine learning for predicting chemical migration from food packaging materials to foods. Food Chem Toxicol 2023:113942. [PMID: 37451598 DOI: 10.1016/j.fct.2023.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Food contact chemicals (FCCs) can migrate from packaging materials to food posing an issue of exposure to FCCs of toxicity concern. Compared to costly experiments, computational methods can be utilized to assess the migration potentials for various migration scenarios for further experimental investigation that can potentially accelerate the migration assessment. This study developed a nonlinear machine learning method utilizing chemical properties, material type, food type and temperature to predict chemical migration from package to food. Nine nonlinear algorithms were evaluated for their prediction performance. The ensemble model leveraging multiple algorithms provides state-of-the-art performance that is much better than previous linear regression models. The developed prediction models were subsequently applied to profile the migration potential of FCCs of high toxicity concern. The models are expected to be useful for accelerating the assessment of migration of FCCs from package to foods.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, 80756, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ying-Chi Lin
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80756, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan.
| |
Collapse
|
2
|
Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int J Mol Sci 2022; 23:ijms23116295. [PMID: 35682975 PMCID: PMC9181398 DOI: 10.3390/ijms23116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Polymeric films for active food packaging have been playing an important role in food preservation due to favorable properties including high structural flexibility and high property tunability. Over the years, different polymeric active packaging films have been developed. Many of them have found real applications in food production. This article reviews, using a practical perspective, the principles of designing polymeric active packaging films. Different factors to be considered during materials selection and film generation are delineated. Practical considerations for the use of the generated polymeric films in active food packaging are also discussed. It is hoped that this article cannot only present a snapshot of latest advances in the design and optimization of polymeric active food packaging films, but insights into film development to achieve more effective active food packaging can be attained for future research.
Collapse
|