1
|
Kim AR, Bang JH, Lee S, Sim CS, Kim Y, Lee J. Distribution of volatile organic compounds by distance from industrial complexes and potential health impact on the residents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:4202-4213. [PMID: 38764232 DOI: 10.1080/09603123.2024.2339550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Volatile organic compounds (VOCs) are the air pollutants emitted from the petrochemical industry known to pose adverse health effects on workers. The database based on the third phase of The Environmental Health Study in the Korean National Industrial Complexes (EHSNIC) in Ulsan conducted from 2018 to 2021 was used. Subjects were divided into the exposed and control group according to the estimated pollution level and distances from the industrial complexes. Ambient benzene, ethylbenzene, and xylene were significantly higher in the exposed group compared to the controls, as well as their metabolites. Risk of chronic disease and atopic dermatitis was higher in the exposed group which was supported by higher serum inflammatory markers and high hazard index of the exposed region. These results can draw attention to people engaged with environmental plans and used as primary data when making policies to reduce pollutant levels around industrial complexes.
Collapse
Affiliation(s)
- A Ram Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jin-Hee Bang
- Environmental Health Center, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sunghee Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Chang Sun Sim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jiho Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| |
Collapse
|
2
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Shin S, Yoon WS, Lee HS, Jo JH, Byeon SH. Airborne concentrations of bacteria and mold in Korean public-use facilities: measurement, systematic review, meta-analysis, and probabilistic human inhalation risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54854-54872. [PMID: 39215918 DOI: 10.1007/s11356-024-34749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bioaerosols adversely affect human health posing risk to users of public facilities in Korea. Between October 2021 and May 2022, airborne bacteria and mold were measured in 1,243 public-use facilities across 23 categories. A systematic review and meta-analysis were performed on these and other studies from June 2004 to May 2021, and the non-carcinogenic risks to humans were assessed using Monte Carlo simulations. For bacteria, the maximum 95th percentile concentration was 584.4 cfu/m3 and 1384.8 cfu/m3 for mold. The heterogeneity statistic I2 was over 50% in all facilities, and for subway station bacteria, there was a significant difference according to the measurement method. The 95th percentile of hazard by population group was 8.83 × 10-2 to 3.42 × 10-1 for bacteria, and 1.31 × 10-1 to 3.55 × 10-1 for mold. The probability of a hazard quotient exceeding 1 for some population groups was derived from exposure to bacteria and mold in the air resulting from the use of all public facilities. The most powerful explanatory factor for risk was exposure time to the facility, both within (up to 0.922 for bacteria and up to 0.960 for mold) and between populations (up to 0.543 for bacteria and 0.483 for mold). This study identified populations at risk of bioaerosol exposure in Korean public-use facilities and estimated the influencing factors, highlighting the need for comprehensive improvement in bioaerosol control in public-use facilities.
Collapse
Affiliation(s)
- Saemi Shin
- Research Institute of Health Sciences, Korea University, Seoul, Korea
| | - Won Suck Yoon
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Hyo Seon Lee
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Jeong Heum Jo
- National Institute of Environmental Research, Incheon, Korea
| | - Sang-Hoon Byeon
- School of Health and Environmental Science, Korea University, Seoul, Korea.
| |
Collapse
|
4
|
Liotta L, Litrenta F, Lo Turco V, Potortì AG, Lopreiato V, Nava V, Bionda A, Di Bella G. Evaluation of Chemical Contaminants in Conventional and Unconventional Ragusana Provola Cheese. Foods 2022; 11:foods11233817. [PMID: 36496625 PMCID: PMC9740842 DOI: 10.3390/foods11233817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Organic contaminants belonging to various classes (plasticizers, bisphenols, pesticides, PCBs, and PAHs,) were analyzed in samples of provola cheese produced from Friesian dairy cows fed with a conventional diet (group CTR), and an unconventional diet (group BIO) enriched with olive cake (OC). The results show that for most determined contaminants, the differences between the two diets were very slight, indicating that the contamination does not depend on the olive cake integrated in the unconventional diet. The results also indicate that the minimal contamination could result from environmental contamination or the production process. It can be concluded that unconventional provola is as safe for the consumer as conventional provola.
Collapse
Affiliation(s)
- Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
- Correspondence: ; Tel.: +39-0906766993
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| |
Collapse
|
5
|
Lee J, Kim J, Shin Y, Park E, Lee J, Keum YS, Kim JH. Occupational exposure and risk assessment for agricultural workers of thiamethoxam in vineyards. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113988. [PMID: 36029578 DOI: 10.1016/j.ecoenv.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Dermal & inhalation exposure was examined and according to these results, risk assessment of agricultural workers to thiamethoxam was performed during pesticide mixing/loading and hand-held sprayer application (11 replicates, each of about 1000 L of spray suspension) in vineyards. For the whole body dosimetry (WBD), clothing (Outer and inner), gauze, and nitrile gloves were analyzed to determine dermal exposure using whole-body dosimetry exposure protocol. The inhalation exposure was measured using a glass fiber filter with an IOM sampler. Analytical method validation of exposure matrices was evaluated including the field recovery and breakthrough test. The dermal exposure amount during mixing/loading was 0.163 mg (0.0004% of the total mixed/loaded active ingredient [a.i.]), whereas there was no inhalation exposure. The gloves (0.154 mg, 94.5%) were the most exposed body parts followed by the chest and stomach (0.009 mg, 5.5%). During application, the dermal and inhalation exposure amounts were 32.3 mg (0.07% of the total applied a.i.) and 10.8 µg (2.4 × 10-6% of the total applied a.i), respectively. The shin (35.1%) had the highest exposure to pesticides, followed by the chest & stomach (15.6%) and pelvis (12.6%). In case of mixing/loading, the amounts of actual dermal exposure (ADE) and actual inhalation exposure (AIE) were 0.0 and 0.0 μg/day, while those of ADE and AIE were 4707.6 and 15.8 μg/day for application. In risk assessment of the two different scenarios, the risk index was much lower than 1 (mixing/loading:0.000, application:0.014), indicating that vineyard workers are at low risk of thiamethoxam exposure. To determine the validity of the risk assessment using WBD method, the urinary metabolite was analyzed. Comparison of biomonitoring data and WBD exposure data show a reliable correlation (r = 0.885, p = 0.0003), suggesting that these are suitable methods to estimate exposure.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - JiWoo Kim
- Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office, Seoul 06590, Republic of Korea
| | - Yongho Shin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Eunyoung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Soo Keum
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|